
Chapter 4
Selections
CPIT 110 (Problem-Solving and Programming)

Version 2.0

Introduction to Programming Using Python, By: Y. Daniel Liang

Sections

2

• 4.1. Motivations

• 4.2. Boolean Types, Values, and Expressions

• 4.3. Generating Random Numbers

• 4.4. if Statements

• 4.6. Two-Way if-else Statements

• 4.7. Nested if and Multi-Way if-elif-else Statements

• 4.8. Common Errors in Selection Statements

• 4.9. Case Study: Computing Body Mass Index

• 4.11. Logical Operators

• 4.12. Case Study: Determining Leap Years

• 4.13. Case Study: Lottery

• 4.14. Conditional Expressions

• 4.15. Operator Precedence and Associativity

• Debugging

Programs Check Points Labs

https://youtu.be/uHkyZ18wWHg
https://youtu.be/uHkyZ18wWHg
https://youtu.be/uZmp73348cA
https://youtu.be/uZmp73348cA
https://youtu.be/XpGqLkC5vBg
https://youtu.be/XpGqLkC5vBg
https://youtu.be/9LRIovRIxy8
https://youtu.be/9LRIovRIxy8
https://youtu.be/G0qc6vMEUHg
https://youtu.be/G0qc6vMEUHg
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/pApNxiwEKRU
https://youtu.be/pApNxiwEKRU
https://youtu.be/liHCS49SEgw
https://youtu.be/liHCS49SEgw
https://youtu.be/KycfZwRWNkA
https://youtu.be/KycfZwRWNkA
https://youtu.be/BsXFL35-cmg
https://youtu.be/BsXFL35-cmg
https://youtu.be/7opQmCV7Ihk
https://youtu.be/7opQmCV7Ihk
https://youtu.be/3XK229fW_OM
https://youtu.be/3XK229fW_OM
https://youtu.be/noQ4zPrxO4Y
https://youtu.be/noQ4zPrxO4Y
https://youtu.be/P2Ei-uDVKZU
https://youtu.be/P2Ei-uDVKZU

Programs

3

• Program 1: Math Learning Tool

• Program 2: Simple if Demo

• Program 3: Improved Math Learning Tool

• Program 4: Chinese Zodiac

• Program 5: Computing BMI

• Program 6: Test Boolean Operators

• Program 7: Leap Year

• Program 8: Lottery

Python Online IDE

Check Points

4

• Section 4.3
◦ #1
◦ #2
◦ #3
◦ #4

• Section 4.4
◦ #5

• Section 4.6
◦ #6
◦ #7

• Section 4.7
◦ #8
◦ #9
◦ #10

• Section 4.8
◦ #11
◦ #12
◦ #13

• Section 4.11
◦ #14
◦ #15
◦ #16
◦ #17
◦ #18
◦ #19
◦ #20
◦ #21

• Section 4.14
◦ #22

◦ #23
◦ #24
◦ #25
◦ #26
◦ #27

• Section 4.15
◦ #28
◦ #29

Objectives

5

• To write Boolean expressions by using comparison operators (4.2).

• To generate random numbers by using the random.randint(a, b) or random.random() functions (4.3).

• To program with Boolean expressions (AdditionQuiz) (4.3).

• To implement selection control by using one-way if statements (4.4)

• To implement selection control by using two-way if .. else statements (4.6).

• To implement selection control with nested if ... elif ... else statements (4.7).

• To avoid common errors in if statements (4.8).

• To program with selection statements (4.9).

• To combine conditions by using logical operators (and, or, and not) (4.11).

• To use selection statements with combined conditions (LeapYear, Lottery) (4.12 – 4.13).

• To write expressions that use the conditional expressions (4.14).

• To understand the rules governing operator precedence and associativity (4.15).

4.1. Motivations

6

https://youtu.be/P2Ei-uDVKZU
https://youtu.be/P2Ei-uDVKZU

Motivations

7

• Consider this problem from Chapter 2:

Prompt the user to enter a radius

radius = eval(input("Enter a value for radius: "))

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius " , radius , " is " , area)

1

2

3

4

5

6

7

8

LISTING 2.2 ComputeAreaWithConsoleInput.py

4.1

Run

Motivations

8

• What happens if the user inputs a negative value for radius?
 The program would print an invalid result.

• If the radius is negative, you don't want the program to
compute the area.

• How can you deal with this situation?

4.1

Motivations

9

• Python provides selection statements, which allow you to
choose actions based on certain conditions.

• For example, the following selection statement could be used
in the previous program:

Prompt the user to enter a radius

radius = eval(input("Enter a value for radius: "))

if radius < 0:

radius is negative, so print an error message

print("Incorrect input")

else:

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius " , radius , " is " , area)

1

2

3

4

5

6

7

8

9

10

11

ModifiedComputeAreaWithConsoleInput.py

4.1

Run

Motivations

10

Prompt the user to enter a radius

radius = eval(input("Enter a value for radius: "))

if radius < 0:

radius is negative, so print an error message

print("Incorrect input")

else:

Compute area

area = radius * radius * 3.14159

Display results

print("The area for the circle of radius " , radius , " is " , area)

1

2

3

4

5

6

7

8

9

10

11

ModifiedComputeAreaWithConsoleInput.py

Enter a value for radius: -5 <Enter>

Incorrect input

Enter a value for radius: 0 <Enter>

The area for the circle of radius 0 is 0.0

Enter a value for radius: 5<Enter>

The area for the circle of radius 5 is 78.53975

4.1

Run

Motivations

11

• Selection statements use conditions to test if something is true
or false.

• These conditions are known as Boolean expressions.

• A Boolean expression is an expression that evaluates to a
Boolean value (True or False).

• This chapter introduces Boolean types, values, comparison
operators, and expressions.

4.1

4.2. Boolean Types, Values, and
Expressions

12

 Boolean Data Types

 Relational Operators

 Boolean Variables

 Convert Boolean Value to Integer

 Convert Numeric Value to Boolean

 Puzzle

https://youtu.be/noQ4zPrxO4Y
https://youtu.be/noQ4zPrxO4Y

Boolean Data Types

13

• Often in a program you need to compare two values, such as
whether x is greater than y.

◦ Or if an inputted value, such as radius, is less than zero.

• There are six comparison operators (also known as relational
operators) that can be used to compare two values. The result
of the comparison is a Boolean value: True or False.

• For example:
x = 10 > 20

y = 10 < 20

print ("x =", x) # output: False

print ("y =", y) # output: True

1

2

3

4

x = False

y = True

4.2

Relational Operators

144.2

Caution

15

• The equal to comparison operator is two equal signs (==), not a
single equal sign (=). The latter symbol is for assignment.

>>> 20 == 30

False

>>> 50 == 50

True

>>> 50.0 == 50

True

>>> 50 = 30

SyntaxError: can't assign to literal

>>> 60.0001 == 60

False

4.2

Boolean Variables

16

• A variable that holds a Boolean value is known as a Boolean
variable.

• The Boolean data type is used to represent Boolean values (True
or False).

• A Boolean variable can hold one of the two values: True or False.

• For example, the following statement assigns the value True to
the variable lightsOn:

• True and False are literals, just like a number such as 10. They are
reserved words and cannot be used as identifiers in a program.

lightsOn = True

4.2

Convert Boolean Value to Integer

17

• Internally, Python uses 1 to represent True and 0 for False.

• You can use the int function to convert a Boolean value to an
integer.

>>> int(True)

1

>>> int(False)

0

>>> print(int(True))

1

>>> print(int(20 > 50))

0

>>> print(int(True == False))

0

>>> print(int(20 * 2 > 30))

1

4.2

Convert Numeric Value to Boolean

18

• You can also use the bool function to convert a numeric value
to a Boolean value.

• The function returns False if the value is 0; otherwise, it always
returns True.

>>> bool(1)

True

>>> bool(0)

False

>>> bool(15)

True

>>> bool(-20)

True

>>> bool(10 + 10 - 20)

False

4.2

Puzzle

19

• What is the output of the following script?

x = int(True) + int(True) + int(int(True) - int(True))

y = int(True) * int(bool(50) * 3)

r = x + y

print("x = ", x)

print("y = ", y)

print("r = ", r)

print("bool(r) = ", bool(r))

print("bool(r - r) = ", bool(r - r))

1

2

3

4

5

6

7

8

x = 2

y = 3

r = 5

bool(r) = True

bool(r - r) = False

4.2

4.3. Generating Random Numbers

20

 Generating Random Integer Numbers

 Program 1: Math Learning Tool

 randrange function

 Generating Random Float Numbers

 Check Point #1 - #4

https://youtu.be/3XK229fW_OM
https://youtu.be/3XK229fW_OM

Generating Random Integer Numbers
randint function

21

• To generate a random number, you can use the randint(a, b)
function in the random module.

• This function returns a random integer between a and b,
inclusively.

• To obtain a random integer between 0 and 9, use randint(0, 9):

import random

x = random.randint(0, 9)

x could be 0,1,2,3,4,5,6,7,8, or 9

print(x)

1

2

3

4

x = 2 x = 9

x = 7 x = 3

4.3

Math Learning Tool
Program 1

22

Write a program that helps a first-grader practice addition. The
program should randomly generate two single-digit integers and
should then ask the user for the answer. The program will then
display a message stating if the answer is true or false.

What is 9 + 4? 12 <Enter>

9 + 4 = 12 is False

What is 3 + 1? 4 <Enter>

3 + 1 = 4 is True

Program 14.3

Math Learning Tool
Phase 1: Problem-solving

23

• What does “single-digit integers” mean?

0 - 9

0 – 9 0 – 9

0 – 9 0 – 9 0 – 9

1-digit (single) integer → [0 - 9]

2-digit integer → [10 - 99]

3-digit integer → [100 - 999]

import random

number = random.randint(0, 9)

1

2

import random

number = random.randint(10, 99)

1

2

import random

number = random.randint(100, 999)

1

2

Program 14.3

Math Learning Tool
Phase 1: Problem-solving

24

Design your algorithm:

1. Generate two single-digit integers for number1 and number2.
 Use randint(0, 9)

 Example: number1 = 2 and number2 = 6

2. Ask the user to answer a question
 Example: “What is 2 + 6 ?”

3. Print whether the answer is true or false

Program 14.3

Math Learning Tool
Phase 2: Implementation

25

LISTING 4.1 AdditionQuiz.py

import random

Generate random numbers

number1 = random.randint(0, 9)

number2 = random.randint(0, 9)

Prompt the user to enter an answer

answer = eval(input("What is " + str(number1) + " + "

+ str(number2) + "? "))

Display result

print(number1, "+", number2, "=", answer,

"is", number1 + number2 == answer)

1

2

3

4

5

6

7

8

9

10

11

12

13

What is 1 + 7? 8 <Enter>

1 + 7 = 8 is True

What is 4 + 8? 9 <Enter>

4 + 8 = 9 is False

Program 14.3

Run

Math Learning Tool
Trace The Program Execution

26

What is 4 + 8? 9 <Enter>

4 + 8 = 9 is False

Program 14.3

Math Learning Tool
Discussion

27

• The program uses the randint function defined in the random
module.

• The import statement imports the module (line 1).

• Lines 4-5 generate two numbers, number1 and number2.

• Line 8 obtains an answer from the user.

• The answer is graded in line 12 using a Boolean expression
number1 + number2 == answer.

Program 14.3

randrange function

28

• Python also provides another function, randrange(a, b), for
generating a random integer between a and b – 1, which is
equivalent to randint(a, b – 1).

• For example, randrange(0, 10) and randint(0, 9) are the same.

• Since randint is more intuitive, the book generally uses randint
in the examples.

>>> import random

>>> random.randrange(1, 3) # the value could be: 1 or 2

1

>>> random.randint(1, 3) # the value could be: 1, 2 or 3

2

>>> random.randint(0, 1) # the value could be: 0 or 1

1

>>> random.randrange(0, 1) # This will always be 0

0

4.3

Generating Random Float Numbers
random function

29

• You can also use the random() function to generate a random
float r such that 𝟎 ≤ 𝒓 < 𝟏

• For example:

• Note: the random() function returns a random float number
between 0.0 and 1.0 (excluding 1.0).

>>> import random

>>> random.random()

0.3362800598715141

>>> random.random()

0.886713208073315

>>> random.random()

0.9735731618649538

4.3

Check Point
#1

30

How you can generate a float number with n-digit before the
decimal point?

 We can do that by multiplying the generated number with 10𝑛.
For example:

 Formula:

>>> import random

>>> random.random() * 10 ** 1 # 1-digit float number

8.573088600232266

>>> random.random() * 10 ** 2 # 2-digits float number

99.56489589285628

>>> random.random() * 10 ** 3 # 3-digit float number

428.6688384440885

number = random.random() * 10 ** n

n for the number of the digits before the decimal point

4.3

Check Point
#2

31

How you can generate a float number with n-digit before the
decimal point and d-digit after the decimal point?

 We can do that by using the round function as the following:

• Formula:

>>> import random

>>> round(random.random() * 10 ** 1, 2)

7.66

>>> round(random.random() * 10 ** 2, 2)

79.95

>>> round(random.random() * 10 ** 4, 3)

2969.055

number = round(random.random() * 10 ** n, d)

n for the number of the digits before the decimal point
d for the number of the digits after the decimal point

4.3

Check Point
#3

32

How you can generate a random float number that is equal or
greater than a and less than b (𝑎 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑏).

 We can do that as the following:

 Examples:

>>> import random

>>> a, b = 1, 3

>>> a + (random.random() * (b - a)) # a = 1, b = 3

1.6393718672389215

>>> a, b = 10, 20

>>> a + (random.random() * (b - a)) # a = 10, b = 20

15.046056155663972

number = a + (random.random() * (b - a))

4.3

Check Point
#4

33

How do you generate a random integer i such that
𝟎 ≤ 𝒊 < 𝟐𝟎 ?

How do you generate a random integer i such that
𝟏𝟎 ≤ 𝒊 ≤ 𝟓𝟎?

import random

i = random.randint(0, 19)

Or ->

i = random.randrange(0, 20)

1

2

3

4

import random

i = random.randint(10, 50)

Or ->

i = random.randrange(10, 51)

1

2

3

4

4.3

4.4. if Statements

34

 Types of Selection Statements

 One-way if Statements

 if Block

 Program 2: Simple if Demo

 Check Point #5

https://youtu.be/7opQmCV7Ihk
https://youtu.be/7opQmCV7Ihk

Types of Selection Statements

35

• The preceding program (Program 1) displays a message such as
6 + 2 = 7 is False. If you wish the message to be 6 + 2 = 7 is
incorrect, you have to use a selection statement to make this
minor change.

• Python has several types of selection statements:
◦ one-way if statements

◦ two-way if-else statements

◦ nested if statements

◦ multi-way if-elif-else statements

◦ conditional expressions

4.4

One-way if Statements

36

• A one-way if statement executes an action if and only if the
condition is true.

• The syntax for a one-way if statement is:

• The flowchart to the right demonstrates
the syntax of an if statement.

• Example:

if boolean-expression:

statement(s)

lightOn = True

if lightOn:

print("Light ON")

1

2

3

4

4.4

Note

37

• Also, the following syntax is valid for one-way if statement with
a one statement on one line:

• Example:

◦ It is equivalent to:

if boolean-expression: statement

lightOn = True

if lightOn: print("Light ON")

if lightOn == False: print("Light OFF")

1

2

3

lightOn = True

if lightOn:

print("Light ON")

if lightOn == False:

print("Light OFF")

1

2

3

4

5

6

7

4.4

Remember

38

• A flowchart is a diagram that describes an algorithm or
process, showing the steps as boxes of various kinds, and their
order by connecting these with arrows.

• Process operations are represented in these boxes, and arrows
connecting them show flow of control.

• A diamond box is used to denote a Boolean condition and a
rectangle box is for representing statements.

4.4

if Block

39

• If the boolean-expression evaluates to true, the statements in
the if block are executed.

• The if block contains the statements indented after the if
statement.

• For example:

 If the value of radius is greater than or equal to 0, then the area is
computed and the result is displayed; otherwise, these statements
in the block are not executed.

if radius >= 0:

area = radius * radius * math.pi

print("The area for the circle of radius", radius, "is", area)

4.4

if Block

40

if radius >= 0:

area = radius * radius * math.pi

print("The area for the circle of radius", radius, "is", area)

4.4

Note

41

• The statements in the if block must be indented in the lines
after the if line and each statement must be indented using the
same number of spaces.

• For example, the following code is wrong, because the print
statement in line 3 is not indented using the same number of
spaces as the statement for computing area in line 2.

if radius >= 0:

area = radius * radius * math.pi

print("The area for the circle of radius", radius, "is", area)

1

2

3

4.4

Note

42

if i > 0:

print("i is positive.")

1

2

(A) Wrong❌

if i > 0:

print("i is positive.")

1

2

(B) Correct✔

if i > 0: print("Positive")

print("Not in the if block")

1

2

(D) Correct✔

if i > 0:

print("Positive")

print("Not in the if block")

1

2

3

(F) Correct✔

if i > 0: print("Positive")

print("Not in the if block")

1

2

(C) Wrong❌

if i > 0:

print("Positive")

print("Not in the if block")

1

2

3

(E) Wrong❌

if i > 0 # missing :

print("i is positive.")

1

2

(G) Wrong❌

if i > 0 :

print("i is positive.")

1

2

(H) Correct✔

4.4

Simple if Demo
Program 2

43

Write a program that prompts the user to enter an integer. If
the number is a multiple of 5, the program displays the
result HiFive. If the number is divisible by 2, the program
displays HiEven.

Enter an integer: 4 <Enter>

HiEven

Enter an integer: 30 <Enter>

HiFive

HiEven

Enter an integer: 15 <Enter>

HiFive

Program 24.4

Simple if Demo
Phase 1: Problem-solving

44

Design your algorithm:
1. Prompt the user to enter an integer (number).

2. If number is a multiple of 5, print HiFive.
 if (number % 5 == 0)

3. If number is divisible by 2, print HiEven.
 if (number % 2 == 0)

Program 24.4

Simple if Demo
Phase 2: Implementation

45

LISTING 4.1 SimpleIfDemo.py

number = eval(input("Enter an integer: "))

if number % 5 == 0:

print("HiFive")

if number % 2 == 0:

print("HiEven")

1

2

3

4

5

6

7

Enter an integer: 4 <Enter>

HiEven

Enter an integer: 30 <Enter>

HiFive

HiEven

Enter an integer: 15 <Enter>

HiFive

Program 24.4

Run

Check Point
#5

46

Write an if statement that assigns 1 to x if y is greater than 0.

Write an if statement that increases pay by 3% if score is greater
than 90.

if y > 0:

x = 1

1

2

if score > 90:

pay = pay + (pay * (3 / 100))

1

2

4.4

4.6. Two-Way if-else Statements

47

 Program 3: Improved Math Learning Tool

 Check Point #6 - #7

https://youtu.be/BsXFL35-cmg
https://youtu.be/BsXFL35-cmg

Two-way if-else Statement

48

• A one-way if statement takes an action if the specified
condition is True.

◦ If the condition is False, nothing is done.

• But what if you want to take one or more alternative actions
when the condition is False?

• Answer: you can use a two-way if-else statement.

• The actions that a two-way if-else statement specifies differ
based on whether the condition is True or False.

4.6

Two-way if-else Statement

49

• Here is the syntax for a two-way if-else statement:

if boolean-expression:

statement(s)-for-the-true-case

else:

statement(s)-for-the-false-case

4.6

Two-way if-else Statement

50

• If the boolean-expression evaluates to True, the statement(s)
for the True case are executed.

• Else, the statement(s) for the False case are executed.

• For example, consider the following code:

 If radius >= 0 is True, area is computed and displayed.

 if it is False, the message Negative input is displayed.

if radius >= 0:

area = radius * radius * math.pi

print("The area for the circle of radius", radius, "is", area)

else:

print("Negative input")

1

2

3

4

5

4.6

Two-way if-else Statement

51

• Another example: this one determines whether a number is
even or odd, as follows:

if number % 2 == 0:

print(number, "is even.")

else:

print(number, "is odd.")

1

2

3

4

4.6

Note

52

• The following syntax is valid for two way if-else statement with
a one statement for the true case and a one statement for the
false case.

• Example:

number = eval(input("Enter a number: "))

if number % 2 == 0: print(number, "is even.")

else: print(number, "is odd.")

1

2

3

if boolean-expression: statement-for-the-true-case

else: statement-for-the-false-case

4.6

Improved Math Learning Tool
Program 3

53

Write a program that helps a first-grader practice subtraction. The
program should randomly generate two single-digit integers, number1
and number2, with number1 >= number2 and should then ask the
user for the answer. The program will then display a message stating if
the answer is correct. If wrong, the program should display the correct
answer.

What is 6 - 6? 0 <Enter>

You are correct!

What is 9 - 2? 5 <Enter>

Your answer is wrong.

9 - 2 is 7

Program 34.6

Improved Math Learning Tool
Phase 1: Problem-solving

54

Design your algorithm:

1. Generate two single-digit integers for number1 and number2.
 Example: number1 = 6 and number2 = 2

2. If number1 < number2, swap number1 with number2.
 Example: make number1 = 2 and number2 = 6

3. Ask the user to answer a question
 Example: “What is 6 - 2 ?”

4. Print whether the answer is true or false
 If the answer is false, print the correct answer

Program 34.6

Improved Math Learning Tool
Phase 2: Implementation

55

LISTING 4.4 SubtractionQuiz.py

import random

1. Generate two random single-digit integers

number1 = random.randint(0, 9)

number2 = random.randint(0, 9)

2. If number1 < number2, swap number1 with number2

if number1 < number2:

number1, number2 = number2, number1 # Simultaneous assignment

4. Prompt the student to answer "what is number1 - number2?“

answer = eval(input("What is " + str(number1) + " - " +

str(number2) + "? "))

4. Grade the answer and display the result

if number1 - number2 == answer:

print("You are correct!")

else:

print("Your answer is wrong.\n", number1, "-",

number2, "is", number1 - number2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Program 34.6

Run

Improved Math Learning Tool
Trace The Program Execution

56

What is 9 - 2? 5 <Enter>

Your answer is wrong.

9 - 2 is 7

Program 34.6

Check Point
#6

57

Write an if statement that increases pay by 3% if score is greater
than 90, otherwise it increases pay by 1%.

if score > 90:

pay = pay + (pay * (3 / 100))

else:

pay = pay + (pay * (1 / 100))

1

2

3

4

4.6

Check Point
#7

58

What is the printout of the code in (a) and (b) if number is 30 and
35, respectively?

if number % 2 == 0:

print(number, "is even.")

print(number, "is odd.")

1

2

3

4

(a)

if number % 2 == 0:

print(number, "is even.")

else:

print(number, "is odd.")

1

2

3

4

(b)

30 is even.
30 is even.

30 is odd.

35 is odd. 35 is odd.

4.6

4.7. Nested if and Multi-Way if-elif-else
Statements

59

 Nested if

 Nested if and Multi-Way if-elif-else Statements

 Trace if-elif-else Statement

 Program 4: Chinese Zodiac

 Check Point #8 - #10

https://youtu.be/KycfZwRWNkA
https://youtu.be/KycfZwRWNkA

Nested if

60

• The statement in an if or if-else statement can be any legal
Python statement.

◦ Including another if or if-else statement.

• The inner if statement is said to be nested inside the outer if
statement.

• Example:

if i > k:

if j > k:

print("i and j are greater than k")

else:

print("i is less than or equal to k")

1

2

3

4

5

The if j > k statement is nested
inside the if i > k statement

4.7

Nested if

61

• More details:
◦ The inner if statement can contain another if statement.

◦ In fact, there is no limit to the depth of the nesting.

• So what is the purpose?
◦ The nested if statement can be used to implement multiple

alternatives.

• Consider the following example in the next slide, which prints a
letter grade according to the final number grade.

4.7

Nested if and Multi-Way if-elif-else
Statements

62

• While (a) works, the preferred format for multiple alternatives is shown in (b)
using a multi-way if-elif-else statement.

• This multi-way if-elif-else style avoids deep indentation and makes the program
easier to read.

if score >= 90.0:

grade = 'A'

else:

if score >= 80.0:

grade = 'B'

else:

if score >= 70.0:

grade = 'C'

else:

if score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

11

12

13

(a)

if score >= 90.0:

grade = 'A'

elif score >= 80.0:

grade = 'B'

elif score >= 70.0:

grade = 'C'

elif score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

(b)

equivalent

This is better

4.7

Nested if and Multi-Way if-elif-else
Statements

634.7

if score >= 90.0:

grade = 'A'

elif score >= 80.0:

grade = 'B'

elif score >= 70.0:

grade = 'C'

elif score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

11

Trace if-elif-else Statement

64

Suppose score is 70.0

The condition is False

4.7 1 of 5

if score >= 90.0:

grade = 'A'

elif score >= 80.0:

grade = 'B'

elif score >= 70.0:

grade = 'C'

elif score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

11

Trace if-elif-else Statement

65

Suppose score is 70.0

The condition is False

4.7 2 of 5

if score >= 90.0:

grade = 'A'

elif score >= 80.0:

grade = 'B'

elif score >= 70.0:

grade = 'C'

elif score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

11

Trace if-elif-else Statement

66

Suppose score is 70.0

The condition is True

4.7 3 of 5

if score >= 90.0:

grade = 'A'

elif score >= 80.0:

grade = 'B'

elif score >= 70.0:

grade = 'C'

elif score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

11

Trace if-elif-else Statement

67

Suppose score is 70.0

grade is C

4.7 4 of 5

Trace if-elif-else Statement

68

if score >= 90.0:

grade = 'A'

elif score >= 80.0:

grade = 'B'

elif score >= 70.0:

grade = 'C'

elif score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

11

Suppose score is 70.0

Exit the if statement

Note:
A condition is only tested when
all the conditions that come
before it are False.

4.7 5 of 5

Chinese Zodiac
Program 4

69

Write a program that will determine the Chinese Zodiac for a given
year. Specifically, your program should prompt the user to enter a year
and then determine the Zodiac and display the results.

The Chinese zodiac sign is based on a 12-year cycle, and each year in
this cycle is represented by an animal: monkey, rooster, dog, pig, rat,
ox, tiger, rabbit, dragon, snake, horse, and sheep.

Enter a year: 1963 <Enter>

rabbit

Enter a year: 1877 <Enter>

ox

Program 44.7

Chinese Zodiac
Phase 1: Problem-solving

70

• Zodiac is shown by graph below:

Program 44.7

Chinese Zodiac
Phase 1: Problem-solving

71

Design your algorithm:

1. Ask the user to enter the year

2. Determine the correct Zodiac year
 zodiacYear = year % 12

3. Print the result (zodiacYear)

Program 44.7

Chinese Zodiac
Phase 2: Implementation

72

LISTING 4.5 ChineseZodiac.py

year = eval(input("Enter a year: "))

zodiacYear = year % 12

if zodiacYear == 0:

print("monkey")

elif zodiacYear == 1:

print("rooster")

elif zodiacYear == 2:

print("dog")

elif zodiacYear == 3:

print("pig")

elif zodiacYear == 4:

print("rat")

elif zodiacYear == 5:

print("ox")

elif zodiacYear == 6:

print("tiger")

elif zodiacYear == 7:

print("rabbit")

elif zodiacYear == 8:

print("dragon")

elif zodiacYear == 9:

print("snake")

elif zodiacYear == 10:

print("horse")

else:

print("sheep")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Enter a year: 1963 <Enter>

rabbit

Enter a year: 1877 <Enter>

ox

Program 44.7

Run

Check Point
#8

73

Given the following code, show the output when:

◦ x = 2 and y = 3

◦ x = 3 and y = 2

◦ x = 3 and y = 3

if x > 2:

if y > 2:

z = x + y

print("z is", z)

else:

print("x is", x)

1

2

3

4

5

6

x is 3

z is 6

Empty

4.7

Check Point
#9

74

Given the following code, show the output when:

◦ x = 2 and y = 4

◦ x = 3 and y = 2

◦ x = 3 and y = 3

if x > 2:

if y > 2:

z = x + y

print("z is", z)

else:

print("x is", x)

1

2

3

4

5

6

x is 2

z is 6

Empty

4.7

Check Point
#10

75

What is wrong in the following code?

 The code has a logic error. It will assign “D” always when score is
equal or greater than 60. It will not, for example, assign “A” if the
score is equal or greater than 90.

 This is because a condition is only tested when all the conditions
that come before it are False.

if score >= 60.0:

grade = 'D'

elif score >= 70.0:

grade = 'C'

elif score >= 80.0:

grade = 'B'

elif score >= 90.0:

grade = 'A'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

4.7

Check Point
#10

764.7

Check Point
#10

77

 This is the fix of the previous code:

if score >= 90.0:

grade = 'A'

elif score >= 80.0:

grade = 'B'

elif score >= 70.0:

grade = 'C'

elif score >= 60.0:

grade = 'D'

else:

grade = 'F'

1

2

3

4

5

6

7

8

9

10

4.7

Check Point
#10

784.7

4.8. Common Errors in Selection
Statements

79

 Common Errors

 Common Pitfalls

 Check Point #11 - 13

https://youtu.be/liHCS49SEgw
https://youtu.be/liHCS49SEgw

Common Errors

80

• Most common errors in selection statements are caused by
incorrect indentation.

Block 1

Block 1, Continuation

Block 2

Block 2, Continuation

Block 3

4.8

Common Errors
Example 1

81

• Consider the following code in (a) and (b):

◦ In (a), the print statement is not in the if block.

◦ To place it in the if block, you have to indent it, as shown in (b).

◦ By the way, (a) has a runtime error: NameError: name 'area' is not
defined.

import math

radius = -20

if radius >= 0:

area = radius * radius * math.pi

print("The area is", area)

1

2

3

4

5

(b)

import math

radius = -20

if radius >= 0:

area = radius * radius * math.pi

print("The area is", area)

1

2

3

4

5

(a)

print("The area is", area)

NameError: name 'area' is not defined
Empty

4.8

Common Errors
Example 2

82

• Consider the following code in (a) and (b):

◦ The code in (a) has two if clauses and one else clause. Which if
clause is matched by the else clause?

◦ The indentation indicates that the else clause matches the first if
clause in (a) and the second if clause in (b).

i = 1

j = 2

k = 3

if i > j:

if i > k:

print('A')

else:

print('B')

1

2

3

4

5

6

7

8

(a)

i = 1

j = 2

k = 3

if i > j:

if i > k:

print('A')

else:

print('B')

1

2

3

4

5

6

7

8

(b)

B Empty

4.8

Common Pitfalls

83

• Common Pitfall 1:
◦ Testing equality of double values.

• Common Pitfall 2:
◦ Duplicated statements in if-else or if-elif-else statements.

4.8

Common Pitfalls
Pitfall 1

84

• Simplify Boolean variable assignment.
◦ Often, new programmers write code like (a).

◦ This is not an error.

◦ But it is better written (and shorter) as shown in (b).

◦ (b) is equivalent to (a).

number = eval(input("Enter number: "))

if number % 2 == 0:

even = True

else:

even = False

1

2

3

4

5

(a)

number = eval(input("Enter number: "))

even = number % 2 == 0

1

2

(b)

4.8

Common Pitfalls
Pitfall 2

85

• Avoid duplicating code in different cases.
◦ Often, new programmers write duplicate code that should be

combined in one place.

◦ This is not an error.

◦ But the new code (b) removes the duplication and makes the code
easy to maintain, because you only need to change in one place if
the print statement is modified.

total = eval(input("Enter total: "))

if (total >= 100):

discount = 10 / 100

total = total - (discount * total)

print("Final Total: ", total)

else:

discount = 5 / 100

total = total - (discount * total)

print("Final Total: ", total)

1

2

3

4

5

6

7

8

9

10

(a)

total = eval(input("Enter total: "))

discount = 0

if (total >= 100):

discount = 10 / 100

else:

discount = 5 / 100

total = total - (discount * total)

print("Final Total: ", total)

1

2

3

4

5

6

7

8

9

10

(b)

4.8

Check Point
#11

86

Rewrite the following statement using a Boolean expression:

 Solution:

if count % 10 == 0:

newLine = True

else:

newLine = False

1

2

3

4

newLine = count % 10 == 01

4.8

Check Point
#12

87

Are the following statements correct? Which one is better?

 Yes, they are correct.

 (b) is better than (a) because it is concise and easy to read.

if age < 16:

print("Cannot get a driver's license")

if age >= 16:

print("Can get a driver's license")

1

2

3

4

(a)

if age < 16:

print("Cannot get a driver's license")

else:

print("Can get a driver's license")

1

2

3

4

(b)

4.8

Check Point
#13

88

What is the output of the following code if number is 14, 15, and
30?

if number % 2 == 0:

print(number, "is even")

if number % 5 == 0:

print(number, "is multiple of 5")

1

2

3

4

(a)

if number % 2 == 0:

print(number, "is even")

elif number % 5 == 0:

print(number, "is multiple of 5")

(b)

1

2

3

4

14 is even 14 is even

15 is multiple of 5 15 is multiple of 5

30 is even

30 is multiple of 5
30 is even

4.8

4.9. Case Study: Computing Body Mass
Index

89

 Program 5: Computing BMI

https://youtu.be/pApNxiwEKRU
https://youtu.be/pApNxiwEKRU

Computing BMI
Program 5

90

Write a program that computes the Body Mass Index (BMI) for
the user. Your program should prompt the user to enter a weight
in pounds and height in inches. Your program should then
compute and display the BMI and its interpretation for the user.

Enter weight in pounds: 146 <Enter>

Enter height in inches: 70 <Enter>

BMI is 20.95

Normal

BMI =
Weight (kg)

Height (m)2

 BMI Interpretation

 Below 18.5 Underweight

18.5-24.9 Normal

25.0-29.9 Overweight

Above 30.0 Obese

1 𝑝𝑜𝑢𝑛𝑑 = 0.45359237 𝑘𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠

1 𝑖𝑛𝑐ℎ = 0.0254 𝑚𝑒𝑡𝑒𝑟𝑠

Program 54.9

Computing BMI
Phase 1: Problem-solving

91

• BMI is a measure of health based on the height and weight.

• BMI is calculated by taking the weight (in kilograms) and then
dividing it by the square of the height (in meters)

BMI =
Weight (kg)

Height (m)2
=

Weight (kg)

Height m × Height (m)

• The interpretation of BMI for people 20 years or older is as
follows:

 BMI Interpretation

 Below 18.5 Underweight

18.5-24.9 Normal

25.0-29.9 Overweight

Above 30.0 Obese

Program 54.9

Computing BMI
Phase 1: Problem-solving

92

• So the user input is in pounds and inches

• The BMI equation is in kilograms and meters

• Therefore, you will need to convert from:

◦ pounds to kilograms
 One pound is 0.45359237 kilograms
 𝑊𝑒𝑖𝑔ℎ𝑡 𝑘𝑔 = 0.45359237 ×𝑊𝑒𝑖𝑔ℎ𝑡 (𝑝𝑜𝑢𝑛𝑑)

◦ inches to meters
 one inch is 0.0254 meters
 𝐻𝑒𝑖𝑔ℎ𝑡 𝑚 = 0.0254 × 𝐻𝑒𝑖𝑔ℎ𝑡 (𝑖𝑛𝑐ℎ)

Program 54.9

Computing BMI
Phase 1: Problem-solving

93

Design your algorithm:

1. Ask the user to enter the weight and height

2. Convert weight in pounds to kilograms
 𝑤𝑒𝑖𝑔ℎ𝑡𝐼𝑛𝐾𝑖𝑙𝑜𝑔𝑟𝑎𝑚𝑠 = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 0.45359237

3. Convert height in inches to meters
 ℎ𝑒𝑖𝑔ℎ𝑡𝐼𝑛𝑀𝑒𝑡𝑒𝑟𝑠 = ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 0.0254

4. Compute BMI using BMI equation
 bmi = weightInKilograms / (heightInMeters ∗ heightInMeters)

5. Print the result (bmi)
 Print the interpretation as the following:
 “Underweight” if bmi < 18.5
 “Normal” if bmi < 25
 “Overweight” if bmi < 30
 “Obese” if bmi >= 30

Program 54.9

Computing BMI
Phase 2: Implementation

94

LISTING 4.6 ComputeBMI.py

Prompt the user to enter weight in pounds

weight = eval(input("Enter weight in pounds: "))

Prompt the user to enter height in inches

height = eval(input("Enter height in inches: "))

KILOGRAMS_PER_POUND = 0.45359237 # Constant

METERS_PER_INCH = 0.0254 # Constant

Compute BMI

weightInKilograms = weight * KILOGRAMS_PER_POUND

heightInMeters = height * METERS_PER_INCH

bmi = weightInKilograms / (heightInMeters * heightInMeters)

Display result

print("BMI is", format(bmi, ".2f"))

if bmi < 18.5:

print("Underweight")

elif bmi < 25:

print("Normal")

elif bmi < 30:

print("Overweight")

else:

print("Obese")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Program 54.9

Run

Computing BMI
Example Runs of The Program

95

Enter weight in pounds: 146 <Enter>

Enter height in inches: 70 <Enter>

BMI is 20.95

Normal

Enter weight in pounds: 176 <Enter>

Enter height in inches: 66 <Enter>

BMI is 28.41

Overweight

Program 54.9

Computing BMI
Trace The Program Execution

96

Enter weight in pounds: 146 <Enter>

Enter height in inches: 70 <Enter>

BMI is 20.95

Normal

Program 5

20

4.9

Computing BMI
Discussion

97

• The two named constants, KILOGRAMS_PER_POUND and
METERS_PER_INCH, are defined in lines 7-8.

• Named constants were introduced in Chapter 2.

• Using named constants here makes programs easy to read.

• Unfortunately, there is no special syntax for defining named
constants in Python.

• Named constants are treated just like variables in Python.

• This book uses the format of writing constants in all uppercase
letters to distinguish them from variables and separates the
words in constants with an underscore (_).

Program 54.9

4.11. Logical Operators

98

 Truth Table for Operator not

 Truth Table for Operator and

 Truth Table for Operator or

 Program 6: Test Boolean Operators

 De Morgan’s law

 Notes

 Check Point #14 - #21

https://youtu.be/A2eMqAeH8sQ
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/6BPrQvMvhI8
https://youtu.be/6BPrQvMvhI8
https://youtu.be/A2eMqAeH8sQ
https://youtu.be/A2eMqAeH8sQ

Logical Operators

99

• We have used conditional statements to help us determine if
the execution should take one path (true path) or another path
(false path).

• But until now, these conditional statements have been very
basic.

• Usually, whether a statement is executed is determined by a
combination of several conditions.

• You can use logical operators to combine these conditions to
form a compound Boolean expression.

4.11

Logical Operators

100

• Logical operators, also known as Boolean operators, operate
on Boolean values to create a new Boolean value.

• The following slide shows the three logical operators we will
use.

• The following slides show a truth table for each logical
operator and some examples.

4.11

Logical Operators

1014.11

Truth Table for Operator not

1024.11

Truth Table for Operator not
Examples

103

>>> not True

False

>>> not (20 > 60)

True

>>> not 60 > 20

False

>>> not (not (True))

True

>>> not not False

False

4.11

Truth Table for Operator and

1044.11

Truth Table for Operator and
Examples

105

>>> True and False and True and True

False

>>> True and not False

True

>>> not not True and 10 > 20

False

>>> not False and not False and not not not False

True

>>> not (True and False) and True

True

>>> not True and False and True

False

4.11

Truth Table for Operator or

1064.11

or

Truth Table for Operator or
Examples

107

>>> True or False

True

>>> True or False and False and False and True

True

>>> False or not True

False

>>> not (True and False) or 20 > 10

True

>>> not True and False or True

True

>>> not True and (False or True)

False

4.11

Test Boolean Operators
Program 6

108

Write a program that tests the usage of Boolean operators.
Specifically, your program should prompt the user to enter one
integer. Your program should then determine if the value is
divisible by 2 and 3, by 2 or 3, or by 2 or 3 but not both.

Enter an integer: 18 <Enter>

18 is divisible by 2 and 3

18 is divisible by 2 or 3

Enter an integer: 15 <Enter>

15 is divisible by 2 or 3

15 is divisible by 2 or 3, but not both

Program 64.11

Test Boolean Operators
Phase 1: Problem-solving

109

• Note:
◦ So how do we check for divisibility?

◦ We use mod (%).

◦ Example: check if some number, x, is divisible by 3

if x % 3 == 0

◦ This says: if we divide x by 3 and the remainder is zero …

◦ And that is exactly what we want!

◦ However, we must check the divisibility of two numbers
 both 2 and 3

◦ This means we must use logical operators

if x % 2 == 0 and x % 3 == 0

Program 64.11

Test Boolean Operators
Phase 1: Problem-solving

110

Design your algorithm:

1. Ask the user to enter the number

2. If (number % 2 == 0) and (number % 3 == 0)
 Print: number is divisible by 2 and 3

3. If (number % 2 == 0) or (number % 3 == 0)
 Print: number is divisible by 2 or 3

4. If ((number % 2 == 0) or (number % 3 == 0))
and (not ((number % 2 == 0) and (number % 3 == 0)))

 Print: number is divisible by 2 or 3, but not both

Program 64.11

Test Boolean Operators
Phase 2: Implementation

111

LISTING 4.8 TestBooleanOperators.py

Receive an input

number = eval(input("Enter an integer: "))

if number % 2 == 0 and number % 3 == 0:

print(number, "is divisible by 2 and 3")

if number % 2 == 0 or number % 3 == 0:

print(number, "is divisible by 2 or 3")

if (number % 2 == 0 or number % 3 == 0) and \

not (number % 2 == 0 and number % 3 == 0):

print(number, "is divisible by 2 or 3, but not both")

1

2

3

4

5

6

7

8

9

10

11

12

13

Enter an integer: 18 <Enter>

18 is divisible by 2 and 3

18 is divisible by 2 or 3

Enter an integer: 15 <Enter>

15 is divisible by 2 or 3

15 is divisible by 2 or 3, but not both

Program 64.11

Run

De Morgan’s law
(1)

112

• Example, the following Boolean expression:

is better written as:

not (number % 2 == 0 and number % 3 == 0)

number % 2 != 0 or number % 3 != 0

not (condition1 and condition2)

is the same as
not condition1 or not condition2

4.11

De Morgan’s law
(2)

113

• Example, the following Boolean expression:

is better written as:

not (number == 2 or number == 3)

number != 2 and number != 3

not (condition1 or condition2)

is the same as
not condition1 and not condition2

4.11

Notes

114

• If one of the operands of an and operator is False, the expression
is False.

◦ Example: when evaluating p1 and p2
 Python first evaluates p1

 if p1 is True, evaluates p2

 if p1 is False, it does not evaluate p2

• if one of the operands of an or operator is True, the expression
is True.

◦ Example: when evaluating p1 or p2
 Python first evaluates p1

 if p1 is False, evaluates p2

 if p1 is True, it does not evaluate p2

• Python uses these properties to improve the performance of these
operators.

4.11

Notes

115

• The following Boolean expression:

can be simplified by using an equivalent expression:

• The following Boolean expression:

can be simplified by using an equivalent expression:

x <= number < y

number >= x and number < y

x != number == y

number != x and number == y

4.11

Check Point
#14

116

Assuming that x is 1, show the result of the following Boolean
expressions:

1.

2.

3.

4.

5.

6.

True and (3 > 4)

not (x > 0) and (x > 0)

(x > 0) or (x < 0)

(x != 0) or (x == 0)

(x >= 0) or (x < 0)

(x != 1) == (not (x == 1))

False

False

True

True

True

True

4.11

Check Point
#15

117

Write a Boolean expression that evaluates to True if variable num
is between 1 and 100.

 Solution:

Or (equivalent):

1 <= num <= 100

num >= 1 and num <= 100

4.11

Check Point
#16

118

Write a Boolean expression that evaluates to True if variable num
is between 1 and 100 or num is negative.

 Solution:

Or (equivalent):

(1 <= num <= 100) or (num < 0)

(num >= 1 and num <= 100) or (num < 0)

4.11

Check Point
#17

119

Assuming x = 4 and y = 5, show the result of the following
Boolean expressions:

1.

2.

3.

4.

x >= y >= 0

x <= y >= 0

x != y == 5

(x != 0) or (x == 0)

False

True

True

True

4.11

Check Point
#18

120

Write a Boolean expression that evaluates to True if age is
greater than 13 and less than 18.

 Solution:

Or (equivalent):

13 < age < 18

age > 13 and age < 18

4.11

Check Point
#19

121

Write a Boolean expression that evaluates to True if weight is
greater than 50 or height is greater than 160.

 Solution:

weight > 50 or height > 160

4.11

Check Point
#20

122

Write a Boolean expression that evaluates to True if weight is
greater than 50 and height is greater than 160.

 Solution:

weight > 50 and height > 160

4.11

Check Point
#21

123

Write a Boolean expression that evaluates to True if either
weight is greater than 50 or height is greater than 160, but not
both.

 Solution:
(weight > 50 or height > 160) and not (weight > 50 and height > 160)

4.11

4.12. Case Study: Determining Leap
Years

124

 Program 7: Leap Year

https://youtu.be/G0qc6vMEUHg
https://youtu.be/G0qc6vMEUHg

Leap Year
Program 7

125

Write a program that determines if a given year is a leap year.
Specifically, ask the user to enter a year. Then determine if that
year is a leap year and display the results.

Note: A year is a leap year if it is divisible by 4 but not by 100 or if
it is divisible by 400.

Enter a year: 2008 <Enter>

2008 is a leap year? True

Enter a year: 1900 <Enter>

1900 is a leap year? False

Enter a year: 2002 <Enter>

2002 is a leap year? False

Program 74.12

Leap Year
Phase 1: Problem-solving

126

• What is a leap year?
◦ A leap year has 366 days (instead of 365)

◦ Why?

◦ The earth takes approximately 365.25 days to circle around the sun

◦ However, the Gregorian year has only 365 days

◦ Therefore, every four years, the number of days is increased to 366

• A year is a leap year if it is divisible by 4 but not by 100 or if it is
divisible by 400.

Program 74.12

Leap Year
Phase 1: Problem-solving

127

• Which years are leap years?

• There are three criteria:
1. A leap year is divisible by 4

2. A leap year is divisible by 4 but not by 100

3. A leap year is divisible by 4 but not by 100 or divisible by 400

isLeapYear = (year % 4 == 0)

isLeapYear = isLeapYear and (year % 100 != 0)

isLeapYear = isLeapYear or (year % 400 == 0)

Program 74.12

Leap Year
Phase 1: Problem-solving

128

• So, you can use the following Boolean expressions to
determine whether a year is a leap year:

• or you can combine all these expressions into one, like this:

A leap year is divisible by 4

isLeapYear = (year % 4 == 0)

A leap year is divisible by 4 but not by 100

isLeapYear = isLeapYear and (year % 100 != 0)

A leap year is divisible by 4 but not by 100 or divisible by 400

isLeapYear = isLeapYear or (year % 400 == 0)

isLeapYear = (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0)

Program 74.12

Leap Year
Phase 1: Problem-solving

129

Design your algorithm:

1. Ask the user to enter the year

2. If (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0)
 Print: year is a leap year? True

3. Otherwise
 Print: year is a leap year? False

Program 74.12

Leap Year
Phase 2: Implementation

130

LISTING 4.9 LeapYear.py

year = eval(input("Enter a year: "))

Check if the year is a leap year

isLeapYear = (year % 4 == 0 and year % 100 != 0) or \

(year % 400 == 0)

Display the result

print(year, "is a leap year?", isLeapYear)

1

2

3

4

5

6

7

8

9

Enter a year: 2008 <Enter>

2008 is a leap year? True

Enter a year: 1900 <Enter>

1900 is a leap year? False

Enter a year: 2002 <Enter>

2002 is a leap year? False

Program 74.12

Run

4.13. Case Study: Lottery

131

 Program 8: Lottery

https://youtu.be/9LRIovRIxy8
https://youtu.be/9LRIovRIxy8

Lottery
Program 8

132

Write a program to play a lottery. The program randomly generates a
two-digit number, prompts the user to enter a two-digit number, and
determines whether the user wins according to the following rules:

1. If the user’s input matches the lottery in the exact order, the award is
$10,000.

2. If all the digits in the user’s input match all the digits in the lottery
number, the award is $3,000.

3. If one digit in the user’s input matches a digit in the lottery number, the
award is $1,000.

Enter your lottery pick (two digits): 45 <Enter>

The lottery number is 12

Sorry, no match

Enter your lottery pick (two digits): 23 <Enter>

The lottery number is 34

Match one digit: you win $1,000

Program 84.13

Lottery
Phase 1: Problem-solving

133

• So how do we compare digits?
◦ Give a two-digit number, how can isolate the individual digits in

order to compare them?

◦ Example: given the number 73, how can we extract the 7 and the
3? How can we “get” them as individual numbers?

• Solution: integer division (//) and mod (%)
◦ Example: 73

◦ 73 // 10 = 7

◦ 73 % 10 = 3

• This is exactly what we want!
Note:
you will use mod (%) a lot in this
course!

Program 84.13

Lottery
Phase 1: Problem-solving

134

Design your algorithm:

1. Randomly generate a lottery number between 10 and 99.
 lottery = random.randint(10, 99)

2. Ask the user to enter the two-digit number (guess)

3. Get digits from lottery
 lotteryDigit1 = lottery // 10

 lotteryDigit2 = lottery % 10

4. Get digits from guess
 guessDigit1 = guess // 10

 guessDigit2 = guess % 10

Program 84.13

Lottery
Phase 1: Problem-solving

135

Design your algorithm:

5. Compare user number (guess) with winning number (lottery)
and determine winning amount (if any).

 First check whether the guess matches the lottery number exactly.
 if guess == lottery

 If not, check whether the reversal of the guess matches the lottery
number.
 elif (guessDigit2 == lotteryDigit1 and guessDigit1 == lotteryDigit2)

 If not, check whether one digit is in the lottery number.
 elif (guessDigit1 == lotteryDigit1 or guessDigit1 == lotteryDigit2 or

guessDigit2 == lotteryDigit1 or guessDigit2 == lotteryDigit2)

 If not, nothing matches and display Sorry, no match.
 else

6. Display results to user

Program 84.13

Lottery
Phase 2: Implementation

136

LISTING 4.10 Lottery.py

import random

Generate a lottery

lottery = random.randint(10, 99)

Prompt the user to enter a guess

guess = eval(input("Enter your lottery pick (two digits): "))

Get digits from lottery

lotteryDigit1 = lottery // 10

lotteryDigit2 = lottery % 10

Get digits from guess

guessDigit1 = guess // 10

guessDigit2 = guess % 10

print("The lottery number is", lottery)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Program 84.13

Run

Lottery
Phase 2: Implementation

137

LISTING 4.10 Lottery.py

Check the guess

if guess == lottery:

print("Exact match: you win $10,000")

elif (guessDigit2 == lotteryDigit1 and \

guessDigit1 == lotteryDigit2):

print("Match all digits: you win $3,000")

elif (guessDigit1 == lotteryDigit1

or guessDigit1 == lotteryDigit2

or guessDigit2 == lotteryDigit1

or guessDigit2 == lotteryDigit2):

print("Match one digit: you win $1,000")

else:

print("Sorry, no match")

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Enter your lottery pick (two digits): 45 <Enter>

The lottery number is 12

Sorry, no match

Enter your lottery pick (two digits): 23 <Enter>

The lottery number is 34

Match one digit: you win $1,000

Program 84.13

Run

Lottery
Trace The Program Execution

138

Enter your lottery pick (two digits): 23 <Enter>

The lottery number is 34

Match one digit: you win $1,000

Program 84.13

4.14. Conditional Expressions

139

 Check Point #22 - #27

https://youtu.be/XpGqLkC5vBg
https://youtu.be/XpGqLkC5vBg

Conditional Expressions

140

• You might want to assign a value to a variable that is restricted
by certain conditions.

• For example, the following statement assigns 1 to y if x is
greater than 0, and -1 to y if x is less than or equal to 0.

• Alternatively, you can use a conditional expression to achieve
the same result.

if x > 0:

y = 1

else:

y = -1

y = 1 if x > 0 else -1

4.14

Conditional Expressions

141

• A conditional expression evaluates an expression based on a
condition.

• Conditional expressions are in a completely different style. The
syntax is:

• The result of this conditional expression is expression1 if
boolean-expression is True; otherwise, the result is
expression2.

expression1 if boolean-expression else expression2

4.14

Conditional Expressions
Example 1

142

• Given two numbers, number1 and number2, save the larger
into a variable called max.

• You can do this with an if/else statement

• Or you can use one conditional expression as follows:

if number1 > number2:

max = number1

else:

max = number2

max = number1 if number1 > number2 else number2

4.14

Conditional Expressions
Example 2

143

• Given a variable, number, display the message “number is
even” if number is even; otherwise, display “number is odd”.

• You can do this with an if/else statement

• Or you can use one conditional expression as follows:

if number % 2 == 0:

print(number, "is even")

else:

print(number, "is odd")

print(number, "is even" if number % 2 == 0 else "is odd")

4.14

Check Point
#22

144

Suppose that when you run the following program, you enter the
input 2, 3, 6 from the console. What is the output?

 The output is: sorted

 It is equivalent to:

x, y, z = eval(input("Enter three numbers: "))

print("sorted" if x < y and y < z else "not sorted")

1

2

x, y, z = eval(input("Enter three numbers: "))

if x < y and y < z:

print("sorted")

else:

print("not sorted")

1

2

3

4

5

4.14

Check Point
#23

145

Rewrite the following if statement using a conditional expression:

 Solution:

if ages >= 16:

ticketPrice = 20

else:

ticketPrice = 10

ticketPrice = 20 if ages >= 16 else 10

4.14

Check Point
#24

146

Rewrite the following if statement using a conditional expression:

 Solution:

if count % 10 == 0:

print(count)

else:

print(count, end = " ")

print(count, end = "\n" if count % 10 == 0 else " ")

4.14

Check Point
#25

147

Rewrite the following conditional expressions using if/else
statements:

 Solution:

score = 3 * scale if x > 10 else 4 * scale

if x > 10:

score = 3 * scale

else:

score = 4 * scale

4.14

Check Point
#26

148

Rewrite the following conditional expressions using if/else
statements:

 Solution:

tax = income * 0.2 if income > 10000 else income * 0.17 + 1000

if income > 10000:

tax = income * 0.2

else:

tax = income * 0.17 + 1000

4.14

Check Point
#27

149

Rewrite the following conditional expressions using if/else
statements:

 Solution:

print(i if number % 3 == 0 else j)

if number % 3 == 0:

print(i)

else:

print(j)

4.14

4.15. Operator Precedence and
Associativity

150

 Operator Precedence

 Associativity

 Check Point #28 - #29

https://youtu.be/uZmp73348cA
https://youtu.be/uZmp73348cA

Operator Precedence

151

• Chapter 2 introduced operator precedence involving arithmetic
operators.

◦ Example:
 * and / has higher precedence than + and –

• But what about expressions with other operators
◦ Example:
 3 + 4 * 4 > 5 * (4 + 3) – 1

◦ What is the value? What is the execution order of the above
example?

◦ We need to know the precedence rules for this!

4.15

Operator Precedence

152

• Operator precedence and operator associativity determine the
order in which Python evaluates operators.

• The expression in the parentheses is evaluated first.
◦ Parentheses can be nested, in which case the expression in the

inner parentheses is executed first.

• When evaluating an expression without parentheses, the
operators are applied according to the precedence rule and the
associativity rule.

• The precedence rule defines precedence for operators.
◦ In the next slide, Table 4.7 contains the operators you have learned

so far, with the operators listed in decreasing order of precedence
from top to bottom.

4.15

Operator Precedence

1534.15

(Corrected)

Associativity

154

• If operators with the same precedence are next to each other,
their associativity determines the order of evaluation.

• All binary operators except assignment operators are left-
associative.

• Example:
a – b + c – d is equivalent to ((a – b) + c) – d

• Assignment operators are right-associative.

• Example:
a = b += c = 5 is equivalent to a = (b += (c = 5))

4.15

Check Point
#28

155

List the precedence order of the Boolean operators.

 Solution:
◦ The decreasing order of precedence order of the Boolean

operators:

1. not

2. and

3. or

4.15

Check Point
#29

156

Evaluate the following expressions:

1.

2.

3.

4.

True or True and False True

True and True or False True

(True and not True) or False or 10 < 3 False

not (20 > 40 and not 40 > 20) and True True

4.15

Debugging

157

https://youtu.be/uHkyZ18wWHg
https://youtu.be/uHkyZ18wWHg

Debugging

158

• Dealing with programming errors:
◦ Remember: syntax errors and runtime errors are not difficult to

find.

◦ However, logic errors can be very challenging.

◦ Logic errors are called bugs.

◦ Debugging is the process of finding and corrected these logic
errors.

Debugging

Debugging

159

• Methods of debugging:

1- You can hand-trace the program.
 Meaning, you try to find the error by reading the program

 Clearly, this is very difficult and time consuming.

2- You can insert print statements throughout the program.
 The print statements allow you to see how far the execution has reached.

 You can also print, and then view, the values of variables during execution of
the program.

 Again, this is time consuming.

Debugging

Debugging

160

• Methods of debugging:
◦ These two methods are okay, but they are slow.
 They really only work for small, simple programs.

◦ So what about large, complex programs?

◦ The best solution is to use a debugger utility. (Method 3)

• Most of Python IDE programs, such as PyCharm and IDLE,
include integrated debuggers.

◦ Learning how to use these debuggers is very important.

Debugging

Debugging

161

• Debugger is a program that facilitates debugging.

• You can use a debugger to
◦ Execute a single statement at a time.

◦ Trace into or stepping over a method.

◦ Set breakpoints.

◦ Display variables.

◦ Display call stack.

◦ Modify variables.

Debugging

Debugging
By Using PyCharm

162Debugging

End

163

 Test Questions

 Programming Exercises

Test Questions

164

• Do the test questions for this chapter online at
https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=4

https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=4

Programming Exercises

165

• Page 120 – 132:
◦ 4.1 - 4.15

◦ 4.17 - 4.21

◦ 4.24

◦ 4.30

• Lab #6

https://csu.kau.edu.sa/pages-cpit-110labsar.aspx

