=gh=
FACULTY OF COMPUTING e - ol wlaJiayl s
& INFORMATION TECHNOLOGY = o Glog Ll = o JlG i &g

KING ABDULAZIZ UNIVERSITY jj2dla el g lld s ol a

FCIT

KAU

Chapter 4
Selections

CPIT 110 (Problem-Solving and Programming)

Introduction to Programming Using Python, By: Y. Daniel Liang

Version 2.0

Sections

e 4.1. Motivations

 4.2. Boolean Types, Values, and Expressions

* 4.3. Generating Random Numbers

e 4.4.if Statements

e 4.6. Two-Way if-else Statements
 4.7. Nested if and Multi-Way if-elif-else Statements

e 4.8. Common Errors in Selection Statements

e 4.9, Case Study: Computing Body Mass Index

e 4.11. Logical Operators

e 4.12. Case Study: Determining Leap Years
e 4.13. Case Study: Lottery

 4.14. Conditional Expressions

e 4.15. Operator Precedence and Associativity

* Debugging

https://youtu.be/uHkyZ18wWHg
https://youtu.be/uHkyZ18wWHg
https://youtu.be/uZmp73348cA
https://youtu.be/uZmp73348cA
https://youtu.be/XpGqLkC5vBg
https://youtu.be/XpGqLkC5vBg
https://youtu.be/9LRIovRIxy8
https://youtu.be/9LRIovRIxy8
https://youtu.be/G0qc6vMEUHg
https://youtu.be/G0qc6vMEUHg
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/pApNxiwEKRU
https://youtu.be/pApNxiwEKRU
https://youtu.be/liHCS49SEgw
https://youtu.be/liHCS49SEgw
https://youtu.be/KycfZwRWNkA
https://youtu.be/KycfZwRWNkA
https://youtu.be/BsXFL35-cmg
https://youtu.be/BsXFL35-cmg
https://youtu.be/7opQmCV7Ihk
https://youtu.be/7opQmCV7Ihk
https://youtu.be/3XK229fW_OM
https://youtu.be/3XK229fW_OM
https://youtu.be/noQ4zPrxO4Y
https://youtu.be/noQ4zPrxO4Y
https://youtu.be/P2Ei-uDVKZU
https://youtu.be/P2Ei-uDVKZU

Program 1:

Programs

Math Learning Tool

Program 2:

Simple if Demo

Program 3:

Improved Math Learning Tool

@ Python Online IDE

Program 4:

Chinese Zodiac

Program 5:

Computing BMI

Program 6:

Test Boolean Operators

Program /:

Leap Year

Program 8:

Lottery

Check Points

* Section 4.3 * Section 4.8 o #23
il oLl o H24
o] P H1E ¢ 526
ik Section 4.11 > #27

* Section 4.4 ° #14 * Section 4.15
o 1 e RIS o Hls

* Section 4.6 3_1(75 ° #29
o #6 nl/

o #7 ° #18
H/ - #19

* Section 4.7 o #20
o #8 o #21
S HY .

o #10 * Section 4.14
#10 o #22

Objectives

* To write Boolean expressions by using comparison operators (4.2).

* To generate random numbers by using the random.randint(a, b) or random.random() functions (4.3).
* To program with Boolean expressions (AdditionQuiz) (4.3).

* To implement selection control by using one-way if statements (4.4)

* To implement selection control by using two-way if .. else statements (4.6).

* To implement selection control with nested if ... elif ... else statements (4.7).

* To avoid common errors in if statements (4.8).

* To program with selection statements (4.9).

* To combine conditions by using logical operators (and, or, and not) (4.11).

* To use selection statements with combined conditions (LeapYear, Lottery) (4.12 — 4.13).

* To write expressions that use the conditional expressions (4.14).

* To understand the rules governing operator precedence and associativity (4.15).

4.1. Motivations

https://youtu.be/P2Ei-uDVKZU
https://youtu.be/P2Ei-uDVKZU

Motivations

* Consider this problem from Chapter 2:

LISTING 2.2 ComputeAreaWithConsolelnput.py

Prompt the user to enter a radius D Run
radius = eval (input ("Enter a value for radius: "))

Compute area
area = radius * radius * 3.14159

Display results

O J o U b W DN

print ("The area for the circle of radius " , radius , " is " , area)

Motivations

* What happens if the user inputs a negative value for radius?
" The program would print an invalid result.

* If the radius is negative, you don't want the program to
compute the area.

* How can you deal with this situation?

Motivations

* Python provides selection statements, which allow you to
choose actions based on certain conditions.

* For example, the following selection statement could be used
in the previous program:

ModifiedComputeAreaWithConsolelnput.py

Prompt the user to enter a radius bRun
radius = eval (input ("Enter a value for radius: ")) —

if radius < 0:
radius is negative, so print an error message
print ("Incorrect input")
else:
Compute area
area = radius * radius * 3.14159
Display results
print ("The area for the circle of radius " , radius ,

"

=
o © O do U WwN e

is " , area)

Motivations

ModifiedComputeAreaWithConsolelnput.py

1 # Prompt the user to enter a radius bRun
2 radius = eval (input ("Enter a value for radius: "))

3

4 if radius < 0:

5 # radius is negative, so print an error message

6 print ("Incorrect input")

7 else:

8 # Compute area

9 area = radius * radius * 3.14159

10 # Display results

11 print ("The area for the circle of radius " , radius , " is " , area)

Enter a value for radius: -5 <gnter>
Incorrect input

Enter a value for radius: 0 <enter>
The area for the circle of radius 0 1is 0.0

L

Enter a value for radius: 5S<enter>
The area for the circle of radius 5 1s 78.53975

-
- |
—3

Motivations

Selection statements use conditions to test if something is true
or false.

These conditions are known as Boolean expressions.

A Boolean expression is an expression that evaluates to a
Boolean value (True or False).

This chapter introduces Boolean types, values, comparison
operators, and expressions.

(&) =

4.2. Boolean Types, Values, and
Expressions

= Boolean Data Types

= Relational Operators

= Boolean Variables

= Convert Boolean Value to Integer

= Convert Numeric Value to Boolean

= Pyzzle

https://youtu.be/noQ4zPrxO4Y
https://youtu.be/noQ4zPrxO4Y

Boolean Data Types

* Often in a program you need to compare two values, such as
whether x is greater thany.

o Orif an inputted value, such as radius, is less than zero.

* There are six comparison operators (also known as relational
operators) that can be used to compare two values. The result
of the comparison is a Boolean value: True or False.

* For example:

1 x =10 > 20

2 y =10 < 20

3 print ("x =", x) # output: False
4 print ("y =", y) # output: True

u x = False
y = True

Relational Operators

TaBLE 4.1 Comparison Operators

Python Mathematics Example

Operator Symbol Name (radius 1is 5) Result
< < less than radius < 0 False
<= < less than or equal to radius <= 0 False
> > greater than radius > 0 True
>= > greater than or equal to radius >= 0 True
== = equal to radius == 0 False
= # not equal to radius != 0 True

Wdonty,

{’)1 Caution

* The equal to comparison operator is two equal signs (==), not a
single equal sign (=). The latter symbol is for assignment.

>>> 20 == 30
False
>>> 50 == 50
True
>>> 50.0 == 50
e True
>>> 50 = 30
SyntaxError: can't assign to literal
>>> 60.0001 == 60

False

Boolean Variables

A variable that holds a Boolean value is known as a Boolean
variable.

The Boolean data type is used to represent Boolean values (True
or False).

A Boolean variable can hold one of the two values: True or False.

For example, the following statement assigns the value True to
the variable lightsOn:

lightsOn = True

* True and False are literals, just like a number such as 10. They are
reserved words and cannot be used as identifiers in a program.

Convert Boolean Value to Integer

* Internally, Python uses 1 to represent True and O for False.

* You can use the int function to convert a Boolean value to an
Integer.

>>> int (True)

1

>>> 1int (False)

0

>>> print (int (True))

1

>>> print (int (20 > 50))

0

>>> print (int (True == False))
0

>>> print (int (20 * 2 > 30))
1

Python

Convert Numeric Value to Boolean

* You can also use the bool function to convert a numeric value
to a Boolean value.

* The function returns False if the value is 0; otherwise, it always
returns True.

>>> bool (1)

True

>>> bool (0)

False

>>> bool (15)

True

>>> bool (-20)

True

>>> bool (10 + 10 - 20)
False

Python

Puzzle

* What is the output of the following script?

1 x = int(True) + int (True) + int (int(True) - int (True))
2 y = int (True) * int (bool (50) * 3)
3 r=x+y
4 print("x =", x)
5 print("y =", vy)
6 print("r =", r)
7 print("bool(r) =", bool(r))
8 print("bool(r - r) =", bool(r - 1))
X = 2
-y =3
-
o bool (r) = True
bool(r - r) = False

B =
4.3. Generating Random Numbers

* Generating Random Integer Numbers

= Program 1: Math Learning Tool

= randrange function

= Generating Random Float Numbers

= Check Point #1 - #4

https://youtu.be/3XK229fW_OM
https://youtu.be/3XK229fW_OM

Generating Random Integer Numbers
randint function

* To generate a random number, you can use the randint(a, b)
function in the random module.

* This function returns a random integer between a and b,
inclusively.

* To obtain a random integer between 0 and 9, use randint(0, 9):

1 import random

2 xX = random.randint (0, 9)

3 # x could be 0,1,2,3,4,5,6,7,8, or 9

4 print (x)
| | x = 2 x =9
M - ‘= 3

Math Learning Tool
Program 1

Write a program that helps a first-grader practice addition. The
program should randomly generate two single-digit integers and
should then ask the user for the answer. The program will then
display a message stating if the answer is true or false.

What i1is 9 + 47?2 12 <Enter>
9 + 4 = 12 is False

What i1is 3 + 1? 4 <Enter>
3 +41 =4 is True

Mat

A

Phase 1:

_earning Tool
Problem-solving

* What does “single-digit integers” mean?

0-9 1-digit (single) integer - [0 - 9]

1 import random

2 number = random.randint (0, 9)

0-9 0-9 | 2-digitinteger - [10 - 99]

1 1mport random

2 number = random.randint (10, 99)

0-9 0-9 0-9

1 import random
2 number = random.randint (100, 999)

3-digit integer - [100 - 999]

Math Learning Tool
Phase 1: Problem-solving

Design your algorithm:

1. Generate two single-digit integers for numberl and number?2.
= Use randint(0, 9)
" Example: numberl =2 and number2 =6

2. Ask the user to answer a question
* Example: “Whatis2+6 ?”

3. Print whether the answer is true or false

Math Learning Tool
Phase 2: Implementation

LISTING 4.1 AdditionQuiz.py

1
2
3
4
5
6
7
8
9

10
11
12
13

import random

Generate random numbers
numberl = random.randint (0, 9)
number? = random.randint (0, 9)

Prompt the user to enter an answer
answer = eval (input ("What is " + str (numberl) + " + "
+ str (number2) + "7? "))

Display result
print (numberl, "+", number2, "=", answer,
"is", numberl + number? == answer)

What 1is 1 + 772 8 <Enter>
1 + 7 =8 1is True

What 1s 4 + 8?2 9 <Enter>
4 + 8 = 9 1s False

Program 1

Math Learning Tool
Trace The Program Execution

!ﬁ What i1is 4 + 8?2 9 <Enter>
: 4 + 8 = 9 is False

line# numberl number2 answer output
4 4
5 8
8 9
12 4 + 8 =9 1is False

Math Learning Tool
Discussion

The program uses the randint function defined in the random
module.

The import statement imports the module (line 1).
Lines 4-5 generate two numbers, numberl and number?2.

Line 8 obtains an answer from the user.

The answer is graded in line 12 using a Boolean expression
numberl + number2 == answer.

randrange function

* Python also provides another function, randrange(a, b), for
generating a random integer between a and b — 1, which is
equivalent to randint(a, b — 1).

* For example, randrange(0, 10) and randint(0, 9) are the same.

* Since randint is more intuitive, the book generally uses randint
in the examples.

>>> import random

>>> random.randrange(l, 3) # the value could be: 1 or 2

1

>>> random.randint (1, 3) # the wvalue could be: 1, 2 or 3
Python 2

>>> random.randint (0, 1) # the wvalue could be: 0 or 1

1

>>> random.randrange (0, 1) # This will always be 0

0

Generating Random Float Numbers
random function

* You can also use the random() function to generate a random
floatrsuchthat0 <r <1

* For example:

>>> import random
>>> random.random ()
0.3362800598715141
python >>> random.random ()
0.886713208073315
>>> random.random ()
0.9735731618649538

* Note: the random() function returns a random float number
between 0.0 and 1.0 (excluding 1.0).

Q Check Point
1

How you can generate a float number with n-digit before the
decimal point?

» We can do that by multiplying the generated number with 10™.
For example:

>>> import random
>>> random.random() * 10 ** 1 # 1-digit float number
N 8.573088600232266
mhon | >>> random.random() * 10 ** 2 # 2-digits float number
99.56489589285628
>>> random.random() * 10 ** 3 # 3-digit float number
428.6688384440885

» Formula:

number = random.random() * 10 ** n

n for the number of the digits before the decimal point

4.3

Q Check Point
P

How you can generate a float number with n-digit before the
decimal point and d-digit after the decimal point?

» We can do that by using the round function as the following:

>>> 1mport random

>>> round (random.random() * 10 ** 1, 2)

- 7.66

mhon | >>> round (random.random () * 10 ** 2, 2)
79.95
>>> round (random.random() * 10 ** 4, 3)
2969.055

* Formula:

number = round (random.random() * 10 ** n, d)

n for the number of the digits before the decimal point
d for the number of the digits after the decimal point

4.3

Q Check Point
3

How you can generate a random float number that is equal or
greater than a and less than b (a < number < b).

» We can do that as the following:

number = a + (random.random() * (b - a))

» Examples:

>>> 1mport random

>>> a, b =1, 3
- >>> a + (random.random() * (b - a)) # a = 1, b = 3
Python 1.6393718672389215

>>> a, b =10, 20
>>> a + (random.random() * (b - a)) # a = 10, b = 20
15.046056155663972

Q Check Point
A

How do vyou generate a random integer i such that
0<i<20?

1 1import random

2 1 = random.randint (0, 19)

3 # Or —>

4 1 = random.randrange (0, 20)

How do vyou generate a random integer i such that
10<i<50?

1 1mport random

2 1 = random.randint (10, 50)

3 # Or —->

4 1 = random.randrange (10, 51)

4 4. if Statements

= Types of Selection Statements

= One-way if Statements
= if Block

= Program 2: Simple if Demo

= Check Point #5

https://youtu.be/7opQmCV7Ihk
https://youtu.be/7opQmCV7Ihk

Types of Selection Statements

* The preceding program (Program 1) displays a message such as

o)

o)

o)

0]

6 + 2 =7 is False. If you wish the message tobe 6 + 2 =7 is

incorrect, you have to use a selection statement to make this
minor change.

Python has several types of selection statements:
one-way if statements

two-way if-else statements
nested if statements

multi-way if-elif-else statements
conditional expressions

S W NN

One-way if Statements

A one-way if statement executes an action if and only if the
condition is true.

The syntax for a one-way if statement is: T

ik boolean—expression; boolean- false
statement (s) expression

The flowchart to the right demonstrates
the syntax of an if statement.

Statenlenl(s)l

Example: k

1lightOn = True

1if 1ightOn:
print ("Light ON")

D Note

* Also, the following syntax is valid for one-way if statement with
a one statement on one line:

if boolean-expression: statement

* Example:

1 1lightOn = True
2 if 1lightOn: print ("Light ON")
3 if lightOn == False: print("Light OFF")

° It is equivalent to:
lightOn = True

if 1ightOn:
print ("Light ON")

if 1lightOn == False:
print ("Light OFF")

o U b w DN

% Remember

A flowchart is a diagram that describes an algorithm or
process, showing the steps as boxes of various kinds, and their
order by connecting these with arrows.

* Process operations are represented in these boxes, and arrows
connecting them show flow of control.

* A diamond box is used to denote a Boolean condition and a
rectangle box is for representing statements.

| [

boolean- false false

. radius >= 07
V \ e

true true

Statement(s) area = radius * radius * math.pi
__l print("The area for the circle of",

"radius"”, radius, "1s", area)

Y
O

O

if Block

* If the boolean-expression evaluates to true, the statements in
the if block are executed.

e The if block contains the statements indented after the if
statement.

* For example:

if radius >= 0:
area = radius * radius * math.pi
print ("The area for the circle of radius", radius, "is", area)

= |f the value of radius is greater than or equal to 0, then the area is
computed and the result is displayed; otherwise, these statements
in the block are not executed.

if Block

if radius >= 0:
area = radius * radius * math.pi
print ("The area for the circle of radius", radius, "is", area)

) fal
radius >= 07 ae

frue

la

area = radius * radius * math.pi
print("The area for the circle of",
"radius", radius, "is", area)

T
"

§

D Note

w N =

The statements in the if block must be indented in the lines
after the if line and each statement must be indented using the
same number of spaces.

For example, the following code is wrong, because the print
statement in line 3 is not indented using the same number of
spaces as the statement for computing area in line 2.

if radius >= 0:
area = radius * radius * math.pil A
print ("The area for the circle of radius", radius, "is", area)

Note

1 if i > 0O:
2 print("i is positive.")

(A) Wrong X

1 if i > 0: print("Positive")
2 print("Not in the if block")

(C) Wrong X

1 if 1 > 0:

2 print ("Positive")

3 print("Not in the if block")
(E) Wrong X

1 if 1 > 0 # missing

2 print ("i 1s positive.")
(G) Wrong X

1 if 1 > O:
2 print ("1 1s positive.")
(B) Correct v

1 if 1 > 0: print("Positive")
2 print("Not in the if block")

(D) Correct v
1 if i > 0:

print ("Positive")
3 print ("Not in the if block")

(F) Correct vV

N

1 if 1 > 0
2 print ("1 1s positive.")

(H) Correct v

Simple if Demo
Program 2

Write a program that prompts the user to enter an integer. If
the number is a multiple of 5, the program displays the
result HiFive. If the number is divisible by 2, the program
displays HiEven.

Enter an integer: 4 <enter>
HiEven

Enter an integer: 15 <g&nter>
HiFive

Enter an integer: 30 <Bnter>
HiFive
HiEven

L I

Simple if Demo
Phase 1: Problem-solving

Design your algorithm:
1. Prompt the user to enter an integer (number).
2. If number is a multiple of 5, print HiFive.
" if (number % 5 ==0)
3. If number is divisible by 2, print HiEven.
* if (number % 2 ==0)

Simple if Demo
Phase 2: Implementation

LISTING 4.1 SimplelfDemo.py

1 number = eval (input ("Enter an integer: ")) D Run
2

3 1if number % 5 ==

4 print ("HiFive™)

5

6 1if number % 2 ==

7 print ("HiEven")

Enter an integer: 4 <enter>
HiEven

Enter an integer: 15 <g&nter>
HiFive

Enter an integer: 30 <enter>
HiFive
HiEven

Program 2

° Check Point
5

Write an if statement that assigns 1 to x if y is greater than 0.

1 1f yv > O0:
2 x =1

Write an if statement that increases pay by 3% if score is greater
than 90.

1 i1if score > 90:
2 pay = pay + (pay * (3 / 100))

B =
4.6. Two-Way if-else Statements

= Program 3: Improved Math Learning Tool
= Check Point #6 - #7

https://youtu.be/BsXFL35-cmg
https://youtu.be/BsXFL35-cmg

Two-way if-else Statement

* A one-way if statement takes an action if the specified
condition is True.
> If the condition is False, nothing is done.

* But what if you want to take one or more alternative actions
when the condition is False?

* Answer: you can use a two-way if-else statement.

* The actions that a two-way if-else statement specifies differ
based on whether the condition is True or False.

Two-way if-else Statement

* Here is the syntax for a two-way if-else statement:

1f boolean-expression:
statement (s) -for-the-true-case

else:
statement (s) -for-the-false-case

|

true boolean- false
Y Y
Statement(s) for the true case Statement(s) for the false case

|

Two-way if-else Statement

* If the boolean-expression evaluates to True, the statement(s)
for the True case are executed.

* Else, the statement(s) for the False case are executed.

* For example, consider the following code:

1 if radius >= 0:

2 area = radius * radius * math.pil

3 print ("The area for the circle of radius", radius, "is", area)
4 else:

5

print ("Negative input")

= |f radius >=0is True, area is computed and displayed.
= if it is False, the message Negative input is displayed.

Two-way if-else Statement

* Another example: this one determines whether a number is
even or odd, as follows:

[e)

1 if number % 2 ==

2 print (number, "is even.")
3 else:
4 print (number, "is odd.™")

D Note

* The following syntax is valid for two way if-else statement with
a one statement for the true case and a one statement for the
false case.

1f boolean-expression: statement-for-the-true-case
else: statement-for-the-false-case

* Example:
1 number = eval (input ("Enter a number: "))
2 1f number % 2 == 0: print (number, "is even.")

3 else: print (number, "is odd.")

Improved Math Learning Tool
Program 3

Write a program that helps a first-grader practice subtraction. The
program should randomly generate two single-digit integers, numberl
and number2, with numberl >= number2 and should then ask the
user for the answer. The program will then display a message stating if

the answer is correct. If wrong, the program should display the correct
answer.

What iS 6 - 6? O <Enter>
You are correct!

What 1s 9 - 2?2 5 <Enter>
Your answer 1s Wrong.
9 - 2 is 7

Improved Math Learning Tool
Phase 1: Problem-solving

Design your algorithm:

1. Generate two single-digit integers for numberl and number2.
" Example: numberl = 6 and number2 =2

2. If numberl < number2, swap numberl with number?2.
= Example: make numberl =2 and number2 =6

3. Ask the user to answer a question
" Example: “Whatis6 -2 ?”

4. Print whether the answer is true or false
* |f the answer is false, print the correct answer

Improved Math Learning Tool
Phase 2: Implementation

LISTING 4.4 SubtractionQuiz.py

import random D Run

1. Generate two random single-digit integers
numberl = random.randint (0, 9)
number? = random.randint (0, 9)

2. If numberl < number2, swap numberl with number?
if numberl < number?2:

numberl, number2 = number2, numberl # Simultaneous assignment
4. Prompt the student to answer "what is numberl - number2?"“
answer = eval (input ("What is " + str (numberl) + " - " +

str (number2) + "2 "))

4. Grade the answer and display the result

if numberl - number?2 == answer:
print ("You are correct!")
else:
print ("Your answer is wrong.\n", numberl, "-",

N 2 2 2 o e e
O W W-JO U B WN R o © o 0 s W

number?2, "is", numberl - number?2)

Program 3

Improved Math Learning Tool
Trace The Program Execution

~ What 1is 9 - 2?2 5 <Enter>

~ Your answer 1s wrong.

9 - 2 is 7

line# numberl number2 answer output
4 2
5 9
9 9 2
12 5
19 Your answer is wrong.

9 - 2 1is 7

° Check Point
6

Write an if statement that increases pay by 3% if score is greater
than 90, otherwise it increases pay by 1%.

1 1if score > 90:

2 pay = pay + (pay * (3 / 100))
3 else:

4 pay = pay + (pay * (1 / 100))

Q Check Point
/

What is the printout of the code in (a) and (b) if number is 30 and
35, respectively?

1 if number $ 2 == 0: 1 if number $ 2 ==

2 print (number, "is even.") 2 print (number, "is even.")
3 3 else:

4 print (number, "is odd.") 4 print (number, "is odd.")

(a) (b)

L!! 30 1s even. L!! 30 is even
— 30 is odd. —)
L!! 35 1s odd. L!! 35 is odd.

(&) =

4.7. Nested it and Multi-Way if-elit-else
Statements

= Nested if
= Nested if and Multi-Way if-elif-else Statements

= Trace if-elif-else Statement

= Program 4: Chinese Zodiac

= Check Point #8 - #10

https://youtu.be/KycfZwRWNkA
https://youtu.be/KycfZwRWNkA

Nested if

* The statement in an if or if-else statement can be any legal
Python statement.

° Including another if or if-else statement.

° The inner if statement is said to be nested inside the outer if
statement.

The if j > k statement is nested
* Exam p|e: inside the if i > k statement

if 1> ks /
if] > k:
print ("1 and] are greater than k")

else:
print ("1 1s less than or equal to k")

g s w N

Nested if

* More details:
o The inner if statement can contain another if statement.
> In fact, there is no limit to the depth of the nesting.

* So what is the purpose?

° The nested if statement can be used to implement multiple
alternatives.

* Consider the following example in the next slide, which prints a
letter grade according to the final number grade.

Nested if and Multi-Way it-elif-else
Statements

1 1if score >= 90.0: 1 if score >= 90.0:

2 grade = 'A' 2 grade = 'A'

3 else: . 3 elif score >= 80.0:
4 if score >= 80.0: equnnﬂent 4 grade = 'B'

5 grade = 'B' 5 elif score >= 70.0:
6 else: 6 grade = 'C'

7 if score >= 70.0: 7 elif score >= 60.0:
8 grade = 'C' 8 grade = 'D'

e else: 9 else:

10 if score >= 60.0: 10 grade = 'F'

L grade = ‘D' This is better

12 else:

13 grade = 'F'

(a) (b)

* While (a) works, the preferred format for multiple alternatives is shown in (b)
using a multi-way if-elif-else statement.

* This multi-way if-elif-else style avoids deep indentation and makes the program
easier to read.

Nested if and Multi-Way it-elif-else
Statements
T

““e" score >= 80 -als<
grade = 'A'| \\\\\\ S
““e" score >= 70 —alse
grade = 'B'l
true score »= 60 —alsc
grade = 'C'| \ e
true
grade = 'D'|
L J
grade = 'F'
A}
O

&
Trace if-elif-else Statement

Suppose score is 70.0

I 1f score >= 390.0: /[The condition is False]
2 grade = 'A'

3 elilif score >= 80.0:
4 grade = 'B'

5 ellif score >= 70.0:
6 grade = 'C'

/ elilf score >= 60.0:
8 grade = 'D'

9 else:

10 grade = 'F''

11

&
Trace if-elif-else Statement

Suppose score is 70.0

1 1f score >= 90.0: }e condition is False]
2 grade = 'A'

3 elilif score >= 80.0:

4 grade = 'B'

5 ellif score >= 70.0:

6 grade = 'C'

/ elilf score >= 60.0:

8 grade = 'D'

9 else:

10 grade = 'F'

11

&
Trace if-elif-else Statement

Suppose score is 70.0

1 1f score >= 90.0: The condition is True]
2 grade = 'A'

3 elilif score >= 80.0:

4 grade = 'B'

5 elilif score >= 70.0:

6 grade = 'C'

/ elilf score >= 60.0:

8 grade = 'D'

9 else:

10 grade = 'F'

11

&
Trace if-elif-else Statement

Suppose score is 70.0

1 1f score >= 90.0: grade is C]
2 grade = 'A'

3 elilif score >= 80.0:

4 grade = 'B'

5 ellif score >= 70.0:

o grade = 'C'

/7 elif score >= 60.0:

8 grade = 'D'

9 else:

10 grade = 'F'

11

&
Trace if-elif-else Statement

Suppose score is 70.0

1 1f score >= 90.0: Exit the if statement }
2 grade = 'A'

3 elif score >= 80.0:

4 grade = 'B'

5 elif score >= 70.0:

6 grade = 'C'

/7 elif score >= 60.0:

8 grade = 'D'

9 else: Note:

10 grade = 'F' A condition is only tested when
11 all the conditions that come

before it are False.

Chinese Zodiac
Program 4

Write a program that will determine the Chinese Zodiac for a given
year. Specifically, your program should prompt the user to enter a year
and then determine the Zodiac and display the results.

The Chinese zodiac sign is based on a 12-year cycle, and each year in
this cycle is represented by an animal: monkey, rooster, dog, pig, rat,
ox, tiger, rabbit, dragon, snake, horse, and sheep.

Enter a year: 1963 <&nter>
rabbit

Enter a year: 1877 <&nter>
OX

u

Chinese Zodiac
Phase 1: Problem-solving

* Zodiac is shown by graph below:

monkey
rooster
dog
P1g

rat

0X
tiger
rabbit
dragon
: snake
10: horse
_ 11:sheep

year % 12=<

N AR IR > e

Chinese Zodiac
Phase 1: Problem-solving

Design your algorithm:

1. Ask the user to enter the year

2. Determine the correct Zodiac year
= zodiacYear = year % 12

("~ 0: monkey
1: rooster
2: dog
. 3: pig
rooster tiger 4 rat
ear % 12= 30X
y ’ < 6: tiger
monkey rabbit 7: rabbit
8: dragon
9: snake

10: horse
_ 11:sheep

3. Print the result (zodiacYear)

Phase 2: Implementation

LISTING 4.5 ChineseZodiac.py

NN N NN N N b b b s s
DO WD EPE O WO U & WN 2 o © o Uk Wi

4.7

Chinese Zodiac

year = eval (input ("Enter a year: "))

zodiacYear = year %
if zodiacYear ==
print ("monkey")
elif zodiacYear ==
print ("rooster"
elif zodiacYear ==
print ("dog")
elif zodiacYear ==
print ("pig")
elif zodiacYear ==
print ("rat")
elif zodiacYear ==
print ("ox")
elif zodiacYear ==
print ("tiger")
elif zodiacYear ==
print ("rabbit")
elif zodiacYear ==
print ("dragon")
elif zodiacYear ==
print ("snake")
elif zodiacYear ==
print ("horse")
else:
print ("sheep")

8:

10:

Program 4

Enter a year:
rabbit

Enter a year:
OX

1963

1877

<Enter>

<Enter>

° Check Point
S

Given the following code, show the output when:

B oy
oX:Zandy=3-— u
> x=3andy=2 >m x is 3

° x=3andy=3 — E—
- m 2 is 6
if x > 2: = 0
if y > 2:
z = X Ty
print("z 1is", 2z) 0 -

else:
print ("x is", x) [

¥ A 4

o O s W N

z =% + vy . .
print ("z is" } {prlnt{"x is",) }

73

° Check Point
9

Given the following code, show the output when:

% I | '
°c x=2andy=4 — “!l 18 2

x=3andy=2 > B croy

° x=3andy=3 —

-

7z 1s ©

if x > 2:
if y > 2:
z = X Ty
print("z 1is", 2z)

else:
print ("x 1is", x)

o O s W N

Q Check Point
10

What is wrong in the following code?

1 1if score >= 60.0:

2 grade = 'D'

3 elif score >= 70.0:
4 grade = 'C'

5 elif score >= 80.0:
6 grade = 'B'

7 elif score >= 90.0:
8 grade = 'A'

9 else:

10 grade = 'F'

» The code has a logic error. It will assign “D” always when score is
equal or greater than 60. It will not, for example, assign “A” if the
score is equal or greater than 90.

» This is because a condition is only tested when all the conditions
that come before it are False.

Check Point
10

True False

score >= 60.0

— int False
grade D score >= 70.0

False
score >= 80.0

grade = 'C'

False
score >= 90.0

[grade = 'A' grade

IFI'

° Check Point
10

» This is the fix of the previous code:

1 1if score >= 90.0:

2 grade = 'A'

3 elif score >= 80.0:
4 grade = 'B'

5 elif score >= 70.0:
6 grade = 'C'

7 elif score >= 60.0:
8 grade = 'D'

9 else:

10 grade = 'F'

Check Point
10

True False

score >= 90.0

False
>= 80.0

score

False
score >= 70.0

grade = 'B'

False
score >= 60.0

grade = 'D' grade

IFI'

(&) =

A.8. Common Errors in Selection
Statements

" Common Errors

= Common Pitfalls

® Check Point #11 - 13

https://youtu.be/liHCS49SEgw
https://youtu.be/liHCS49SEgw

Common Errors

* Most common errors in selection statements are caused by
incorrect indentation.

Common Errors
Example 1

Consider the following code in (a) and (b):

1 import math A 1 import math

2 radius = -20 2 radius = -20

3 1f radius >= O0: 3 1f radius >= O0:

4 area = radius * radius * math.pi 4 area = radius * radius * math.pi
5 5

print ("The area is", area) print ("The area is", area)

print ("The area is", area)
NameError: name 'area' i1s not defined

(a) (b)

> In (a), the print statement is not in the if block.
> To place it in the if block, you have to indent it, as shown in (b).

> By the way, (a) has a runtime error: NameError: name 'area’ is not
defined.

Common Errors
Example 2

Consider the following code in (a) and (b):

i 1
J 2
k 3
if i > 3j:
if 1 > k:
print ('A")
else:
print ('B")

W ~J oy U wN
|_1.
h
'_l.
\%
-
0 ~J oy U wN

oo
i

(a) (b)

> The code in (a) has two if clauses and one else clause. Which if
clause is matched by the else clause?

> The indentation indicates that the else clause matches the first if
clause in (a) and the second if clause in (b).

Common Pitfalls

* Common Pitfall 1:
> Testing equality of double values.

* Common Pitfall 2:
> Duplicated statements in if-else or if-elif-else statements.

Common Pitfalls
Pitfall 1

* Simplify Boolean variable assignment.
> Often, new programmers write code like (a).

1 number = eval (input ("Enter number: ")) 1 number = eval (input ("Enter number: "))
2 if number $ 2 == 0: 2 even = number % 2 == 0

3 even = True

4 else:

5 even = False

(a) (b)
> This is not an error.
> Butitis better written (and shorter) as shown in (b).
> (b) is equivalent to (a).

Common Pitfalls
Pitfall 2

* Avoid duplicating code in different cases.

o Often, new programmers write duplicate code that should be
combined in one place.

1 total = eval (input ("Enter total: ")) 1 total = eval (input ("Enter total: "))
2 2 discount = 0
3 if (total >= 100): 3
4 discount = 10 / 100 4 if (total >= 100):
5 total = total - (discount * total) 5 discount = 10 / 100
o print ("Final Total: ", total) S else:
7 else: 7 discount = 5 / 100
8 discount = 5 / 100 8
9 total = total - (discount * total) 9 total = total - (discount * total)
10 print ("Final Total: ", total) 10 print("Final Total: ", total)
(a) (b)

° This is not an error.

> But the new code (b) removes the duplication and makes the code
easy to maintain, because you only need to change in one place if
the print statement is modified.

° Check Point
11

Rewrite the following statement using a Boolean expression:

1 1if count % 10 ==

2 newlLine = True
3 else:

= newLine = False
» Solution:

©)

1 newline = count $ 10 ==

Q Check Point
12

Are the following statements correct? Which one is better?

1 1f age < 16:
2 print ("Cannot get a driver's license")
3 1f age >= 16:
4 print ("Can get a driver's license")
(a)
1 1f age < 16:
2 print ("Cannot get a driver's license")
3 else:
4 print ("Can get a driver's license")

(b)
» Yes, they are correct.

» (b) is better than (a) because it is concise and easy to read.

Check Point
13

What is the output of the following code if number is 14, 15, and
30?

1 if number % 2 == 1 if number % 2 ==

2 print (number, "is even") 2 print (number, "is even")

3 1if number % 5 == 3 elif number $ 5 ==

4 print (number, "is multiple of 5") 4 print (number, "is multiple of 5")

(a) (b)

14 is even 14 is even

15 1is multiple of 5 15 is multiple of 5

30 is even
30 is multiple of 5

R R
in

30 is even

(&) =

4.9. Case Study: Computing Body Mass
Index

= Program 5: Computing BM|

https://youtu.be/pApNxiwEKRU
https://youtu.be/pApNxiwEKRU

Computing BMI
Program 5

Write a program that computes the Body Mass Index (BMI) for
the user. Your program should prompt the user to enter a weight
in pounds and height in inches. Your program should then
compute and display the BMI and its interpretation for the user.

BMI Interpretation Weight (kg)
BMI = — 4
Below 18.5 Underweight fﬂﬂght(”ﬂ
;g 8:2@ :3 gié?iiight 1 pound = 0.45359237 kilograms
Apove 30.0 Obese 1 inch = 0.0254 meters

Enter weight in pounds: 146 <&nter>
Enter height in inches: 70 <Bnter>
BMI is 20.95

Normal

i

Computing BMI
Phase 1: Problem-solving

* BMI is a measure of health based on the height and weight.

* BMI is calculated by taking the weight (in kilograms) and then
dividing it by the square of the height (in meters)

Weight (kg) Weight (kg)
Height (m)2 Height (m) x Height (m)

BMI =

* The interpretation of BMI for people 20 years or older is as
follows:

BMTI Interpretation

Below 18.5 Underweight
18.5-24.9 Normal
25.0-29.9 Overweight
Above 30.0 Obese

Computing BMI
Phase 1: Problem-solving

* So the user inputis in pounds and inches

* The BMI equation is in kilograms and meters

* Therefore, you will need to convert from:
o pounds to kilograms

" One pound is 0.45359237 kilograms
= Weight (kg) = 0.45359237 X Weight (pound)

o inches to meters

= oneinchis 0.0254 meters
= Height (m) = 0.0254 X Height (inch)

Computing BMI
Phase 1: Problem-solving

Design your algorithm:
1. Ask the user to enter the weight and height

2. Convert weight in pounds to kilograms
= weightinKilograms = weight * 0.45359237

3. Convert height in inches to meters
“ heightinMeters = height » 0.0254

4. Compute BMI using BMI equation
= bmi = weightInKilograms / (heightInMeters * heightInMeters)

5. Print the result (bmi)

= Print the interpretation as the following:
“Underweight” if bmi < 18.5
“Normal” if bmi < 25

“Overweight” if bmi < 30
“Obese” if bmi >=30

Computing BMI
Phase 2: Implementation

LISTING 4.6 ComputeBMI.py

NI S S T S
A WNE, O WO®O-J0 U ™ WK 2 o ©®©To00 & Wk

4.9

Prompt the user to enter weight in pounds
weight = eval (input ("Enter weight in pounds: "))

Prompt the user to enter height in inches
height = eval (input ("Enter height in inches: "))

KILOGRAMS PER POUND = 0.45359237 # Constant
METERS PER INCH = 0.0254 # Constant

Compute BMI

weightInKilograms = weight * KILOGRAMS PER POUND
heightInMeters = height * METERS PER INCH

bmi = weightInKilograms / (heightInMeters * heightInMeters)

Display result
print ("BMI is", format (bmi, ".2f"))
if bmi < 18.5:
print ("Underweight")
elif bmi < 25:
print ("Normal")
elif bmi < 30:
print ("Overweight")
else:
print ("Obese™)

Program 5

Computing BMI
Example Runs of The Program

Enter weight 1in pounds: 146 <&nter>
Enter height in inches: 70 <gnter>
BMI 1is 20.95

Normal

Enter weight 1n pounds: 176 <&nter>
Enter height 1in inches: 66 <Bnter>
BMI is 28.41

Overwelght

Computing BMI
Trace The Program Execution

Enter weight in pounds: 146 <enter>

- Enter height in inches: 70 <Bnter>
- ' BMI is 20.95

Normal

line# weight height weightInKilograms heightInMeters bmi output

2 146

5 70
11 66.22448602
12 1.778
13 20.9486
16 BMI is 20.95

20 Normal

Computing BMI
Discussion

The two named constants, KILOGRAMS PER_POUND and
METERS_PER_INCH, are defined in lines 7-8.

Named constants were introduced in Chapter 2.
Using named constants here makes programs easy to read.

Unfortunately, there is no special syntax for defining named
constants in Python.

Named constants are treated just like variables in Python.

This book uses the format of writing constants in all uppercase
letters to distinguish them from variables and separates the
words in constants with an underscore (_).

4.11. Logical Operators

= Truth Table for Operator not

" Truth Table for Operator and

" Truth Table for Operator or

= Program 6: Test Boolean Operators

= De Morgan’s law

= Notes
= Check Point #14 - #21

https://youtu.be/A2eMqAeH8sQ
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/6BPrQvMvhI8
https://youtu.be/6BPrQvMvhI8
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/A2eMqAeH8sQ

Logical Operators

We have used conditional statements to help us determine if
the execution should take one path (true path) or another path
(false path).

But until now, these conditional statements have been very
basic.

Usually, whether a statement is executed is determined by a
combination of several conditions.

You can use logical operators to combine these conditions to
form a compound Boolean expression.

Logical Operators

* Logical operators, also known as Boolean operators, operate
on Boolean values to create a new Boolean value.

* The following slide shows the three logical operators we will
use.

* The following slides show a truth table for each logical
operator and some examples.

Logical Operators

TABLE 4.3 Boolean Operators

Operator Description
not logical negation
and logical conjunction

or logical disjunction

Truth Table for Operator not

TABLE 4.4 Truth Table for Operator not

p hot p Example (assume age = 24, gender = 'F')

True False nhot (age > 18) is False, because (age > 18) is True.

False True hot (gender == 'M') is True, because (gender == 'M') is False.

Truth Table for Operator not
Examples

>>> not True
False

>>> not (/20 > 60)
True

>>> not 60 > 20
False

>>> not (|not (True)|)
True

>>> not not False

Python

False

Truth Table for Operator and

TABLE 4.5 Truth Table for Operator and

Py P> p; and p, Example (assume age = 24, gender = 'F')

False False False (age > 18) and (gender == 'F') is True, because
(age > 18) and (gender == 'F') are both True.

False True False

True False False (age > 18) and (gender '= 'F') is False, because
(gender !'= 'F') is False.

True True True

Truth Table for Operator and
Examples

>>> True and False and True and True

False
>>> True and not False
True
>>> 'not not Truel|land (10 > 20
False
""" | >>> lnot False|and|not False| and not not [not False
True
>>> not (True and False) and True
True
>>> not True | and False and True

False

Truth Table for Operator or

TABLE 4.6 Truth Table for Operator or

P1 P2 P1 or P2 Example (assume age = 24, gender = 'F')

False False False (age > 34) or (gender == 'F') is True, because
(gender == 'F') is True.

False True True

True False True (age > 34) or (gender == 'M') is False, because
(age > 34) and (gender == 'M') are both False.

True True True

Truth Table for Operator or
Examples

>>> True or False
True
>>> True or |False and False and False and True
True
>>> False or not True
False

>>> not |(True and False) or 20 > 10
True

>>> not True| and False| or True
True

>>> not True and (False or True)

Python

False

FEnter
18 1is
18 1is

EFEnter
15 is
15 is

Test Boolean Operators
Program 6

Write a program that tests the usage of Boolean operators.
Specifically, your program should prompt the user to enter one
integer. Your program should then determine if the value is
divisible by 2 and 3, by 2 or 3, or by 2 or 3 but not both.

an integer: 18
divisible by 2
divisible by 2

an integer: 15
divisible by 2
divisible by 2

<Enter>

and 3
or 3

<Enter>
or 3
or 3, but not both

‘est Boolean Operators
Phase 1: Problem-solving

* Note:

0]

0]

0]

o

So how do we check for divisibility?

We use mod (%).

Example: check if some number, x, is divisible by 3
if x $ 3 ==

This says: if we divide x by 3 and the remainder is zero ...
And that is exactly what we want!

However, we must check the divisibility of two numbers
= both2and3

This means we must use logical operators
if x $ 2 =0 and x % 3 ==

‘est Boolean Operators
Phase 1: Problem-solving

Design your algorithm:

1. Ask the user to enter the number

2. If (number % 2 ==0) and (number % 3 == 0)
“ Print: number is divisible by 2 and 3

3. If (number % 2 == 0) or (humber % 3 == 0)
“ Print: number is divisible by 2 or 3

4. 1f ((number % 2 == 0) or (number % 3 ==0))
and (not ((humber % 2 == 0) and (number % 3 ==0)))
= Print: number is divisible by 2 or 3, but not both

‘est Boolean Operators
Phase 2: Implementation

LISTING 4.8 TestBooleanOperators.py

1 # Receive an input P Run
2 number = eval (input ("Enter an integer: "))

3

g if number % 2 == 0 and number $ 3 == O0:

6 print (number, "i1s divisible by 2 and 3")

7

8 1f number % 2 == 0 or number % 3 == 0:

9 print (number, "is divisible by 2 or 3")

10

1; if (number % 2 == 0 or number % 3 == 0) and \

13 not (number % 2 == 0 and number % 3 == 0):

print (number, "is divisible by 2 or 3, but not both")

- Enter an integer: 18 <Enter>
18 is divisible by 2 and 3
- 18 is divisible by 2 or 3

- Enter an integer: 15 <Enter>
| 15 is divisible by 2 or 3
. 15 is divisible by 2 or 3, but not both

Program 6

De Morgan’s law

(1)

A B
not (conditionl and condition?2)
is the same as
not conditionl or not condition?
[] AnB

[]ANB)=A°UB°

* Example, the following Boolean expression:

o o

not (number $ 2 == 0 and number $ 3 == 0)

is better written as:

[©) o

number % 2 !'= 0 or number $ 3 = 0

De Morgan’s law

(2)

not (conditionl or condition?2)

is the same as
not conditionl and not condition?

. AUB

[]AuB)‘=AnB"
* Example, the following Boolean expression:

not (number == 2 or number == 3)

is better written as:

number '= 2 and number !'= 3

D Notes

* If one of the operands of an and operator is False, the expression
is False.
> Example: when evaluating p1 and p2
= Python first evaluates p1
= if plis True, evaluates p2
= if plis False, it does not evaluate p2

* if one of the operands of an or operator is True, the expression
Is True.
o Example: when evaluating p1 or p2
= Python first evaluates p1
= if plis False, evaluates p2
= if plis True, it does not evaluate p2

* Python uses these properties to improve the performance of these
operators.

D Notes

* The following Boolean expression:

number >= x and number < y

can be simplified by using an equivalent expression:

X <= number < y

* The following Boolean expression:

number != x and number == y

can be simplified by using an equivalent expression:

X !'= number ==

° Check Point
14

Assuming that x is 1, show the result of the following Boolean
expressions:

1. True and (3 > 4) False
7. not (x > 0) and (x > 0) False
3. (x > 0) or (x < 0) True
A, (x != 0) or (x == 0) True
5. (x >= 0) or (x < 0) e
6. (x != 1) == (not (x == 1)) True

° Check Point
15

Write a Boolean expression that evaluates to True if variable num
is between 1 and 100.

» Solution:

1 <= num <= 100

Or (equivalent):

num >= 1 and num <= 100

Q Check Point
16

Write a Boolean expression that evaluates to True if variable num
is between 1 and 100 or num is negative.

» Solution:

(1 <= num <= 100) or (num < 0)

Or (equivalent):

(num >= 1 and num <= 100) or (num < 0)

° Check Point
17

Assuming x = 4 and y = 5, show the result of the following
Boolean expressions:

1. x >= y >= 0 False
). x <=y >=0 True
3. 0x != y == 5 True
4., (x '= 0) or (x == 0) True

° Check Point
18

Write a Boolean expression that evaluates to True if age is
greater than 13 and less than 18.

» Solution:
13 < age < 18

Or (equivalent):

age > 13 and age < 18

Q Check Point
19

Write a Boolean expression that evaluates to True if weight is
greater than 50 or height is greater than 160.

» Solution:

welight > 50 or height > 160

Q Check Point
20

Write a Boolean expression that evaluates to True if weight is
greater than 50 and height is greater than 160.

» Solution:

welight > 50 and height > 160

° Check Point
21

Write a Boolean expression that evaluates to True if either
weight is greater than 50 or height is greater than 160, but not
both.

» Solution:

(weight > 50 or height > 160) and not (weight > 50 and height > 160)

(&) =

4.12. Case Study: Determining Leap
Years

" Program /: Leap Year

https://youtu.be/G0qc6vMEUHg
https://youtu.be/G0qc6vMEUHg

Leap Year
Program /

Write a program that determines if a given year is a leap year.
Specifically, ask the user to enter a year. Then determine if that
year is a leap year and display the results.

Note: A yearis a leap year if it is divisible by 4 but not by 100 or if
it is divisible by 400.

Enter a year: 2008 <gnter>
2008 is a leap year? True

Enter a year: 1900 <gEnter>
1900 is a leap year? False

Enter a year: 2002 <gnter>
2002 i1is a leap year? False

Program 7

Leap Year
Phase 1: Problem-solving

* What is a leap year?
> A leap year has 366 days (instead of 365)
° Why?
> The earth takes approximately 365.25 days to circle around the sun
> However, the Gregorian year has only 365 days
> Therefore, every four years, the number of days is increased to 366

* Avyearisaleap yearifitis divisible by 4 but not by 100 or if it is
divisible by 400.

Leap Year
Phase 1: Problem-solving

* Which years are leap years?

* There are three criteria:
1. Aleap year is divisible by 4

o

isLeapYear = (year % 4 == 0)

2. Aleap year is divisible by 4 but not by 100

isLeapYear = isLeapYear and (year % 100 '= 0)

3. Aleap year is divisible by 4 but not by 100 or divisible by 400

isLeapYear = 1sleapYear or (year s 400 == 0)

Leap Year
Phase 1: Problem-solving

* So, you can use the following Boolean expressions to
determine whether a year is a leap year:

A leap year 1is divisible by 4

o

isLeapYear = (year % 4 == 0)

A leap year is divisible by 4 but not by 100

isLeapYear = isLeapYear and (year % 100 != 0)

A leap year is divisible by 4 but not by 100 or divisible by 400

Q

isLeapYear = islLeapYear or (year % 400 == 0)

* or you can combine all these expressions into one, like this:

[©) [e)

isLeapYear = (year $ 4 == 0 and year % 100 != 0) or (year $ 400 == 0)

Program 7

Leap Year
Phase 1: Problem-solving

Design your algorithm:
1. Ask the user to enter the year

2. If (year % 4 == 0 and year % 100 !=0) or (year % 400 == 0)
“ Print: year is a leap year? True

3. Otherwise
“ Print: year is a leap year? False

Leap Year
Phase 2: Implementation

LISTING 4.9 LeapYear.py

Display the result
print (year, "is a leap year?", isLeapYear)

1 vyear = eval (input ("Enter a year: "))

2

Z # Check if the year is a leap year

5 islLeapYear = (year % 4 == 0 and year % 100 != 0) or \
6 (year % 400 == 0)

7

8

9

Enter a year: 2008 <gnter>
2008 is a leap year? True

Enter a year: 1900 <gEnter>
1900 is a leap year? False

Enter a year: 2002 <gnter>
2002 1s a leap year? False

Program 7

4.13. Case Study: Lottery

= Program 3: Lottery

https://youtu.be/9LRIovRIxy8
https://youtu.be/9LRIovRIxy8

Lottery
Program &

Write a program to play a lottery. The program randomly generates a
two-digit number, prompts the user to enter a two-digit number, and
determines whether the user wins according to the following rules:

1. If the user’s input matches the lottery in the exact order, the award is
$10,000.

2. If all the digits in the user’s input match all the digits in the lottery
number, the award is $3,000.

3. If one digit in the user’s input matches a digit in the lottery number, the
award is $1,000.

Enter your lottery pick (two digits): 45 <Enter>
The lottery number is 12
Sorry, no match

Enter your lottery pick (two digits): 23 <Enter>
The lottery number is 34
Match one digit: you win $1,000

ii

ottery
Phase 1: Problem-solving

* So how do we compare digits?

> Give a two-digit number, how can isolate the individual digits in
order to compare them?

> Example: given the number 73, how can we extract the 7 and the
3? How can we “get” them as individual numbers?

* Solution: integer division (//) and mod (%)
> Example: 73
> 73//10=17
° 73%10=3

* This is exactly what we want! .
Note:

you will use mod (%) a lot in this
course!

ottery
Phase 1: Problem-solving

Design your algorithm:

1. Randomly generate a lottery number between 10 and 99.
" |ottery = random.randint(10, 99)

2. Ask the user to enter the two-digit number (guess)

3. Get digits from lottery
= |otteryDigitl = lottery // 10
= |otteryDigit2 = lottery % 10

4. Get digits from guess
= guessDigitl = guess // 10
= guessDigit2 = guess % 10

ottery
Phase 1: Problem-solving

Design your algorithm:

5. Compare user number (guess) with winning number (lottery)
and determine winning amount (if any).

= First check whether the guess matches the lottery number exactly.
» if guess == lottery

= If not, check whether the reversal of the guess matches the lottery
number.

» elif (guessDigit2 == lotteryDigitl and guessDigitl == lotteryDigit2)

= If not, check whether one digit is in the lottery number.

» elif (guessDigitl == guessDigitl ==

== |ottervDigitl or == |ottervDigit2 or
guessDigit2 == lotteryDigitl or guessDigit2 ==

== |otteryDigit2)
* If not, nothing matches and display Sorry, no match.
» else

6. Display results to user

4.13

ottery
Phase 2: Implementation

LISTING 4.10 Lottery.py

import random P Run

Generate a lottery
lottery = random.randint (10, 99)

Prompt the user to enter a guess
guess = eval (input ("Enter your lottery pick (two digits): "))

Get digits from lottery
lotteryDigitl = lottery // 10
lotteryDigit2 = lottery % 10

Get digits from guess
guessDigitl = guess // 10

o

guessDigit2 = guess % 10

el e el e
N T I S S Vol RN B R G B OV Ve

print ("The lottery number 1s", lottery)

Program 8

ottery
Phase 2: Implementation

LISTING 4.10 Lottery.py

18
19
20
21
22
23
24
25
26
277
28
29
30
31

1B

Check the guess

1f guess == lottery:
print ("Exact match: you win $10,000")
elif (guessDigit2 == lotteryDigitl and \
guessDigitl == lotteryDigit2) :
print ("Match all digits: you win $3,000")
elif (guessDigitl == lotteryDigitl
or guessDigitl == lotteryDigit?2
or guessDigit2 == lotteryDigitl
or guessDigit2 == lotteryDigit2):

print ("Match one digit: you win $1,000")
else:
print ("Sorry, no match")

Enter your lottery pick (two digits): 45 <enter>
The lottery number is 12
Sorry, no match

Enter your lottery pick (two digits): 23 <enter>
The lottery number is 34
Match one digit: you win $1,000

Program 8

Lottery
Trace The Program Execution

= Enter your lottery pick (two digits): 23 <Enter>

- The lottery number is 34

Match one digit: you win $1,000

line# 4 7 10 11 14 15 29

variable

Tottery 34

guess 23

TotteryDigitl 3

TotteryDigit2 4

guessDigitl 2
guessDigit2 3

output Match one digit:
you win $1,000

4.14. Conditional Expressions

= Check Point #22 - #27

https://youtu.be/XpGqLkC5vBg
https://youtu.be/XpGqLkC5vBg

Conditional Expressions

* You might want to assign a value to a variable that is restricted
by certain conditions.

* For example, the following statement assigns 1 to vy if x is
greater than 0, and -1 toy if x is less than or equal to 0.

1f x > 0:
y = 1
else:
y = -1

* Alternatively, you can use a conditional expression to achieve
the same result.

y =1 1f x > 0 else -1

Conditional Expressions

* A conditional expression evaluates an expression based on a
condition.

* Conditional expressions are in a completely different style. The
syntax is:

expressionl 1f boolean-expression else expression?

* The result of this conditional expression is expressionl if

boolean-expression is True; otherwise, the result is
expression?2.

Conditional Expressions
Example 1

* Given two numbers, numberl and number2, save the larger
into a variable called max.

* You can do this with an if/else statement

if numberl > number?:
max = numberl
else:
max = number?

* Or you can use one conditional expression as follows:

max = numberl 1f numberl > number? else number?

Conditional Expressions
Example 2

* Given a variable, number, display the message “number is
even” if number is even; otherwise, display “number is odd”.

* You can do this with an if/else statement

[e)

1f number $ 2 ==

print (number, "is even")
else:

print (number, "is odd")

* Or you can use one conditional expression as follows:

print (number, "is even" 1f number % 2 == 0 else "is odd")

Q Check Point
22

Suppose that when you run the following program, you enter the
input 2, 3, 6 from the console. What is the output?

1l x, y, z = eval (input ("Enter three numbers: "))
2 print("sorted" if x < y and y < z else "not sorted")

» The output is: sorted

» Itis equivalent to:

X, Y, Z2 = eval (input ("Enter three numbers: "))
1f x < y and y < z:

print ("sorted")
else:

print ("not sorted")

o s w N

Q Check Point
23

Rewrite the following if statement using a conditional expression:

1f ages >= 16:
ticketPrice = 20
else:
ticketPrice = 10

» Solution:

ticketPrice = 20 if ages >= 16 else 10

° Check Point
24

Rewrite the following if statement using a conditional expression:

1f count % 10 ==
print (count)
else:
print (count, end = " ")

» Solution:

o

print (count, end = "\n" if count % 10 == 0 else " ")

° Check Point
25

Rewrite the following conditional expressions using if/else
statements:

score = 3 * gcale 1f x > 10 else 4 * scale
» Solution:
if x > 10:
score = 3 * scale
else:

score = 4 * gcale

° Check Point
26

Rewrite the following conditional expressions using if/else
statements:

tax = income * 0.2 i1f income > 10000 else income * 0.17 4+ 1000

» Solution:

if income > 10000:
tax = income * 0.2
else:
tax = income * 0.17 + 1000

° Check Point
27

Rewrite the following conditional expressions using if/else
statements:

o

print (1 1f number ¥ 3 == 0 else 7Jj)

» Solution:

1f number % 3 ==
print (i)
else:
print (J)

(&) =

4.15. Operator Precedence and
Associativity

= Operator Precedence

= Associativity

" Check Point #28 - #29

https://youtu.be/uZmp73348cA
https://youtu.be/uZmp73348cA

Operator Precedence

* Chapter 2 introduced operator precedence involving arithmetic
operators.

> Example:
= *and / has higher precedence than + and -

* But what about expressions with other operators
> Example:
=3 +4*%4>5%* (4+3) -1

> What is the value? What is the execution order of the above
example?

> We need to know the precedence rules for this!

Operator Precedence

* Operator precedence and operator associativity determine the
order in which Python evaluates operators.

* The expression in the parentheses is evaluated first.

> Parentheses can be nested, in which case the expression in the
inner parentheses is executed first.

* When evaluating an expression without parentheses, the
operators are applied according to the precedence rule and the
associativity rule.

* The precedence rule defines precedence for operators.

> In the next slide, Table 4.7 contains the operators you have learned
so far, with the operators listed in decreasing order of precedence
from top to bottom.

Operator Precedence

TABLE 4.7 Operator Precedence Chart (Corrected)

Precedence Operator

“* (Exponentiation)

+, = (Unary plus and minus)

“. /. //, % (Multiplication, division, integer division, and remainder)
+, = (Binary addition and subtraction)

<, <=, >, >= (Comparison)

==, != (Equality)

not

and

or

\ =, +=, ==, *=, /=, //=, %= (Assignment operators)

Associativity

* If operators with the same precedence are next to each other,
their associativity determines the order of evaluation.

* All binary operators except assignment operators are left-
associative.

* Example:
a-b + c - disequivalentto ((a — b) + ¢) - d

* Assignment operators are right-associative.

* Example:
a=Db += c = 5 isequivalentto a = (b += (c = 5))

° Check Point
28

List the precedence order of the Boolean operators.

» Solution:

> The decreasing order of precedence order of the Boolean
operators:

1. not
2. and

3. or

Check Point
29

Evaluate the following expressions:

1. True or True and False
2. True and True or False
3. (True and not True) or False or 10 < 3

4. |lnot |(20 > 40 and

and True

not 40 > 20)

True

True

False

True

Debugging

https://youtu.be/uHkyZ18wWHg
https://youtu.be/uHkyZ18wWHg

Debugging

* Dealing with programming errors:

> Remember: syntax errors and runtime errors are not difficult to
find.

> However, logic errors can be very challenging.
> Logic errors are called bugs.

> Debugging is the process of finding and corrected these logic
errors.

Debugging

Debugging

* Methods of debugging:

1- You can hand-trace the program.
= Meaning, you try to find the error by reading the program
= Clearly, this is very difficult and time consuming.

2- You can insert print statements throughout the program.
= The print statements allow you to see how far the execution has reached.

= You can also print, and then view, the values of variables during execution of
the program.

= Again, this is time consuming.

Debugging

Debugging

* Methods of debugging:

> These two methods are okay, but they are slow.
= They really only work for small, simple programs.

> So what about large, complex programs?
> The best solution is to use a debugger utility. (Method 3)

* Most of Python IDE programs, such as PyCharm and IDLE,
include integrated debuggers.

> Learning how to use these debuggers is very important.

Debugging

Debugging

* Debugger is a program that facilitates debugging.

* You can use a debugger to
> Execute a single statement at a time.

> Trace into or stepping over a method.
> Set breakpoints.

> Display variables.

> Display call stack.

> Modify variables.

Debugging

Debugging
By Using PyCharm

untitled1 [C\Users\ahmad\PycharmProjects\untitled1] - ..\test.py [untitled1] - PyCharm - X
File Edit View Navigate Code Refactor BN Tools VCS Window Help
2 untitled 72 testpy P Run ‘test’ Shift+F10 Jtest v B g B Q
Tl Shift+F9
[= Project ~ (2R - B
- - P Run. Alt+Shift+F10 5
i 4 \ [\ Py
v untitled1 C:\Users\ahmad\Pycharm ﬁ Debug... Alt+Shift+F9
> [venv
) 4% Attach to Process... Ctrl+Alt+F5
(= example.py i X i
) L Edit Configurations...
(= testpy > s
> Il External Libraries [etz =il 2
B M Stop ‘test’ Ctrl+F2
D
© Scratches and Consoles N .
Stop Background Processes... Ctrl+Shift+F2 | andl I]t (O I 9 9)
Show Running List
C' Update Running Application... Ctrl+F10
A4 Step Over ;g | tO enter a guess —
£ F Step O Alt+Shift+F8 | s 5 3 .
= RSOl o ("Enter your lottery pick (two digits): "))
+ SteplInto F7
+ Step Into My Code Alt+Shift+F7
+ Force Step Into Alt+Shift+F7
4 Smart Step Into Shift+F7 lOttery
1 Step Out Shift+F8 | ' " reo
T Run to Cursor Alt+F9

¥ ¥

Debug: l'_testx o —

Force Run to Cursor Ctrl+Alt+F9

(% | Debugger| EX Console +*| = e TN Jump To Cursor
Il Pause Program . .
: . = _ "o,
) C:\Users\ahi e P . 1s\Python\Python37-32\python.exe "C:\Program Files\JetBrains\PyCh
= _ pydev debugn E Evaluate Expression... Alt+F8 1necting
L Quick Evaluate Expression Ctrl+Alt+F8
@ =% = Show Execution Point Alt+F10
[% - Connected t: Toggle Line Breakpoint crre . 91.7479.30)
€
= u Toggle Temporary Line Breakpoint Ctrl+Alt+5hift+F8
& u :
| = a Enter your | Toggle Breakpoint Enabled *
ot o @’ @' View Breakpoints... Ctrl+Shift+F8
£l
*
» 4:Run _ Zg:ToD0 B Terminal % Python Console () event Log
Ll Debug selected configuration 321 CRLF: UTF-84% 4spaces: Python 3.7 (untitled!) : G &

Debuggin

End

= Test Questions

" Programming Exercises

Test Questions

* Do the test questions for this chapter online at
https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=4

Introduction to Programming Using Python, Y. Daniel Liang
This quiz is for students to practice. A large number of additional quiz is available for instructors from the Instructor's Resource Website.

Chapter 4 Selections

Check Answer for All Questions

Section 4.2 Boolean Tipes, Values, and Expressions

4.1 The "less than or equal to" comparison cperator is

A<
B. <=
C. =<
D

[DXORON RO

E. I=

Check Answer for Question 1

.2 The equal comparison operator is

=

.o
.=

o0o@e
[T

O p. =

Check Answer for Question 2

4.3 The word True is

O A a Python keyword
[B. a Boolean literal
[€. same as value 1
[D. same as value @
Check Answer for Question 3

Section 4.3 Generating Random Numbers
4.4 To generate a random integer between @ and 5, use

O a. random.randint(®, 5)
O B. random.randint(®, 6)
O c. random.randrange(®, 5)

https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=4

Programming Exercises

* Page 120 -132:
°© 4,1-4.15
° 4,17 -4.21
° 4.24
> 4.30

° Lab #6

https://csu.kau.edu.sa/pages-cpit-110labsar.aspx

