
Chapter 2
Elementary Programming
CPIT 110 (Problem-Solving and Programming)

Version 2.0

Introduction to Programming Using Python, By: Y. Daniel Liang

Sections

2

• 2.1. Motivations

• 2.2. Writing a Simple Program

• 2.3. Reading Input from the Console

• 2.4. Identifiers

• 2.5. Variables, Assignment Statements, and Expressions

• 2.6. Simultaneous Assignments

• 2.7. Named Constants

• 2.8. Numeric Data Types and Operators

• 2.9. Evaluating Expressions and Operator Precedence

• 2.10. Augmented Assignment Operators

• 2.11. Type Conversions and Rounding

• 2.12. Case Study: Displaying the Current Time

• 2.13. Software Development Process

• 2.14. Case Study: Computing Distances

Programs Check Points Labs

Programs

3

• Program 1: Compute Area

• Program 2: Compute Area With Console Input

• Program 3: Compute Average

• Program 4: Compute Average With Simultaneous Assignment

• Program 5: Compute Area with a Constant

• Program 6: Convert Time

• Problem 7: Keeping Two Digits After Decimal Points

• Problem 8: Displaying Current Time

• Problem 9: Computing Loan Payments

Python Online IDE

Check Points
• Section 2.2

◦ #1
◦ #2

• Section 2.3
◦ #3

• Section 2.4
◦ #4

• Section 2.6
◦ #5

• Section 2.8
◦ #6

◦ #7

• Section 2.9
◦ #8
◦ #9

• Section 2.10
◦ #10

• Section 2.11
◦ #11
◦ #12

4

Objectives

5

• To write programs that perform simple computations (2.2).

• To obtain input from a program’s user by using the input function (2.3).

• To use identifiers to name elements such as variables and functions (2.4).

• To assign data to variables (2.5).

• To perform simultaneous assignment (2.6).

• To define named constants (2.7).

• To use the operators +, -, *, /, //, %, and ** (2.8).

• To write and evaluate numeric expressions (2.9).

• To use augmented assignment operators to simplify coding (2.10).

• To perform numeric type conversion and rounding with the int and round functions (2.11).

• To obtain the current system time by using time.time() (2.12).

• To describe the software development process and apply it to develop a loan payment program
(2.13).

• To compute and display the distance between two points (2.14).

Get Ready

6

Get Ready

7

• In this chapter, you will learn many basic concepts in Python programming. So,
You may need to try some codes in a quick way.

• You learned in the previous chapter that Python has two modes: interactive mode
and script mode.

• In the interactive mode, you don’t have to create a file to execute the code. Also,
you don’t have to use the print function to display results of expressions and
values of variables.

• Python provides Python Shell for programming in the interactive mode.

• You can use Python Shell in form of command line using (“Python 3.7”) or GUI
(Graphical User Interface) using (“IDLE”).

Python Shell (GUI)

Python Shell (Command Line)

Get Ready

Python Shell (Command Line)

8Get Ready

Python Shell (GUI)

9Get Ready

Python Shell in PyCharm

10

• Open or create a project in PyCharm.

Get Ready

2.1. Motivations

11

Motivations

12

• In the preceding chapter (Chapter 1), you learned how to create and
run a Python program.

• Starting from this chapter, you will learn how to solve practical
problems programmatically.

• Through these problems, you will learn Python basic data types and
related subjects, such as variables, constants, data types, operators,
expressions, and input and output.

2.1

2.2. Writing a Simple Program

13

§ Program 1: Compute Area

§ Data Types
§ Python Data Types

§ Check Point #1 - #2

Compute Area
Program 1

14

Write a program that will calculate the area of a circle.

area = radius x radius x π
Here is a sample run of the program (suppose that radius is 20):

• Remember:
◦ Phase 1: Problem-solving
◦ Phase 2: Implementation

The area for the circle of radius 20 is 1256.636

Program 12.2

Compute Area
Phase 1: Problem-solving

15

Write a program that will calculate the area of a circle.

• Phase 1: Design your algorithm
1. Get the radius of the circle.
2. Compute the area using the following formula:

area = radius x radius x π
3. Display the result

§ Tip:
It’s always good practice to outline your program (or its underlying
problem) in the form of an algorithm (Phase 1) before you begin
coding (Phase 2).

Program 12.2

Compute Area
Phase 2: Implementation

16

Write a program that will calculate the area of a circle.

• Phase 2: Implementation (code the algorithm)

Step 1: Assign a value to radius

Step 2: Compute area

Step 3: Display results

ComputeArea.py

1
2
3
4
5
6
7
8

Program 12.2

Compute Area
Phase 2: Implementation

17

Write a program that will calculate the area of a circle.

• Phase 2: Implementation (code the algorithm)
◦ In this problem, the program needs to read the radius, which the

program’s user enters from the keyboard.
◦ This raises two important issues:
§ Reading the radius from the user. → Solution: using the input function
§ Storing the radius in the program. → Solution: using variables

◦ Let’s address the second issue first.

Program 12.2

Compute Area
Phase 2: Implementation

18

Write a program that will calculate the area of a circle.

• Phase 2: Implementation (code the algorithm)
◦ In order to store the radius, the program must create a symbol

called a variable.
◦ A variable is a name that references a value stored in the

computer’s memory.
◦ You should choose descriptive names for variables
§ Do not choose “x” or “y”… these have no meaning
§ Choose names with meaning …“area” or “radius”

Program 12.2

Compute Area
Phase 2: Implementation

19

Write a program that will calculate the area of a circle.

• Phase 2: Implementation (code the algorithm)
◦ The first step is to create and set a value for radius.
§ Later we will learn how to ask the user to input the value for radius!
§ For now, you can assign a fixed value to radius in the program as you write the

code. For example, let radius be 20

Step 1: Assign a value to radius
radius = 20 # radius is now 20

Step 2: Compute area

Step 3: Display results

ComputeArea.py

1
2
3
4
5
6
7
8

Program 12.2

Compute Area
Phase 2: Implementation

20

Write a program that will calculate the area of a circle.

• Phase 2: Implementation (code the algorithm)
◦ The second step is to compute area by assigning the result of the

expression (radius * radius * 3.14159) to area.
§ Note that: π = 3.14159, so we can rewrite the equation (area = radius x radius x π) to

be (area = radius x radius x 3.14159).

Step 1: Assign a value to radius
radius = 20 # radius is now 20

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display results

ComputeArea.py

1
2
3
4
5
6
7
8

Program 12.2

Compute Area
Phase 2: Implementation

21

Write a program that will calculate the area of a circle.

• Phase 2: Implementation (code the algorithm)
◦ The final step is to display the value of area on the console by using

Python’s print function.

Step 1: Assign a value to radius
radius = 20 # radius is now 20

Step 2: Compute area
area = radius * radius * 3.14159

Step 3: Display results
print("The area for the circle of radius ", radius, " is ", area)

ComputeArea.py

1
2
3
4
5
6
7
8

Program 12.2

Compute Area
Phase 2: Implementation

22

Write a program that will calculate the area of a circle.

• Phase 2: Implementation (code the algorithm)
LISTING 2.1 ComputeArea.py

Assign a value to radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

The area for the circle of radius 20 is 1256.636

Program 12.2

Run

LISTING 2.1 ComputeArea.py

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

Compute Area
Trace The Program Execution

23

It is a comment. Do Nothing.

1 of 62.2 Program 1

LISTING 2.1 ComputeArea.py

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

Compute Area
Trace The Program Execution

24

Assign 20 to radius

20radius

2 of 62.2 Program 1

LISTING 2.1 ComputeArea.py

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

Compute Area
Trace The Program Execution

25

It is a comment. Do Nothing.

20radius

3 of 62.2 Program 1

LISTING 2.1 ComputeArea.py

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

Compute Area
Trace The Program Execution

26

Assign the result (1256.636) to area

20radius

1256.636area

4 of 62.2 Program 1

LISTING 2.1 ComputeArea.py

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

Compute Area
Trace The Program Execution

27

It is a comment. Do Nothing.

20radius

1256.636area

5 of 62.2 Program 1

LISTING 2.1 ComputeArea.py

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

Compute Area
Trace The Program Execution

28

Print the message to the console.

20radius

1256.636area

6 of 62.2 Program 1

Compute Area
Discussion

29

• Variables such as radius and area reference values stored in
memory.

• Every variable has a name that refers to a value.

• You can assign a value to a variable using the syntax as shown
in line 2.

• This statement assigns 20 to the variable radius. So now radius
references the value 20.

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

LISTING 2.1 ComputeArea.py

radius = 20

Program 12.2

Compute Area
Discussion

30

• The statement in line 5 uses the value in radius to compute the
expression and assigns the result into the variable area.

area = radius * radius * 3.14159

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

LISTING 2.1 ComputeArea.py

Program 12.2

Compute Area
Discussion

31

• The following table shows the value in memory for the variables
area and radius as the program is executed.

• This method of reviewing a program is called “tracing a program”.

• It helps you to understand how programs work.

Line # radius area

2 20 It does not exist

5 1256.636

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

LISTING 2.1 ComputeArea.py

Program 12.2

Compute Area
Discussion

32

• The statement in line 8 displays four items on the console.

• You can display any number of items in a print statement using the
following syntax:

• If an item is a number, the number is automatically converted to a
string for displaying.

print("The area for the circle of radius " , radius , " is " , area)

print(item1, item2 , ..., itemk)

Assign a radius
radius = 20 # radius is now 20

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius ", radius, " is ", area)

1
2
3
4
5
6
7
8

LISTING 2.1 ComputeArea.py

Program 12.2

Data Types

33

• A variable represents a value stored in the computer’s memory.

• Every variable has a name and value.

• Every value has a data type, and the data type is to specify what
type of the value are being used, such as integers or strings (text
characters).

• In many programming languages such as Java, you have to define
the type of the variable before you can use it. You don’t do this in
Python.

• However, Python automatically figures out the data type of a
variable according to the value assigned to the variable.

2.2

Python Data Types

34

• Python provides basic (built-in) data types for integers, real
numbers, string, and Boolean types.

• Here are some examples of different types of values stored in
different variables:

var1 = 25 # Integer
var2 = 25.8 # Float
var3 = "Ahmad" # String
var4 = 'Python' # String
var5 = True # Boolean

2.2

Check Point
#1

35

Show the printout of the following code:

Ø Solution: area is 11.0

width = 5.5
height = 2
print("area is", width * height)

1
2
3

2.2

Check Point
#2

36

Translate the following algorithm into Python code:
◦ Step 1: Use a variable named miles with initial value 100.
◦ Step 2: Multiply miles by 1.609 and assign it to a variable named kilometers.
◦ Step 3: Display the value of kilometers.

What is kilometers after Step 3?

Ø Solution:

◦ kilometers after Step 3 is 160.9

miles = 100
kilometers = miles * 1.609
print("kilometers = ", kilometers)

1
2
3

2.2

2.3. Reading Input from the Console

37

§ input(…)
§ eval(…)
§ Program 2: Compute Area With Console Input
§ Program 3: Compute Average
§ Line Continuation Symbol (\)
§ IPO
§ Check Point #3

input(…)

38

• In the last example, the radius was fixed.

• To use a different radius, you have to modify the source code.

• Your program can be better, and more interactive, by letting the user
enter the radius.

• Python uses the input function for console input.

• The input function is used to ask the user to input a value, and then
return the value entered as a string (string data type).

• The following statement prompts (asks) the user to enter a value,
and then it assigns the value to the variable:

variable = input("Enter a value: ")

2.3

input(…)

39

• The example of the output of the previous statement is shown in the
following figure (Python Shell – Interactive mode).

As you can see, 60 was entered
as the value of variable.

Remember that the Python Shell shows the result of the executed
expression automatically even you didn't use the print function.

After showing up the value of variable, the value (60) is
enclosed in matching single quotes ('). This means that the
value is stored as a string (text) not a number into variable.

2.3

input(…)

40

• Does it matter if a numeric value is being stored as a string, not a
number?

• Yes, it does. See the following examples:

String + String = Concatenation of the Strings

Number + Number = Summation of the numbers

String + Number = Error (Type Error)

2.3

eval(…)

41

• You can use eval function to evaluate and convert the passed value
(string) to a numeric value.

• So, to get an input (value) from the user as a number and store it
into the variable x, you can write the following code:

• Also, you can separate the process into two lines if you would like:

eval("34.5") # returns 34.5 (float)
eval("345") # returns 345 (integer)
eval("3 + 4") # returns 7 (integer)
eval("51 + (54 * (3 + 2))") # returns 321 (integer)

1
2
3
4

x = eval(input("Enter the value of x: "))

x = input("Enter the value of x: ") # Read x as string
x = eval(x) # Convert value x to number and save it to x

2.3

Compute Area With Console Input
Program 2

42

• Now, let us revisit the last example (Program 1), and modify it in
order to let the user enter the radius value.

Prompt the user to enter a radius
radius = eval(input("Enter a value for radius: "))

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius " , radius , " is " , area)

1
2
3
4
5
6
7
8

LISTING 2.2 ComputeAreaWithConsoleInput.py

Enter a value for radius: 2.5 <Enter>

The area for the circle of radius 2.5 is 19.6349375

Enter a value for radius: 23 <Enter>

The area for the circle of radius 23 is 1661.90111

Program 22.3

Run

Compute Area With Console Input
Discussion

43

• Line 2 prompts the user to enter a value (in the form of a string) and
converts it to a number, which is equivalent to:

• After the user enters a number and presses the <Enter> key, the
number is read and assigned to radius.

Prompt the user to enter a radius
radius = eval(input("Enter a value for radius: "))

Compute area
area = radius * radius * 3.14159

Display results
print("The area for the circle of radius " , radius , " is " , area)

1
2
3
4
5
6
7
8

LISTING 2.2 ComputeAreaWithConsoleInput.py

Read input as a string
radius = input("Enter a value for radius: ")
Convert the string to a number
radius = eval(radius)

Program 22.3

Compute Average
Program 3

44

Write a program to get three values from the user and compute
their average.

• Remember:
◦ Phase 1: Problem-solving
◦ Phase 2: Implementation

Enter the first number: 1 <Enter>

Enter the second number: 2 <Enter>

Enter the third number: 3 <Enter>

The average of 1 2 3 is 2.0

Program 32.3

Compute Average
Phase 1: Problem-solving

45

Write a program to get three values from the user and compute
their average.
• Phase 1: Design your algorithm

1. Get three numbers from the user.
§ Use the input function.

2. Compute the average of the three numbers:
average = (num1 + num2 + num3) / 3

3. Display the result

Program 32.3

Compute Average
Phase 2: Implementation

46

Write a program to get three values from the user and compute
their average.
• Phase 2: Implementation (code the algorithm)

Prompt the user to enter three numbers

Compute average

Display result

Program 32.3

Compute Average
Phase 2: Implementation

47

Write a program to get three values from the user and compute
their average.
• Phase 2: Implementation (code the algorithm)

Prompt the user to enter three numbers
number1 = eval(input("Enter the first number: "))
number2 = eval(input("Enter the second number: "))
number3 = eval(input("Enter the third number: "))

Compute average
average = (number1 + number2 + number3) / 3

Display result
print("The average of", number1, number2, number3,
"is", average)

1
2
3
4
5
6
7
8
9
10
11

LISTING 2.3 ComputeAverage.py

Program 32.3

Run

Compute Average
Example Runs of The Program

48

Enter the first number: 1 <Enter>

Enter the second number: 2 <Enter>

Enter the third number: 3 <Enter>

The average of 1 2 3 is 2.0

Enter the first number: 10.5 <Enter>

Enter the second number: 11 <Enter>

Enter the third number: 11.5 <Enter>

The average of 10.5 11 11.5 is 11.0

Program 32.3

Compute Average
Discussion

49

• The program prompts the user to enter three integers (lines 2–4),
computes their average (line 7), and displays the result (lines 10–
11).

• If the user enters something other than a number, the program will
terminate with a runtime error.

Prompt the user to enter three numbers
number1 = eval(input("Enter the first number: "))
number2 = eval(input("Enter the second number: "))
number3 = eval(input("Enter the third number: "))

Compute average
average = (number1 + number2 + number3) / 3

Display result
print("The average of", number1, number2, number3,
"is", average)

1
2
3
4
5
6
7
8
9
10
11

LISTING 2.3 ComputeAverage.py

Program 32.3

Compute Average
Discussion

50

• Normally a statement ends at the end of the line.

• In Line 10, the print statement is split into two lines (lines 10–11).

• This is okay, because Python scans the print statement in line 10 and
knows it is not finished until it finds the closing parenthesis in line
11.

• We say that these two lines are joined implicitly.

Prompt the user to enter three numbers
number1 = eval(input("Enter the first number: "))
number2 = eval(input("Enter the second number: "))
number3 = eval(input("Enter the third number: "))

Compute average
average = (number1 + number2 + number3) / 3

Display result
print("The average of", number1, number2, number3,
"is", average)

1
2
3
4
5
6
7
8
9
10
11

LISTING 2.3 ComputeAverage.py

Program 32.3

Line Continuation Symbol (\)

51

• In some cases, the Python interpreter cannot determine the end of
the statement written in multiple lines. You can place the line
continuation symbol (\) at the end of a line to tell the interpreter
that the statement is continued on the next line.

• For example, the following statement:

is equivalent to

• Note that the following statement will cause a syntax error:

sum = 1 + 2 + 3 + 4 + \
5 + 6

1
2

sum = 1 + 2 + 3 + 4 + 5 + 61

sum = 1 + 2 + 3 + 4 +
5 + 6

1
2

2.3

IPO

52

• Most of the programs in early chapters of this book perform
three steps: Input, Process, and Output, called IPO.

• Input is to receive input from the user.

• Process is to produce results using the input.

• Output is to display the results.

Input Process Output
Data Information

2.3

Check Point
#3

53

What happens if the user enters 5a when executing the following
code?

Ø Answer: Runtime error

radius = eval(input("Enter a radius: "))1

2.3

2.4. Identifiers

54

§ Python Keywords

§ Check Point #4

Identifiers

55

• Identifiers are the names that identify the elements such as
variables and functions in a program.

• All identifiers must obey the following rules:
◦ An identifier is a sequence of characters that consists of letters,

digits, and underscores (_).
◦ An identifier must start with a letter or an underscore. It cannot

start with a digit.
◦ An identifier cannot be a Keyword.
§ Keywords, also called reserved words, have special meanings in Python.
§ For example, import is a keyword, which tells the Python interpreter to import

a module to the program.
◦ An identifier can be of any length.

2.4

Identifiers

56

• Examples of legal identifiers:
◦ area , radius, ComputeArea, _2, average, If, IN

• Examples of illegal identifiers:
◦ 2A, d+4, a*, test#, @hmad, if, in
§ These do not follow the rules.
§ if and in are keywords in Python.
§ Python will report that you have a syntax error!

• Note: Python is case sensitive.
◦ area, Area, and all are different identifiers.
§ AREA

2.4

Python Keywords

57

• Keywords are reserved words by programming language.

• Keywords can not be used as identifiers.

• The following is the list of Python keywords:

2.4

Check Point
#4

58

Which of the following identifiers are valid? Which are Python
keywords?

1. miles
2. Test
3. a+b
4. b–a
5. 4#R
6. $4
7. #44
8. apps
9. elif
10. if
11. y
12. iF

✔

✔

❌

❌

❌

❌

❌

✔

❌ (Keyword)
❌ (Keyword)
✔

✔

2.4

2.5. Variables, Assignment Statements,
and Expressions

59

§ Variables

§ Assignment Statements
§ Expression

§ Assigning a Value To Multiple Variables
§ Scope of Variables

Variables

60

• Variables are used to reference (represent) values that may be
changed in the program.

◦ In the previous programs, we used variables to store values: area,
radius, average.

• They are called variables because their values can be changed!

2.5

Variables

61

• For example, see the following code:

• Discussion:
◦ radius is initially 1.0 (line 2)

then changed to 2.0 (line 7)
◦ area is set to 3.14159 (line 3)

then reset to 12.56636 (line 8)

Compute the first area
radius = 1.0
area = radius * radius * 3.14159
print("The area is", area, "for radius", radius)

Compute the second area
radius = 2.0
area = radius * radius * 3.14159
print("The area is", area, "for radius", radius)

1
2
3
4
5
6
7
8
9

1.0radius →
3.14159area →

2.0radius →
12.56636area →

2.5

Assignment Statements

62

• The statement for assigning a value to a variable is called an
assignment statement.

• In Python, the equal sign (=) is used as the assignment
operator. The syntax for assignment statements is as follows:

• or
variable = value

variable = expression

2.5

Expression

63

• An expression represents a computation involving values,
variables, and operators that, taken together, evaluate to a
value.

• For example, consider the following code:

• You can use a variable in an expression.

y = 1 # Assign 1 to variable y
radius = 1.0 # Assign 1.0 to variable radius
x = 5 * (3 / 2) + 3 * 2 # Assign the value of the expression to x
x = y + 1 # Assign the addition of y and 1 to x
area = radius * radius * 3.14159 # Compute area

1
2
3
4
5

2.5

Expression

64

• A variable can also be used in both sides of the = operator.

• For example:

• In this assignment statement, the result of x + 1 is assigned to
x. If x is 1 before the statement is executed, then it becomes 2
after the statement is executed.

• If x is not created before, Python will report an error.

x = x + 1

2.5

Note

65

• In mathematics, x = 2 * x + 1 denotes an equation.

• However, in Python, x = 2 * x + 1 is an assignment statement
that evaluates the expression 2 * x + 1 and assigns the
result to x.

2.5

Assigning a Value To Multiple Variables

66

• If a value is assigned to multiple variables, you can use a syntax
like this:

• which is equivalent to

i = j = k = 1

k = 1
j = k
i = j

2.5

Scope of Variables

67

• Every variable has a scope.

• The scope of a variable is the part of the program where the
variable can be referenced (used).

• A variable must be created before it can be used.

• For example, the following code is wrong:

count is not defined yet.

2.5

Scope of Variables

68

• To fix the previous example, you may write the code like
this:

2.5

Caution

69

• A variable must be assigned a value before it can be used in an
expression.

• For example:

• This code is wrong, because interestRate is assigned a value
0.05, but interestrate is not defined.

• Python is case-sensitive.

• interestRate and interestrate are two different variables.

interestRate = 0.05
interest = interestrate * 45

2.5

2.6. Simultaneous Assignments

70

§ Swapping Variable Values

§ Obtaining Multiple Input In One Statement
§ Program 4: Compute Average With Simultaneous

Assignment
§ Check Point #5

Simultaneous Assignment

71

• Python also supports simultaneous assignment in syntax like
this:

• It tells Python to evaluate all the expressions on the right and
assign them to the corresponding variable on the left
simultaneously.

• Example:

var1, var2, ..., varn = exp1, exp2, ..., expn

x, y, name = 15, 20.5, "Ahmad"

2.6

Swapping Variable Values

72

• Swapping variable values is a common operation in programming
and simultaneous assignment is very useful to perform this
operation.

• Consider two variables: x and y. How do you write the code to swap
their values? A common approach is to introduce a temporary
variable as follows:

• But you can simplify the task using the following statement to swap
the values of x and y.

x = 1
y = 2
temp = x # Save x in a temp variable
x = y # Assign the value in y to x
y = temp # Assign the value in temp to y

x, y = y, x # Swap x with y

2.6

Obtaining Multiple Input In One Statement

73

• Simultaneous assignment can also be used to obtain multiple
input in one statement.

• Program 3 gives an example that prompts the user to enter
three numbers and obtains their average.

• This program can be simplified using a simultaneous
assignment statement, as shown in the following slide
(Program 4).

2.6

Program 4: Compute Average With
Simultaneous Assignment

74

LISTING 2.4 ComputeAverageWithSimultaneousAssignment.py

Prompt the user to enter three numbers
number1, number2, number3 = eval(input(
"Enter three numbers separated by commas: "))

Compute average
average = (number1 + number2 + number3) / 3

Display result
print("The average of", number1, number2, number3,
"is", average)

1
2
3
4
5
6
7
8
9
10

Enter three numbers separated by commas: 1, 2, 3 <Enter>

The average of 1 2 3 is 2.0

Program 42.6

Run

Check Point
#5

75

Assume that a = 1 and b = 2. What is a and b after the following
statement?

Ø Answer:
a = 2
b = 1

a, b = b, a

2.6

2.7. Named Constants

76

§ Program 5: Compute Area with a Constant

§ Benefits of Using Constants
§ Naming Conventions

Named Constants

77

• A named constant is an identifier that represents a permanent
value.

• The value of a variable can change during execution of a program.

• However, a named constant, or simply constant, represents a
permanent data that never changes.

• Python does not have a special syntax for naming constants.

• You can simply create a variable to denote a constant. To distinguish
a constant from a variable, use all uppercase letters to name a
constant.

• Example:
PI = 3.14159 # This is a constant

2.7

Compute Area with a Constant
Program 5

78

• In our Compute Area program (Program 1), π is a constant.

• If you use it frequently, you don’t want to keep typing 3.14159;
instead, you can use a descriptive name PI for the value.

Assign a radius
radius = 20 # radius is now 20

Compute area
PI = 3.14159
area = radius * radius * PI

Display results
print("The area for the circle of radius", radius, "is", area)

1
2
3
4
5
6
7
8
9

Program 52.7

Run

Benefits of Using Constants

79

1. You don’t have to repeatedly type the same value if it is used
multiple times.

2. If you have to change the constant’s value (for example, from
3.14 to 3.14159 for PI), you need to change it only in a single
location in the source code.

3. Descriptive names make the program easy to read.

2.7

Naming Conventions

80

• Choose meaningful and descriptive names.
◦ Do not use abbreviations.
§ For example: use average instead of avg.

2.7

Naming Conventions

81

Variables and function names:
◦ Use lowercase.
§ For example: radius, area.

◦ If the name consists of several words, concatenate all in one, use
lowercase for the first word, and capitalize the first letter of each
subsequent word in the name.
§ This naming style is known as the camelCase.
§ For example: computeArea, interestRate, yourFirstName.

◦ Or use lowercase for all words and concatenate them using
underscore (_).
§ For example: compute_area, interest_rate, your_first_name.

2.7

Naming Conventions

82

• Constants:
◦ Capitalize all letters in constants and use underscores to connect

words.
§ For example: PI, MAX_VALUE.

• Do you have to follow these rules?
◦ No. But it makes your program much easier to read!

2.7

2.8. Numeric Data Types and Operators

83

§ Numeric Data Types
§ Numeric Operators
§ Unary Operator & Binary Operator
§ Float Division (/) Operator
§ Integer Division (//) Operator
§ Exponentiation (**) Operator
§ Remainder (%) Operator
§ Program 6: Convert Time
§ Check Point #6 - #7

Numeric Data Types

84

• The information stored in a computer is generally referred to as
data.

• There are two types of numeric data: integers and real numbers.

• Integer types (int for short) are for representing whole numbers.

• Real types are for representing numbers with a fractional part.

• Inside the computer, these two types of data are stored differently.

• Real numbers are represented as floating-point (or float) values.

2.8

Numeric Data Types

85

• How do we tell Python whether a number is an integer or a float?

• A number that has a decimal point is a float even if its fractional part
is 0.

• For example, 1.0 is a float, but 1 is an integer.

• In the programming terminology, numbers such as 1.0 and 1 are
called literals.

• A literal is a constant value that appears directly in a program.

n1 = 5 # Integer
n2 = 5.0 # Float
n3 = 10 + 20 # Integer -> 30
n4 = 10.0 + 20.0 # Float -> 30.0
n5 = 10.0 + 20 # Float -> 30.0

2.8

Numeric Operators

862.8

Unary Operator & Binary Operator

87

• The +, -, and * operators are straightforward, but note that the
+ and - operators can be both unary and binary.

• A unary operator has only one operand; a binary operator has
two.

• For example, the - operator in -5 is a unary operator to negate
the number 5, whereas the – operator in 4 - 5 is a binary
operator for subtracting 5 from 4.

e1 = -10 + 50 # 40
e2 = -10 + -50 # -60
e3 = +10 + +20 # 30
e4 = +10++20 # 30
e5 = 10++20 # 30
e6 = -20--30 # 10

2.8

Float Division (/) Operator

88

• The / operator performs a float division that results in a
floating number. For example:

>>> 4 / 2
2.0
>>> 2 / 4
0.5
>>>

2.8

Integer Division (//) Operator

89

• The // operator performs an integer division; the result is an
integer, and any fractional part is truncated. For example:

>>> 5 // 2
2
>>> 2 // 4
0
>>>

2.8

Exponentiation (**) Operator

90

• To compute 𝒂𝒃 (a with an exponent of b) for any numbers a
and b, you can write a ** b in Python. For example:

>>> 2.3 ** 3.5
18.45216910555504
>>> (-2.5) ** 2
6.25
>>>

2.8

Remainder (%) Operator

91

• The % operator, known as remainder or modulo operator,
yields the remainder after division.

• The left-side operand is the dividend and the right-side
operand is the divisor.

• Examples:
7 % 3 = 1 3 % 7 = 3 12 % 4 = 0

26 % 8 = 2 20 % 13 = 7

2.8

Remainder (%) Operator

92

• Remainder is very useful in programming.

• For example, an even number % 2 is always 0

• An odd number % 2 is always 1

• So you can use this property to determine whether a number is
even or odd.

• You can also mod by other values to achieve valuable results.

>>> 100 % 2
0
>>> 99 % 2
1
>>>

2.8

Remainder (%) Operator
Example

93

• If today is Friday, it will be Friday again in 7 days. Suppose you and
your friends will meet in 10 days. What day is it in 10 days?

• Let us assume Sunday is the 1st day of the week.

• We can find that in 10 days, the day will be Monday by using the
following equation:

1 2 3 4 5 6 7 (0)

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Friday is the 6th day in a week

After 10 days

A week has 7 days

The 2nd day in a week is Monday

(6 + 10) % 7 is 2

7 % 7 = 0

2.8

Convert Time
Program 6

94

Write a program to get an amount of time from the user in
seconds. Then your program should convert this time into
minutes and the remaining seconds.

• Remember:
◦ Phase 1: Problem-solving
◦ Phase 2: Implementation

Program 62.8

Enter an integer for seconds: 500 <Enter>

500 seconds is 8 minutes and 20 seconds

Enter an integer for seconds: 60 <Enter>

60 seconds is 1 minutes and 0 seconds

Convert Time
Phase 1: Problem-solving

95

• If you are given seconds, how do you then calculate the minutes and
remaining seconds?

• Example:
◦ Given 624 seconds, how do we calculate the minutes?
◦ We divide by 60!
§ We see how many complete 60s are in 624.
§ Answer: 10 of them. 10 x 60 = 600.

◦ So in 624 seconds, there are a full 10 minutes.
◦ After we remove those 10 minutes, how many seconds are

remaining?
§ 624 - (10 x 60) = 24 seconds remaining
§ We can use mod! 624 % 60 = 24 seconds remaining

Program 62.8

Convert Time
Phase 1: Problem-solving

96

• Design your algorithm:
1. Get amount of seconds from the user.
§ Use input function

2. Compute the minutes and seconds remaining:
§ From these seconds, determine the number of minutes
§ Example:
§ 150 seconds => 2 minutes and 30 seconds
• 150 // 60 = 2 and 150 % 60 = 30

§ 315 seconds => 5 minutes and 15 seconds
• 315 // 60 = 5 and 315 % 60 = 15

3. Display the result

Program 62.8

Convert Time
Phase 2: Implementation

97

LISTING 2.5 DisplayTime.py

Prompt the user for input
seconds = eval(input("Enter an integer for seconds: "))

Get minutes and remaining seconds
minutes = seconds // 60 # Find minutes in seconds
remainingSeconds = seconds % 60 # Seconds remaining
print(seconds, "seconds is", minutes,
"minutes and", remainingSeconds, "seconds")

1
2
3
4
5
6
7
8

Enter an integer for seconds: 150 <Enter>

150 seconds is 2 minutes and 30 seconds

Enter an integer for seconds: 315 <Enter>

315 seconds is 5 minutes and 15 seconds

Program 62.8

Run

Convert Time
Trace The Program Execution

98

Enter an integer for seconds: 500 <Enter>

500 seconds is 8 minutes and 20 seconds

LISTING 2.5 DisplayTime.py

Prompt the user for input
seconds = eval(input("Enter an integer for seconds: "))

Get minutes and remaining seconds
minutes = seconds // 60 # Find minutes in seconds
remainingSeconds = seconds % 60 # Seconds remaining
print(seconds, "seconds is", minutes,
"minutes and", remainingSeconds, "seconds")

1
2
3
4
5
6
7
8

Program 62.8

Note

99

• Calculations involving floating-point numbers are approximated
because these numbers are not stored with complete accuracy.

• For example:

§ displays 0.5000000000000001, not 0.5, and:

§ displays 0.09999999999999998, not 0.1.

• Integers are stored precisely.

• Therefore, calculations with integers yield a precise integer result.

print(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1)

print(1.0 - 0.9)

2.8

Overflow

100

• When a variable is assigned a value that is too large (in size) to
be stored, it causes overflow.

• For example, executing the following statement causes
overflow.

>>> 245.0 ** 1000
OverflowError: 'Result too large'
>>>

2.8

Underflow

101

• When a floating-point number is too small (for example, too
close to zero) to be stored, it causes underflow.

• Python approximates it to zero. So normally you should not be
concerned with underflow.

2.8

Scientific Notation

102

• Floating-point literals can also be specified in scientific
notation.

• Example:
◦ 1.23456e+2, same as 1.23456e2, is equivalent to 123.456
◦ and 1.23456e-2 is equivalent to 0.0123456
◦ E (or e) represents an exponent and it can be either in lowercase

or uppercase.

>>> 20e2
2000.0
>>> 123.456e3
123456.0
>>> 20e3
20000.0

>>> 123.456e2
12345.6
>>> 123.456e-2
1.23456
>>>

2.8

Check Point
#6

103

What are the results of the following expressions?

Expression Result
42 / 5 8.4
42 // 5 8
42 % 5 2
40 % 5 0
1 % 2 1
2 % 1 0

45 + 4 * 4 - 2 59
45 + 43 % 5 * (23 * 3 % 2) 48

5 ** 2 25
5.1 ** 2 26.009999999999998

2.8

Check Point
#7

104

If today is Tuesday, what day of the week will it be in 100 days?
Suppose that Saturday is 1st day in a week.

Ø Answer: Thursday

1 2 3 4 5 6 7 (0)

Saturday Sunday Monday Tuesday Wednesday Thursday Friday

Tuesday is the 4th day in a week

After 100 days

A week has 7 days

The 6th day in a week is Thursday

(4 + 100) % 7 is 6

2.8

2.9. Evaluating Expressions and
Operator Precedence

105

§ Arithmetic Expressions

§ How to Evaluate an Expression
§ Check Point #8 - #9

Arithmetic Expressions

106

• Python expressions are written the same way as normal
arithmetic expressions.

• Example:

3 + 4𝑥
5

−
10 𝑦 − 5 (𝑎 + 𝑏 + 𝑐)

𝑥
+ 9

4
𝑥
+
9 + 𝑥
𝑦

• It is translated into:
((3 + (4 * x)) / 5) - ((10 * (y - 5) * (a + b + c)) / x) + (9 * ((4 / x) + ((9 + x) / y)))

((3 + (4 * x)) / 5) – ((10 * (y - 5) * (a + b +
c)) / x) + (9 * ((4 / x) + ((9 + x) / y))

Zoom In

2.9

Arithmetic Expressions
Explanation

107

3 + 4𝑥
5

−
10 𝑦 − 5 (𝑎 + 𝑏 + 𝑐)

𝑥
+ 9

4
𝑥
+
9 + 𝑥
𝑦

3 + (4 ∗ 𝑥)
5

−
10 ∗ (𝑦 – 5) ∗ (𝑎 + 𝑏 + 𝑐)

𝑥
+ 9

4
𝑥
+
9 + 𝑥
𝑦

3 + (4 * x) 10 * (y – 5) * (a + b + c)

Expression

2.9 1 of 4

Arithmetic Expressions
Explanation

108

3 + (4 ∗ 𝑥)
5

−
10 ∗ (𝑦 – 5) ∗ (𝑎 + 𝑏 + 𝑐)

𝑥
+ 9

4
𝑥
+
9 + 𝑥
𝑦

((3 + (4 ∗ 𝑥)) / 5) − ((10 ∗ (𝑦 – 5) ∗ (𝑎 + 𝑏 + 𝑐)) / 𝑥) + 9
4
𝑥 +

9 + 𝑥
𝑦

((3 + (4 * x)) / 5) ((10 * (y – 5) * (a + b + c)) / x)

Expression

2.9 2 of 4

Arithmetic Expressions
Explanation

109

((3 + (4 ∗ 𝑥)) / 5) − ((10 ∗ (𝑦 – 5) ∗ (𝑎 + 𝑏 + 𝑐)) / 𝑥) + 9
4
𝑥 +

9 + 𝑥
𝑦

((3 + (4 ∗ 𝑥)) / 5) − ((10 ∗ (𝑦 – 5) ∗ (𝑎 + 𝑏 + 𝑐)) / 𝑥) + 9 (4 / 𝑥) + ((9 + 𝑥) / 𝑦)

(4 / x)

Expression

((9 + x) / y)

2.9 3 of 4

Arithmetic Expressions
Explanation

110

((3 + (4 ∗ 𝑥)) / 5) − ((10 ∗ (𝑦 – 5) ∗ (𝑎 + 𝑏 + 𝑐)) / 𝑥) + 9 (4 / 𝑥) + ((9 + 𝑥) / 𝑦)

((3 + (4 ∗ 𝑥)) / 5) − ((10 ∗ (𝑦 – 5) ∗ (𝑎 + 𝑏 + 𝑐)) / 𝑥) + (9 ∗ ((4 / 𝑥) + ((9 + 𝑥) / 𝑦)))

(9 * ((4 / 𝑥) +((9 + 𝑥) / 𝑦)))

Expression

2.9 4 of 4

How to Evaluate an Expression

111

• You can safely apply the arithmetic rule for evaluating a
Python expression.

1. Operators inside parenthesis are evaluated first.
§ Parenthesis can be nested
§ Expression in inner parenthesis is evaluated first

2. Use operator precedence rule.
§ Exponentiation (**) is applied first.
§ Multiplication (*), float division (/), integer division (//) , and remainder

operators (%) are applied next.
§ If an expression contains several multiplication, division, and remainder

operators, they are applied from left to right.
§ Addition (+) and subtraction (-) operators are applied last.
§ If an expression contains several addition and subtraction operators, they

are applied from left to right.

2.9

How to Evaluate an Expression

112

• Example of how an expression is evaluated:

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

2.9

Check Point
#8

113

How would you write the following arithmetic expression in
Python?

4
3(𝑟 + 34) − 9 𝑎 + 𝑏𝑐 +

3 + 𝑑(2 + 𝑎)
𝑎 + 𝑏𝑑

Ø Solution:
(4 / (3 * (r + 34))) - (9 * (a + (b * c))) + ((3 + (d * (2 + a))) / (a + (b * d)))

2.9

Check Point
#9

114

Suppose m and r are integers. Write a Python expression
for 𝑚𝑟!.

Ø Solution:

m * (r ** 2)

2.9

2.10. Augmented Assignment
Operators

115

§ Check Point #10

Augmented Assignment Operators

116

• Very often the current value of a variable is used, modified,
and then reassigned back to the same variable.

• For example, the following statement increases the variable
count by 1:

• Python allows you to combine assignment and addition
operators using an augmented (or compound) assignment
operator.

• For example:

count = count + 1

count += 1

2.10

Augmented Assignment Operators

1172.10

Caution

118

• There are no spaces in the augmented assignment
operators.

• For example, + = should be +=

2.10

Note

119

• The augmented assignment operator is performed last
after all the other operators in the expression are
evaluated.

• Example:

is same as

x /= 4 + 5.5 * 1.5

x = x / (4 + 5.5 * 1.5)

2.10

Check Point
#10

120

Assume that a = 1, and that each expression is independent.
What are the results of the following expressions?

• a += 4

• a -= 4

• a *= 4

• a /= 4

• a //= 4

• a %= 4

• a = 56 * a + 6

5

-3

4

0.25

0

1

62

2.10

2.11. Type Conversions and Rounding

121

§ Type Conversions

§ int(…)

§ round(…)

§ Int(...) vs. eval(...)

§ str(…)

§ Problem 7: Keeping Two Digits After Decimal Points

§ Check Point #11 - #12

Type Conversions

122

• Can you perform binary operations with operands of different
numeric types?

◦ Meaning, can we add an integer literal with a floating-point literal?

• Yes. If an integer and a float are involved in a binary operation,
Python automatically converts the integer to a float value.

• Example: 3 * 4.5 is the same as 3.0 * 4.5

• This is called type conversion.

2.11

int(…)

123

• Sometimes, it is desirable to obtain the integer part of a
fractional number.

• You can use the int(value) function to return the integer part of
a float value. For example:

• Note that the fractional part of the number is truncated, not
rounded up.

>>> value = 5.6
>>> int(value)
5
>>>

2.11

round(…)

124

• You can also use the round function to round a number to the
nearest whole value. For example:

2.11

• If the number you are rounding is odd and followed by decimal >= 5, Python rounds the number up.

• If the number you are rounding is even and followed by decimal > 5, Python rounds the number up.

• Otherwise, Python rounds the number down.

>>> value = 5.6 #Odd
>>> round(value)
6
>>> round(5.5)
6
>>> round(5.3)
5
>>> round(-3.5)
-4
>>> round(-3.4)
-3

>>> value = 6.6 #Even
>>> round(value)
7
>>> round(6.5)
6
>>> round(6.3)
6
>>> round(-6.5)
-6
>>> round(-6.6)
-7

Note

125

• The functions int and round do not change the variable being
converted.

• For example, value is not changed after invoking the function
in the following code:

>>> value = 5.6
>>> round(value)
6
>>> value
5.6
>>>

2.11

Note

126

• If you would like to change the variable being converted by the
functions int and round, reset the variable after invoking the
function.

• For example, value is changed after invoking the function in the
following code:

>>> value = 5.6
>>> value = int(value)
>>> value
5
>>>

2.11

Int(...) vs. eval(...)

127

• The int function can also be used to convert an integer string
into an integer.
§ For example, int("34") returns 34.

• So you can use the eval or int function to convert a string into
an integer. Which one is better?

• The int function performs a simple conversion. It does not
work for a non-integer string.
§ For example, int("3.4") will cause an error.

• The eval function does more than a simple conversion. It can
be used to evaluate an expression.
§ For example, eval("3 + 4") returns 7.

2.11

Int(...) vs. eval(...)

128

• However, there is a subtle “gotcha” for using the eval function.
v The definition of gotcha is “a misfeature of a system, especially a programming language

or environment, that tends to breed bugs or mistakes because it is both enticingly easy to
invoke and completely unexpected and/or unreasonable in its outcome.” (Hyper
Dictionary)

• The eval function will produce an error for a numeric string
that contains leading zeros. In contrast, the int function works
fine for this case.

◦ For example, eval("003") causes an error, but int("003") returns 3.

2.11

str(…)

129

• You can use the str(value) function to convert the numeric
value to a string. For example:

• Note: The functions str does not change the variable being
converted.

>>> value = 5.6
>>> str(value)
'5.6'
>>> value
5.6
>>> value = str(value)
>>> value
'5.6'

2.11

Keeping Two Digits After Decimal Points
Program 7

130

Write a program to get a purchase amount from the user. Then
your program should calculate and display the sales tax (6%) with
two digits after the decimal point.

• Remember:
◦ Phase 1: Problem-solving
◦ Phase 2: Implementation

Enter purchase amount: 197.55 <Enter>

Sales tax is 11.85

Problem 72.11

Keeping Two Digits After Decimal Points
Phase 1: Problem-solving

131

• Step 1: If you are given a purchase amount, how do you then
calculate the sales tax (6%)?

• Example:
◦ Given 120, how do we calculate the sales tax (6%) = 7.2?
◦ First, we know that 6% = 6 / 100 = 0.06
◦ So, we can use the following formula:
§ sales tax = purchase amount x 0.06

◦ If we applied the formula, we can get the result (6% of 120 = 7.2).
§ sales tax = 120 x 0.06 = 7.2

Problem 72.11

Keeping Two Digits After Decimal Points
Phase 1: Problem-solving

132

• Step 2: If you are given a number, how do you then get the number
with two digits after the decimal point?

• Example:
◦ Given 123.456, how do we get 123.45 ?
◦ Simply, we can multiply the number by 100, then convert the

result to integer for removing the decimal points, and finally, divide
the integer result by 100 to get the decimal point back with two
digits.
§ 123.456 × 100 = 12345.6
§ Convert 12345.6 to integer → 12345
§ 12345 / 100 = 123.45

Problem 72.11

Keeping Two Digits After Decimal Points
Phase 1: Problem-solving

133

• Design your algorithm:
1. Get a purchase amount from the user.
§ Use input function

2. Compute the sales tax.
§ sales tax = purchase amount x 0.06

3. Display the result.
§ result = sales tax x 100
§ result = convert result to integer
§ result = result / 100

Problem 72.11

Keeping Two Digits After Decimal Points
Phase 2: Implementation

134

LISTING 2.6 SalesTax.py

Prompt the user for input
purchaseAmount = eval(input("Enter purchase amount: "))

Compute sales tax
tax = purchaseAmount * 0.06

Display tax amount with two digits after decimal point
print("Sales tax is", int(tax * 100) / 100.0)

1
2
3
4
5
6
7
8

Enter purchase amount: 197.55 <Enter>

Sales tax is 11.85

Enter purchase amount: 120 <Enter>

Sales tax is 7.19

Problem 72.11

Run

Keeping Two Digits After Decimal Points
Trace The Program Execution

135

Enter purchase amount: 197.55 <Enter>

Sales tax is 11.85

LISTING 2.6 SalesTax.py

Prompt the user for input
purchaseAmount = eval(input("Enter purchase amount: "))

Compute sales tax
tax = purchaseAmount * 0.06

Display tax amount with two digits after decimal point
print("Sales tax is", int(tax * 100) / 100.0)

1
2
3
4
5
6
7
8

Problem 72.11

Keeping Two Digits After Decimal Points
Discussion

136

• The value of the variable purchaseAmount is 197.55 (line 2).

• The sales tax is 6% of the purchase, so the tax is evaluated as 11.853
(line 5).

• Note that:
◦ tax * 100 is 1185.3
◦ int(tax * 100) is 1185
◦ int(tax * 100) / 100.0 is 11.85

LISTING 2.6 SalesTax.py

Prompt the user for input
purchaseAmount = eval(input("Enter purchase amount: "))

Compute sales tax
tax = purchaseAmount * 0.06

Display tax amount with two digits after decimal point
print("Sales tax is", int(tax * 100) / 100.0)

1
2
3
4
5
6
7
8

Problem 72.11

Check Point
#11

137

Does the int(value) function change the variable value?

Ø Answer: No, it does not. It return a new value.

2.11

Check Point
#12

138

Are the following statements correct? If so, show their printout.

value = 4.6

print(int(value))

print(round(value))

print(eval("4 * 5 + 2"))

print(int("04"))

print(int("4.5"))

print(eval("04"))

1

2

3

4

5

6

7

✔

✔ (4)

✔ (4)

❌

❌

✔ (5)

✔ (22)

2.11

2.12. Case Study: Displaying the
Current Time

139

§ Problem 8: Displaying Current Time

Displaying Current Time
Program 8

140

Write a program that displays current time in Greenwich Mean
Time (GMT) in the format hour:minute:second such as 1:45:19.

Remember:
◦ Phase 1: Problem-solving
◦ Phase 2: Implementation

Current time is 17:31:8 GMT

Problem 82.12

Displaying Current Time
Phase 1: Problem-solving

141

• Remember how you print to the screen?
◦ You use the print function.
◦ The Python interpreter has a number of functions and types built into it that are

always available such as the print function.
◦ There are other functions that Python provide, but you have to import their

module (code library) first to can use it.
◦ This is done by using import keyword.

• Python provides time() function in the time module to obtain the
current system time.

◦ This function returns the current time, in milliseconds, in milliseconds since
midnight, January 1, 1970 GMT

>>> import time
>>> time.time()
1561794760.816502

Problem 82.12

Displaying Current Time
Phase 1: Problem-solving

142

• The time() function in the time module returns the current time in
seconds with millisecond precision elapsed since the time 00:00:00
on January 1, 1970 GMT.

• Why this specific date? This time is known as the UNIX epoch. The
epoch is the point when time starts. 1970 was the year when the
UNIX operating system was formally introduced.

◦ Important? Not really. Just a neat fact!

• For example, time.time() returns 1285543663.205, which means
1285543663 seconds and 205 milliseconds.

Problem 82.12

Displaying Current Time
Phase 1: Problem-solving

143

• So this function time.time() returns the number of milliseconds
since 1970.

• That is a lot of milliseconds.

• It is 2020 … so 50 years since 1970.

• 50 𝑦𝑒𝑎𝑟𝑠 × 345 6789
: 8;7<

× => ?@A<9
: 678

× 34BB 9;C@D69
: ?@A<

× :BBBE9
: 9;C@D6

• Now take a calculator …
◦ That comes to 1,576,800,000,000‬milliseconds

• The point: this function returns a huge number.
◦ So how can we calculate the time from this number?

• You can use this function to obtain the current time, and then
compute the current second, minute, and hour as follows.

Problem 82.12

Displaying Current Time
Phase 1: Problem-solving

144

1. Obtain the current time (since midnight, January 1, 1970) by
invoking time.time() .

§ For example: 1203183068.328.

2. Obtain the total seconds (totalSeconds) using the int function.
§ int(1203183068.328) = 1203183068.

3. Compute the current second from totalSeconds % 60.
§ 1203183068 seconds % 60 = 8, which is the current second.

4. Obtain the total minutes (totalMinutes) from totalSeconds // 60.
§ 1203183068 seconds // 60 = 20053051 minutes.

Problem 82.12

Displaying Current Time
Phase 1: Problem-solving

145

5. Compute the current minute from totalMinutes % 60.
§ 20053051 minutes % 60 = 31, which is the current minute.

6. Obtain the total hours (totalHours) from totalMinutes // 60.
§ 20053051 minutes // 60 = 334217 hours.

7. Compute the current hour from totalHours % 24.
§ 334217 hours % 24 = 17, which is the current hour.

• The final time:
17:31:8 GMT or 5:31 PM and 8 seconds

Problem 82.12

Displaying Current Time
Phase 2: Implementation

146

LISTING 2.7 ShowCurrentTime.py

import time

currentTime = time.time() # Get current time

Obtain the total seconds since midnight, Jan 1, 1970
totalSeconds = int(currentTime)

Get the current second
currentSecond = totalSeconds % 60

Obtain the total minutes
totalMinutes = totalSeconds // 60

Compute the current minute in the hour
currentMinute = totalMinutes % 60

Obtain the total hours
totalHours = totalMinutes // 60

Compute the current hour
currentHour = totalHours % 24

Display results
print("Current time is " + str(currentHour) + ":"

+ str(currentMinute) + ":" + str(currentSecond) + " GMT")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Problem 82.12

Run

Displaying Current Time
Trace The Program Execution

147

Current time is 17:31:8 GMT

Problem 82.12

2.13. Software Development Process

148

§ Problem 9: Computing Loan Payments

Software Development Process

1492.13

Requirement Specification

150

Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

A formal process that seeks to understand the
problem and document in detail what the
software system needs to do. This phase
involves close interaction between users and
designers.

Most of the examples in this book are simple,
and their requirements are clearly stated. In
the real world, however, problems are not well
defined. You need to study a problem carefully
to identify its requirements.

2.13

System Analysis

151

Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Seeks to analyze the business process in terms
of data flow, and to identify the system’s input
and output.

Part of the analysis entails modeling the
system’s behavior. The model is intended to
capture the essential elements of the system
and to define services to the system.

2.13

System Design

152

Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

The process of designing the system’s
components.

This phase involves the use of many levels of
abstraction to decompose the problem into
manageable components, identify classes and
interfaces, and establish relationships among the
classes and interfaces.

2.13

IPO

153

Requirement
Specification

System
Analysis

System
Design

Input, Process, Output

Testing

Implementation

Maintenance

Deployment
The essence of system analysis and design is
input, process, and output. This is called IPO.

2.13

Implementation

154

Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

The process of translating the system design
into programs. Separate programs are written
for each component and put to work together.

This phase requires the use of a programming
language like Python. The implementation
involves coding, testing, and debugging.

2.13

Testing

155

Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Ensures that the code meets the
requirements specification and weeds
out bugs.

An independent team of software engineers
not involved in the design and implementation
of the project usually conducts such testing.

2.13

Deployment

156

Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Deployment makes the project available for use.

2.13

Maintenance

157

Requirement
Specification

System
Analysis

System
Design

Testing

Implementation

Maintenance

Deployment

Maintenance is concerned with changing and
improving the product.

A software product must continue to perform and
improve in a changing environment. This requires
periodic upgrades of the product to fix newly
discovered bugs and incorporate changes.

2.13

Example

158

• To see the software development process in action, we will
now create a program that computes loan payments. The loan
can be a car loan, a student loan, or a home mortgage loan.

• For an introductory programming course, we focus on
requirements specification, analysis, design, implementation,
and testing.

2.13

Computing Loan Payments
Program 9

159

Write a program that lets the user enter the annual interest rate,
number of years, and loan amount, and computes monthly
payment and total payment.

Enter annual interest rate, e.g., 8.25: 5.75 <Enter>

Enter number of years as an integer, e.g., 5: 15 <Enter>

Enter loan amount, e.g., 120000.95: 250000 <Enter>

The monthly payment is 2076.02
The total payment is 373684.53

Problem 92.13

Computing Loan Payments
Stage 1: Requirements Specification

160

• The program must satisfy the following requirements:
◦ It must let the user enter the annual interest rate, the loan

amount, and the number of years for which payments will be
made.

◦ It must compute and display the monthly payment and total
payment amounts.

Problem 92.13

Computing Loan Payments
Stage 2: System Analysis

161

• The output is the monthly payment and total payment, which
can be obtained using the following formula:

• So, the input needed for the program is the annual interest
rate, the length of the loan in years, and the loan amount.

Problem 92.13

Computing Loan Payments
Stage 2: System Analysis

162

• Note 1:
◦ The requirements specification says that the user must enter the

interest rate, the loan amount, and the number of years for which
payments will be made.

◦ During analysis, however, it is possible that you may discover that
input is not sufficient or that some values are unnecessary for the
output.

◦ If this happens, you can go back to modify the requirements
specification.

Problem 92.13

Computing Loan Payments
Stage 2: System Analysis

163

• Note 2:
◦ In the real world, you will work with customers from all walks of

life.
◦ You may develop software for chemists, physicists, engineers,

economists, and psychologists and of course, you will not have (or
need) the complete knowledge of all these fields.

◦ Therefore, you don’t have to know how the mathematical formulas
are derived.

◦ Nonetheless, given the annual interest rate, number of years, and
loan amount, you can use the given formula to compute the
monthly payment.

◦ You will, however, need to communicate with the customers and
understand how the mathematical model works for the system.

Problem 92.13

Computing Loan Payments
Stage 3: System Design

164

• During system design, you identify the steps in the program:
1. Prompt the user to enter the annual interest rate, number of

years, and loan amount.
2. Compute monthly interest rate:
§ The input for the annual interest rate is a number in percent format, such as

4.5%. The program needs to convert it into a decimal by dividing it by 100.
§ To obtain the monthly interest rate from the annual interest rate, divide it by

12, since a year has 12 months.
§ So to obtain the monthly interest rate in decimal format, you need to divide

the annual interest rate in percentage by 1200.
§ For example, if the annual interest rate is 4.5%, then the monthly interest rate

is 4.5/1200 = 0.00375. It is equivalent to (!.#
$%%

× $
$&

= !.#
$&%%

= 0.00375)

Problem 92.13

Computing Loan Payments
Stage 3: System Design

165

• During system design, you identify the steps in the program:
3. Compute the monthly payment using the formula given in

Stage 2.

4. Compute the total payment, which is the monthly payment
multiplied by 12 and multiplied by the number of years.

5. Display the monthly payment and total payment.

Problem 92.13

Computing Loan Payments
Stage 4: Implementation

166

• Implementation is also known as coding (writing the code).

• In the formula, you have to compute
(1 + 𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑅𝑎𝑡𝑒)DAEF;<GHI;7<9 × :=

• You can use the exponentiation operator to write it as:

(1 + monthlyInterestRate) ** (numberOfYears * 12)

Problem 92.13

Computing Loan Payments
Stage 4: Implementation

167

LISTING 2.8 ComputeLoan.py

Enter yearly interest rate
annualInterestRate = eval(input(

"Enter annual interest rate, e.g., 8.25: "))
monthlyInterestRate = annualInterestRate / 1200

Enter number of years
numberOfYears = eval(input(

"Enter number of years as an integer, e.g., 5: "))

Enter loan amount
loanAmount = eval(input("Enter loan amount, e.g., 120000.95: "))

Calculate payment
monthlyPayment = loanAmount * monthlyInterestRate / (1

- 1 / (1 + monthlyInterestRate) ** (numberOfYears * 12))
totalPayment = monthlyPayment * numberOfYears * 12

Display results
print("The monthly payment is ", int(monthlyPayment * 100) / 100)
print("The total payment is ", int(totalPayment * 100) / 100)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Problem 92.13

Run

Computing Loan Payments
Trace The Program Execution

168

Enter annual interest rate, e.g., 8.25: 5.75 <Enter>

Enter number of years as an integer, e.g., 5: 15 <Enter>

Enter loan amount, e.g., 120000.95: 250000 <Enter>

The monthly payment is 2076.02
The total payment is 373684.53

Problem 92.13

Computing Loan Payments
Discussion

169

• Line 2 reads the annual interest rate, which is converted into
the monthly interest rate in line 4.

• The formula for computing the monthly payment is translated
into Python code in lines 14–15.

• The variable monthlyPayment is 2076.0252175 (line 14).

• Note that:
◦ int(monthlyPayment * 100) is 207602
◦ int(monthlyPayment * 100) / 100.0 is 2076.02

• So, the statement in line 19 displays the monthly payment
2076.02 with two digits after the decimal point.

Problem 92.13

Computing Loan Payments
Stage 5: Testing

170

• After the program is implemented, test it with some sample
input data and verify whether the output is correct.

• Some of the problems may involve many cases as you will see
in later chapters.

• For this type of problems, you need to design test data that
cover all cases.

Problem 92.13

Computing Loan Payments
Stage 5: Testing

171

• Tip (Incremental Development and Testing)
◦ The system design phase in this example identified several steps.
◦ It is a good approach to develop and test these steps incrementally

by adding them one at a time.
◦ This process makes it much easier to pinpoint problems and debug

the program.

Problem 92.13

2.14. Case Study: Computing Distances

172

§ Problem 10: Computing Distances

Computing Distances
Program 10

173

Write a program that prompts the user to enter two points,
computes their distance, and displays the result.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥1, 𝑦1 , (𝑥2, 𝑦2)) = 𝑥2 − 𝑥1 = + (𝑦2 − 𝑦1)=

Remember:
◦ Phase 1: Problem-solving
◦ Phase 2: Implementation

Problem 102.14

Enter x1 and y1 for Point 1: 1.5, -3.4 <Enter>

Enter x2 and y2 for Point 2: 4, 5 <Enter>

The distance between the two points is 8.764131445842194

Computing Distances
Phase 1: Problem-solving

174

• How you can calculate 𝑎 ?
◦ You can use a ** 0.5 to compute 𝑎

𝑎#.% = 𝑎

• Also, note that:

𝑎& = 𝑎 × 𝑎

Problem 102.14

Computing Distances
Phase 1: Problem-solving

175

• Design your algorithm:
1. Get x1, y1 from the user for the first point.
§ Use input function

2. Get x2, y2 from the user for the second point.
§ Use input function

3. Compute the distance.
§ distance = ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) ** 0.5

4. Display the distance.

Problem 102.14

Computing Distances
Phase 2: Implementation

176

LISTING 2.9 ComputeDistance.py

Enter the first point with two float values
x1, y1 = eval(input("Enter x1 and y1 for Point 1: "))

Enter the second point with two float values
x2, y2 = eval(input("Enter x2 and y2 for Point 2: "))

Compute the distance
distance = ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) ** 0.5

print("The distance between the two points is", distance)

1
2
3
4
5
6
7
8
9
10

Enter x1 and y1 for Point 1: 1.5, -3.4 <Enter>

Enter x2 and y2 for Point 2: 4, 5 <Enter>

The distance between the two points is 8.764131445842194

Problem 102.14

Run

End

177

§ Test Questions

§ Programming Exercises

Test Questions

178

• Do the test questions for this chapter online at
https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=2

https://liveexample-ppe.pearsoncmg.com/selftest/selftestpy?chapter=2

Programming Exercises

179

• Page 55 – 60:
◦ 2.1 – 2.8
◦ 2.10
◦ 2.12 - 14
◦ 2.16 - 2.17

• Lab #3

• Lab #4

https://csu.kau.edu.sa/pages-cpit-110labsar.aspx
https://csu.kau.edu.sa/pages-cpit-110labsar.aspx

