
Module 2:

Elementary Programming

The Basics of Java

Module 2: The Basics of Java page 2© Dr Jonathan Cazalas

Motivations

 In the preceding module, you learned how

to create, compile, and run a Java program.

Starting from this module, you will learn

how to solve practical problems

programmatically.

– Through these problems, you will learn Java

primitive data types and related subjects, such

as variables, constants, data types, operators,

expressions, and input and output.

Module 2: The Basics of Java page 3© Dr Jonathan Cazalas

Objectives
 To write Java programs to perform simple computations (§2.2).

 To obtain input from the console using the Scanner class (§2.3).

 To use identifiers to name variables, constants, methods, and classes (§2.4).

 To use variables to store data (§§2.5–2.6).

 To program with assignment statements and assignment expressions (§2.6).

 To use constants to store permanent data (§2.7).

 To name classes, methods, variables, and constants by following their naming conventions (§2.8).

 To explore Java numeric primitive data types: byte, short, int, long, float, and double (§2.9.1).

 To read a byte, short, int, long, float, or double value from the keyboard (§2.9.2).

 To perform operations using operators +, -, *, /, and % (§2.9.3).

 To perform exponent operations using Math.pow(a, b) (§2.9.4).

 To write integer literals, floating-point literals, and literals in scientific notation (§2.10).

 To write and evaluate numeric expressions (§2.11).

 To obtain the current system time using System.currentTimeMillis() (§2.12).

 To use augmented assignment operators (§2.13).

 To distinguish between postincrement and preincrement and between postdecrement and predecrement (§2.14).

 To cast the value of one type to another type (§2.15).

 To describe the software development process and apply it to develop the loan payment program (§2.16).

 To write a program that converts a large amount of money into smaller units (§2.17).

 To avoid common errors and pitfalls in elementary programming (§2.18).

Module 2: The Basics of Java page 4© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Remember:

– Step 1: Problem-solving Phase

– Step 2: Implementation Phase

Module 2: The Basics of Java page 5© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 1: Design your algorithm

1. Get the radius of the circle.

2. Compute the area using the following

formula:

area = radius x radius x π

3. Display the result

Module 2: The Basics of Java page 6© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 2: Implementation (code the algorithm)

public class ComputeArea {

public static void main(String[] args) {

// Step 1: get radius

// Step 2: calculate area

// Step 3: display the result

}

}

Module 2: The Basics of Java page 7© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 2: Implementation (code the algorithm)

– In order to store the radius, the program must

declare a symbol called a variable.

– A variable represents a value stored in the

computer’s memory

– You should choose good names for variables

Do not choose “x” or “y”…these have no meaning

Choose names with meaning…“area” or “radius”

Module 2: The Basics of Java page 8© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 2: Implementation (code the algorithm)

– What value do you want to store in radius?

– What about area?

 Integer? Real number? Something else maybe?

– The variable’s data type is the kind of data that

you can store in that particular variable.

– So when you declare (create) a variable, you

must state its data type and the variable name.

Module 2: The Basics of Java page 9© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 2: Implementation (code the algorithm)

– Java provides simple data types for integers, real

numbers, characters, and Boolean types.

– These basic data types are known as primitives.

– Here are two example primitive data types:

int : used to store an integer

double : used to store a real number

Module 2: The Basics of Java page 10© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 2: Implementation (code the algorithm)

public class ComputeArea {

public static void main(String[] args) {

double radius, area;

// Step 1: get radius

// Step 2: calculate area

// Step 3: display the result

}

}

Module 2: The Basics of Java page 11© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 2: Implementation (code the algorithm)

– Now, we set a value for radius.

Later we will learn how to ask the user to input the

value for radius!

– We then perform the calculation to get the area.

– And we print/display the result.

Module 2: The Basics of Java page 12© Dr Jonathan Cazalas

Writing a Simple Program

Write a program that will calculate the area

of a circle.

Step 2: Implementation (code the algorithm)

public class ComputeArea {

public static void main(String[] args) {

double radius, area;

// Step 1: set radius

radius = 20;

// Step 2: calculate area

area = radius * radius * 3.14159;

// Step 3: display the result

System.out.println(“The area for the circle of radius ” +

radius + “ is ” + area + “.”);

}

}

Module 2: The Basics of Java page 13© Dr Jonathan Cazalas

Trace a Program Execution
public class ComputeArea {

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

no valueradius

allocate memory

for radius

animation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Module 2: The Basics of Java page 14© Dr Jonathan Cazalas

Trace a Program Execution
public class ComputeArea {

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

no valueradius

memory

no valuearea

allocate memory

for area

animation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Module 2: The Basics of Java page 15© Dr Jonathan Cazalas

Trace a Program Execution
public class ComputeArea {

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

20radius

no valuearea

assign 20 to radius

animation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Module 2: The Basics of Java page 16© Dr Jonathan Cazalas

Trace a Program Execution
public class ComputeArea {

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

20radius

memory

1256.636area

compute area and assign it

to variable area

animation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Module 2: The Basics of Java page 17© Dr Jonathan Cazalas

Trace a Program Execution
public class ComputeArea {

public static void main(String[] args) {

double radius;

double area;

// Assign a radius

radius = 20;

// Compute area

area = radius * radius * 3.14159;

// Display results

System.out.println("The area for the circle of radius " +

radius + " is " + area);

}

}

20radius

memory

1256.636area

print a message to the

console

animation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Module 2: The Basics of Java page 18© Dr Jonathan Cazalas

Writing a Simple Program

Discussion:

– Variables such as radius and area refer to memory

locations

– Each variable has a name, a type, a size, and value

– Line 3 says that radius can store a double value.

But the value is not defined until you assign a value.

– Line 7 assigns the value 20 into radius.

– Similarly, line 4 declares the variable area.

– Line 10 then assigns a value into area.

Module 2: The Basics of Java page 19© Dr Jonathan Cazalas

Writing a Simple Program

Discussion:

– The following table shows the value in memory

for the variables area and radius as the program is

executed.

– This method of reviewing a program is called

“tracing a program”.

– Helps you to understand how programs work.

Module 2: The Basics of Java page 20© Dr Jonathan Cazalas

Writing a Simple Program

Discussion:

– The plus sign (+) has two meanings in Java:

Addition

Concatenation (combining two strings together)

– The plus sign (+) in lines 13-14 is called a string

concatenation operator.

 It combines two strings into one string.

 If a string is concatenated with a number, the number is

converted into a string and then concatenated with the

other string.

 See sample program: StringPractice.java

Module 2: The Basics of Java page 21© Dr Jonathan Cazalas

Writing a Simple Program

Discussion:

– In Java, a string cannot be written across multiple

lines in the source code.

– The following statement would result in a compile

error:

– To fix the error, break the string into separate

substrings and use concatenation (+) to combine:

System.out.println(“Introduction to Java Programming, by

Y. Daniel Liang”);

System.out.println(“Introduction to Java Programming, ” +

“ by Y. Daniel Liang”);

Module 2: The Basics of Java page 22© Dr Jonathan Cazalas

Reading Input from the Console

 In the last example, the radius was fixed.

Your program can be better, and more

interactive, by letting the user enter the radius.

 Java uses the Scanner class for console input

– System.out refers to the standout output device

By default, standard output is the monitor

– System.in refers to the standard input device

By default, standard input is the keyboard

Module 2: The Basics of Java page 23© Dr Jonathan Cazalas

Reading Input from the Console

 Java uses the Scanner class for console input

– So how do you read from the keyboard?

– You make a Scanner object!

– And you tell this Scanner object to read from

System.in (they keyboard)

– Here is the code:

Scanner input = new Scanner(System.in);

Module 2: The Basics of Java page 24© Dr Jonathan Cazalas

Reading Input from the Console

– new Scanner(System.in) creates an object

of the Scanner type.

– Scanner input says that input is a variable

whose type is Scanner.

– The whole line creates a Scanner object and then

saves the reference of this object into the variable

called input.

– Now, we can use this new Scanner object.

Specifically, this Scanner object has helpful methods

that allow us to read/scan data from the user.

Scanner input = new Scanner(System.in);

Module 2: The Basics of Java page 25© Dr Jonathan Cazalas

Reading Input from the Console

Methods of Scanner object:

– We can invoke a method on the Scanner object.

– What does this mean?

– It means we are asking the Scanner object to

perform a specific task.

– Example:

We can invoke the nextDouble() method

This allows us to read a double value from the input

double radius = input.nextDouble();

Module 2: The Basics of Java page 26© Dr Jonathan Cazalas

Reading Input from the Console

Summary:

– Create a Scanner object:

– Use the method nextDouble() to read a double

value from the user/keyboard:

– Now, let us revisit the Compute Area of a Circle

– We will get the radius from the user…

double radius = input.nextDouble();

Scanner input = new Scanner(System.in);

Module 2: The Basics of Java page 27© Dr Jonathan Cazalas

Program 2: Compute Area with

Console/User Input

 See sample program: AreaCircle.java

Module 2: The Basics of Java page 28© Dr Jonathan Cazalas

Program 2: Compute Area with

Console/User Input
Discussion:

– Before you can use the Scanner class, you must

import it!

– The Scanner class is in the java.util package.

– We import this on Line 1 of the program.

– Notice that we do this import before we start

coding our actual class.

Module 2: The Basics of Java page 29© Dr Jonathan Cazalas

Program 2: Compute Area with

Console/User Input
Discussion:

– There are two types of import statements:

Specific import: specifies a single class that should be

imported

– Example:
import java.util.Scanner;

Wildcard import: imports all the classes in a package

by using the asterisk as the wildcard.

– Example:
import java.util.*;

– You can use either methods to import classes.

– The choice is up to you! You are the programmer!

Module 2: The Basics of Java page 30© Dr Jonathan Cazalas

Program 3: Compute Average

Write a program to get three values from the

user and compute their average.

Remember:

– Step 1: Problem-solving Phase

– Step 2: Implementation Phase

Module 2: The Basics of Java page 31© Dr Jonathan Cazalas

Program 3: Compute Average

Write a program to get three values from the

user and compute their average.

Step 1: Design your algorithm

1. Get three numbers from the user.

 Use Scanner object

2. Compute the average of the three numbers:

 average = (num1 + num2 + num3) / 3

3. Display the result

Module 2: The Basics of Java page 32© Dr Jonathan Cazalas

Program 3: Compute Average

Write a program to get three values from the

user and compute their average.

Step 2: Implementation (code the algorithm)

import java.util.Scanner;

public class ComputeAverage {

public static void main(String[] args) {

Scanner input = new Scanner(System.in);

// Step 1: ask user to enter three values

// Step 2: calculate average

// Step 3: display the results

}

}

Module 2: The Basics of Java page 33© Dr Jonathan Cazalas

Program 3: Compute Average

 See sample program: AverageFourNumbers.java

Module 2: The Basics of Java page 34© Dr Jonathan Cazalas

Program 3: Compute Average

Example runs of the program:

Module 2: The Basics of Java page 35© Dr Jonathan Cazalas

Identifiers

 What is an identifier?

 Identifiers are the names that identify elements of your

program, such as classes, methods, and variables.

– An identifier is a sequence of characters that consist of letters,

digits, underscores (_), and dollar signs ($).

– An identifier must start with a letter, an underscore (_), or a

dollar sign ($). It cannot start with a digit.

– An identifier cannot be a reserved word. (See Appendix A,

“Java Keywords,” for a list of reserved words).

– An identifier cannot be true, false, or

null.

– An identifier can be of any length.

Module 2: The Basics of Java page 36© Dr Jonathan Cazalas

Identifiers

Examples of legal identifiers:

– area, radius, ComputeArea, $2, average

Examples of illegal identifiers:

– 2A and d+4

These two do not follow the rules

Java will report that you have a syntax error!

Note: Java is case sensitive

– area, Area, and AREA all are different identifiers

Module 2: The Basics of Java page 37© Dr Jonathan Cazalas

Variables

Variables are used to represent values that may be

changed in the program.

– In the previous programs, we used variables to store

values

area, radius, average, etc.

They are called variables because their values can

be changed!

Module 2: The Basics of Java page 38© Dr Jonathan Cazalas

Variables

Discussion:

– radius is initially 1.0 (line 2)

– then changed to 2.0 (line 7)

– area is computer as 3.14159 (line 3)

– then changed to 12.56636 (line 8)

Module 2: The Basics of Java page 39© Dr Jonathan Cazalas

Declaring Variables

int x; // Declare x to be an

// integer variable;

double radius; // Declare radius to

// be a double variable;

char a; // Declare a to be a

// character variable;

Syntax for declaring a variable:

datatype variableName;

Examples:

Module 2: The Basics of Java page 40© Dr Jonathan Cazalas

Declaring Variables

 If variables are of the dame data type, they can be

declared together:

datatype var1, var2, var3,…, varn;

Example:

int i, j, k;

Variables often have initial values

You can declare and initialize in one step:

int count = 1;

double pi = 3.14159;

Module 2: The Basics of Java page 41© Dr Jonathan Cazalas

Declaring Variables

You can also use shorthand form to declare and
initialize variables of the same type together:

Example:

int i = 62, j = 78, k = 35;

Tip:

– A variable must be declared before it can be assigned

a value, and a value must be assigned to the variable

before it can be used.

– Try to declare and initialize in one step.

This makes program easier to read and helps to avoid errors

Module 2: The Basics of Java page 42© Dr Jonathan Cazalas

Assignment Statements

After a variable has been declared, we can give

that variable a value.

This is called “assigning a value” to the variable.

 In Java, we do this with the assignment statement.

– The equal sign (=) is used as the assignment operator.

– The syntax for assignment statement is as follows:

variable = value;

or

variable = expression;

Module 2: The Basics of Java page 43© Dr Jonathan Cazalas

Assignment Statements

Sometimes we assign an exact values into

variables:

– Examples:

int y = 1; // assign 1 to y

double w = 3.0; // assign 3.0 to w

Other times we assign the value of an expression

into the variable:

– Examples:

int x = 5 * (3 / 2);

double area = radius * radius * 3.14159;

Module 2: The Basics of Java page 44© Dr Jonathan Cazalas

Assignment Statements

 If a value is assigned to multiple variables, you

can use this syntax:
i = j = k = 5;

This is equivalent to:
k = 5;

j = k;

i = j;

Module 2: The Basics of Java page 45© Dr Jonathan Cazalas

Assignment Statements

You can also use the same variable on both sides

of the assignment statement

Example:
x = x + 1;

– First, the right side of the assignment is calculated.

– Then, the new value is assigned into the variable on

the left (x).

So if the value of x was 7 before the statement is executed,

then x will become 8 after the statement is executed.

 See sample program: VariablePractice.java

Module 2: The Basics of Java page 46© Dr Jonathan Cazalas

Assignment Statements

Note: in an assignment statement, the data type of

the variable on the left must be compatible with

the data type of the value on the right.

Example:

int x = 1.0;

– This would be illegal!

– The data type of x is an int.

– You cannot assign a double value (1.0) into an int

variable unless you use type casting.

Type casting is coming later…

Module 2: The Basics of Java page 47© Dr Jonathan Cazalas

Named Constants

A named constant is an identifier that represents a

permanent value.

– The value of a variable can change during execution

of a program.

– However, a named constant, or simply constant,

represents a permanent data that never changes.

– Here is the syntax:

final datatype CONSTANTNAME = value;

– Example:

final double PI = 3.14159;

final int SIZE = 15;

Module 2: The Basics of Java page 48© Dr Jonathan Cazalas

Program 4: Compute Area with a

Constant

Module 2: The Basics of Java page 49© Dr Jonathan Cazalas

Named Constants

So what are the benefits of using constants?

1. You don’t have to repeatedly type the same value if

it is used multiple times

2. If you have to change the value, you only need to

change it in a single location in the code

 Instead of changing it at all locations

3. A descriptive name for a constant makes the

program easier to read

Module 2: The Basics of Java page 50© Dr Jonathan Cazalas

Naming Conventions

Choose meaningful and descriptive names.

– Do not use abbreviations

Variables and method names:

– Use lowercase. If the name consists of several

words, concatenate all in one, use lowercase

for the first word, and capitalize the first letter

of each subsequent word in the name.

– For example, the variables radius and area,

and the method computeArea.

Module 2: The Basics of Java page 51© Dr Jonathan Cazalas

Naming Conventions

Class names:

– Capitalize the first letter of each word in the name.

– For example, the class name ComputeArea.

Constants:

– Capitalize all letters in constants, and use
underscores to connect words.

– For example, the constants PI and MAX_VALUE

Do you have to follow these rules?

– No. But it makes your program MUCH easier to
read!!!

Module 2: The Basics of Java page 52© Dr Jonathan Cazalas

Numerical Data Types

Every data type has a range of possible values
that it can have/hold

Whenever you make a variable or constant, the
compiler will allocate (create) memory based
on the data type requested

 Java provides eight primitive data types

The following table lists the six numeric data
types and their ranges and storage sizes

Module 2: The Basics of Java page 53© Dr Jonathan Cazalas

Numerical Data Types

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed

 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754

 -3.4028235E+38 to -1.4E-45

 Positive range:

 1.4E-45 to 3.4028235E+38

 double Negative range: 64-bit IEEE 754

 -1.7976931348623157E+308 to -4.9E-324

 Positive range:

 4.9E-324 to 1.7976931348623157E+308

Module 2: The Basics of Java page 54© Dr Jonathan Cazalas

Numerical Data Types

Example:

– The largest value you can save into an integer data
type is 2,147,483,647.

This is just over 2 billion

– So what if you try to store a value larger than this
into an integer data type?

int x = 2147483648;

– Answer: you will get an error.

– This will not work.

– Solution: use a different data type

double, float, long

Module 2: The Basics of Java page 55© Dr Jonathan Cazalas

Numerical Data Types

 Java uses four data types for integers:

– byte, short, int, long

Which should you use?

– Choose the type that is most appropriate for your
variable.

– Long is usually unnecessary for most int types

 It is larger than needed.

Normal usage:

– int is normally used for integers

– double is normally used for real numbers

Module 2: The Basics of Java page 56© Dr Jonathan Cazalas

Number Literals

A literal is a constant value that appears
directly in the program.

For example, 34, 1,000,000, and 5.0 are
literals in the following statements:

int i = 34;

long x = 1000000;

double d = 5.0;

Module 2: The Basics of Java page 57© Dr Jonathan Cazalas

Integer Literals

An integer literal can be assigned to an integer
variable as long as it can fit into the variable.

A compilation error would occur if the literal
were too large for the variable to hold.

For example, the statement
byte b = 1000;

– would cause a compilation error

– 1000 cannot be stored in a variable of the byte
type.

– The range for byte is -128 to 127

Anything smaller or larger will result in an error!

Module 2: The Basics of Java page 58© Dr Jonathan Cazalas

Integer Literals

An integer literal is assumed to be of the int
type

– The range for int is between -231 (-2147483648)
to 231–1 (2147483647).

– If you want an int, but you need to store a larger
number, then you should use the type long

– To denote an integer literal of the long type,
append it with the letter L or l.

L is preferred because l (lowercase L) can easily be
confused with 1 (the digit one).

Module 2: The Basics of Java page 59© Dr Jonathan Cazalas

Floating-Point Literals

Floating-point literals are written with a
decimal point.

– By default, a floating-point literal is treated as a
double type value.

– For example, 5.0 is considered a double value, not
a float value.

– You can make a number a float by appending the
letter f or F, and make a number a double by
appending the letter d or D.

For example, you can use 100.2f or 100.2F for a float
number, and 100.2d or 100.2D for a double number.

Module 2: The Basics of Java page 60© Dr Jonathan Cazalas

double vs. float

The double type values are more accurate than the

float type values. For example,

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

displays 1.0F / 3.0F is 0.33333334

7 digits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Module 2: The Basics of Java page 61© Dr Jonathan Cazalas

Reading Numbers from the Keyboard

Scanner input = new Scanner(System.in);

int value = input.nextInt();

double grade = input.nextDouble();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

Module 2: The Basics of Java page 62© Dr Jonathan Cazalas

Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Module 2: The Basics of Java page 63© Dr Jonathan Cazalas

Integer Division

 “Normal” division: 7 / 2 = 3.5

 In Computer Science, when we say division,

majority of the time, we mean integer division.

– When both operands of a division are integers, we

will use integer division.

What is integer division?

– Easiest to explain with examples:

5 / 2 = 2 12 / 5 = 2

7 / 2 = 3 15 / 4 = 3

15 / 2 = 7 33 / 8 = 4

Module 2: The Basics of Java page 64© Dr Jonathan Cazalas

Remainder Operator

The % operator is known as the remainder

operator, or also as the modulo operator

– This operator will give the remainder after division

– Examples:

7 % 3 = 1 3 % 7 = 3

12 % 4 = 0 26 % 8 = 2

20 % 13 = 7

Module 2: The Basics of Java page 65© Dr Jonathan Cazalas

Remainder Operator

Remainder is very useful in programming.

For example, an even number % 2 is always 0

An odd number % 2 is always 1

So you can use this property to determine

whether a number is even or odd.

You can also mod by other values to achieve

valuable results.

Module 2: The Basics of Java page 66© Dr Jonathan Cazalas

Remainder Operator

 Saturday is the 7th day in a week

A week has 7 days

After 10 days

The 3rd day in a week is Tuesday
(7 + 10) % 7 is 3

Example:

– If today is Saturday, it will be Saturday again in 7

days. Suppose you and your friends will meet in 10

days. What day is it in 10 days?

– Let us assume Sunday is the 1st day of the week.

– We can find that in 10 days, the day will be Tuesday

by using the following equation:

Module 2: The Basics of Java page 67© Dr Jonathan Cazalas

Program 5: Convert Time

Write a program to get an amount of time

from the user in seconds. Then your program

should convert this time into minutes and the

remaining seconds.

Remember:

– Step 1: Problem-solving Phase

– Step 2: Implementation Phase

Module 2: The Basics of Java page 68© Dr Jonathan Cazalas

Program 5: Convert Time

Step 1: Problem-solving Phase

– If you are given seconds, how do you then

calculate the minutes and remaining seconds?

Example:

– Given 624 seconds, how do we calculate the minutes?

– We divide by 60!

• We see how many complete 60s are in 624.

• Answer: 10 of them. 10x60 = 600.

– So in 624 seconds, there are a full 10 minutes.

– After we remove those 10 minutes, how many seconds are

remaining?

• 624 – (10x60) = 24 seconds remaining

• We can use mod! 624%60 = 24 seconds remaining.

Module 2: The Basics of Java page 69© Dr Jonathan Cazalas

Program 5: Convert Time

Step 1: Design your algorithm

1. Get amount of seconds from the user.

 Use Scanner object

 Save as an int

2. Compute the minutes and seconds remaining:

 From these seconds, determine the number of minutes

 Example:

– 150 seconds => 2 minutes and 30 seconds

– 315 seconds => 5 minutes and 15 seconds

• 315 / 60 = 5 and 315 % 60 = 15

3. Display the result

Module 2: The Basics of Java page 70© Dr Jonathan Cazalas

Program 5: Convert Time

Step 2: Implementation

Module 2: The Basics of Java page 71© Dr Jonathan Cazalas

Program 5: Convert Time

 See sample program: TimeCalculation.java

Module 2: The Basics of Java page 72© Dr Jonathan Cazalas

NOTE

Calculations involving floating-point numbers

are approximated because these numbers are

not stored with complete accuracy.

– For example:
System.out.println(1.0-0.1-0.1-0.1-0.1-0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1.

– Integers are stored precisely.

– Therefore, calculations with integers yield a

precise integer result.

Module 2: The Basics of Java page 73© Dr Jonathan Cazalas

Exponent Operations

System.out.println(Math.pow(2, 3));

// Displays 8.0

System.out.println(Math.pow(2, 5));

// Displays 32.0

System.out.println(Math.pow(4, 0.5));

// Displays 2.0

System.out.println(Math.pow(2.5, 2));

// Displays 6.25

System.out.println(Math.pow(2.5, -2));

// Displays 0.16

Module 2: The Basics of Java page 74© Dr Jonathan Cazalas

Scientific Notation

Floating-point literals can also be specified in

scientific notation

Example:

– 1.23456e+2, same as 1.23456e2, is equivalent to

123.456

– and 1.23456e-2 is equivalent to 0.0123456

– E (or e) represents an exponent and it can be either

in lowercase or uppercase.

Module 2: The Basics of Java page 75© Dr Jonathan Cazalas

Arithmetic Expressions

 Java expressions are written the same way as

normal arithmetic expressions.

Example:

 is translated into

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

)
94

(9
))(5(10

5

43

y

x

xx

cbayx

Module 2: The Basics of Java page 76© Dr Jonathan Cazalas

How to Evaluate an Expression

Summary: you can safely apply the arithmetic

rule for evaluating a Java expression

– Operators inside parenthesis are evaluated first

Parenthesis can be nested

Expression in inner parenthesis is evaluated first

– Use normal operator precedence

Multiplication, division, and remainder are done first

– if an expression has several multiplication, division, and

remainder operators, you evaluate them from left to right

Addition and subtraction are done last

– and again, if an expression has several addition and

subtraction operators, you evaluate them from left to right

Module 2: The Basics of Java page 77© Dr Jonathan Cazalas

How to Evaluate an Expression

Example of how an expression is evaluated:

3 + 4 * 4 + 5 * (4 + 3) - 1

3 + 4 * 4 + 5 * 7 – 1

3 + 16 + 5 * 7 – 1

3 + 16 + 35 – 1

19 + 35 – 1

 54 - 1

 53

 (1) inside parentheses first

 (2) multiplication

 (3) multiplication

 (4) addition

 (6) subtraction

 (5) addition

Module 2: The Basics of Java page 78© Dr Jonathan Cazalas

Program 6: Convert Temperature

Write a program that converts a temperature in

Fahrenheit into Celsius.

– You will need the following formula:

Remember:

– Step 1: Problem-solving Phase

– Step 2: Implementation Phase

)32)((
9
5 fahrenheitcelsius

Module 2: The Basics of Java page 79© Dr Jonathan Cazalas

Program 6: Convert Temperature

Step 1: Design your algorithm

1. Get temperature in Fahrenheit from the user.

 Use Scanner object

 Save temperature as an int

2. Compute the temperature into Celsuis:

 Use formula:

 But write the formula in Java:

celsius = (5.0 / 9) * (fahrenheit – 32);

3. Display the result

)32)((
9
5 fahrenheitcelsius

Module 2: The Basics of Java page 80© Dr Jonathan Cazalas

Program 6: Convert Temperature

Step 2: Implementation

Module 2: The Basics of Java page 81© Dr Jonathan Cazalas

Program 6: Convert Temperature

Discussion: be careful when dividing integers

– Notice the formula has 5 divided by 9

– What happens if we write this formula as:
celsius = (5 / 9) * (fahrenheit – 32);

– (5 / 9) evaluates to zero!

 Integer division!

– So we use (5.0 / 9) instead, which gives a number

 See sample program: TempConvert.java

)32)((
9
5 fahrenheitcelsius

Module 2: The Basics of Java page 82© Dr Jonathan Cazalas

Program 7: Show Current Time

Write a program that displays current time in

GMT in the format hour:minute:second such

as 1:45:19.

Remember:

– Step 1: Problem-solving Phase

– Step 2: Implementation Phase

Module 2: The Basics of Java page 83© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 1: Problem-solving Phase

– Remember how you print to the screen?

You use the method println

This method is inside the System class

System.out.println

– Well, there are many beneficial methods inside

this System class.

– Java provides a method to return the current time

System.currentTimeMillis()

This method returns the current time, in milliseconds,

in milliseconds since midnight, January 1, 1970 GMT.

Module 2: The Basics of Java page 84© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 1: Problem-solving Phase

System.currentTimeMillis()

This method returns the current time, in milliseconds,

in milliseconds since midnight, January 1, 1970 GMT.

Why this specific date?

This was known as the UNIX epoch

– The point in time when UNIX started

• Important? Not really. Just a neat fact!

Elapsed

time

Unix Epoch

01-01-1970

00:00:00 GMT

Current Time

Time

System.currentTimeMills()

Module 2: The Basics of Java page 85© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 1: Problem-solving Phase

System.currentTimeMillis()

So this method returns the number of milliseconds

since 1970.

That’s a LOT of milliseconds

 It’s 2015…so 45 years since 1970

 45 𝑦𝑒𝑎𝑟𝑠 ×
365 𝑑𝑎𝑦𝑠

1 𝑦𝑒𝑎𝑟
×

24 ℎ𝑜𝑢𝑟𝑠

1 𝑑𝑎𝑦
×

3600 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

1 ℎ𝑜𝑢𝑟
×

1000𝑚𝑠

1 𝑠𝑒𝑐𝑜𝑛𝑑

Now take a calculator…

– That comes to 1,419,210,000,000 milliseconds

– The point: this methods returns a HUGE number

So how can we calculate the time from this number???

Module 2: The Basics of Java page 86© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 1: Problem-solving Phase

1. Get the total milliseconds since midnight, January

1, 1970 by invoking:
 System.currentTimeMillis();

– Example: 1203183068328 milliseconds

2. Obtain the total number of seconds by dividing

totalMilliseconds by 1000
 totalSeconds = totalMilliseconds / 1000;

– Example: 1203183068328 ms / 1000 = 1203183068 seconds

3. Compute the current seconds from totalSeconds
 currentSeconds = totalSeconds % 60;

– Example: 1203183068 % 60 = 8, which is the current second

Module 2: The Basics of Java page 87© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 1: Problem-solving Phase

4. Obtain the total minutes, totalMinutes, by

dividing totalSeconds by 60
 totalMinutes = totalSeconds / 60;

– Example: 1203183068 seconds / 60 = 20053051 minutes

5. Compute the current minute from totalMinutes

mod 60
 currentMinute = totalMinutes % 60;

– Example: 20053051 minutes % 60 = 31, the current minute

Module 2: The Basics of Java page 88© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 1: Problem-solving Phase

6. Obtain the total hours, totalHours, by dividing

totalMinutes by 60
 totalHours = totalMinutes / 60;

– Example: 20053051 minutes / 60 = 334217 hours

7. Compute the current hour from totalHours % 24
 currentHour = totalHours % 24;

– Example: 334217 hours % 24 = 17, which is the current hour

The final time:

– 17:31:8 GMT, or 5:31 PM and 8 seconds

Module 2: The Basics of Java page 89© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 1: Problem-solving Phase

– All these numbers are HUGE

– The int data type is not large enough

– All variables should be declared as the long data

type for this program

Module 2: The Basics of Java page 90© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 2: Implementation

Module 2: The Basics of Java page 91© Dr Jonathan Cazalas

Program 7: Show Current Time

Step 2: Implementation

Module 2: The Basics of Java page 92© Dr Jonathan Cazalas

Augmented Assignment Operators

Very often, we use the current value of a

variable, we modify it, and then save it back to

the same variable.

– Example:

count = count + 1;

– Java allows you to combine this addition and

assignment into one operator, which is called the

augmented assignment operator.

– Example:

count += 1;

Module 2: The Basics of Java page 93© Dr Jonathan Cazalas

Augmented Assignment Operators

Module 2: The Basics of Java page 94© Dr Jonathan Cazalas

Augmented Assignment Operators

The augmented assignment operator is

performed last after all the other operators in

the expression are evaluate

– Example:

x /= 4 + 5.5 * 1.5;

is same as

x = x / (4 + 5.5 * 1.5);

– Caution: there are no spaces in the augmented

operators

For example, + = should be += (with no space)

Module 2: The Basics of Java page 95© Dr Jonathan Cazalas

Increment and

Decrement Operators
Another common expression is to simply

increment (increase) a variable by one

– Such as x = x + 1;

– Because this is so common, Java gives you special

increment and decrement operators

 Increment operator: ++

Decrement operator: --

– Examples:
int i = 3, j = 3;

i++; // i becomes 4

j--; // j becomes 2

Module 2: The Basics of Java page 96© Dr Jonathan Cazalas

Increment and

Decrement Operators
More details:

i++ is pronounced as i plus plus

i-- is pronounced as i minus minus

– These two operators are known as postincrement

and postdecrement

– Why?

Because the operators (++ and --) are placed after the

variable

– The operators can also be placed before the

variable

Module 2: The Basics of Java page 97© Dr Jonathan Cazalas

Increment and

Decrement Operators
More details:

– The operators can also be placed before the

variable

int i = 3, j = 3;

++i; // i becomes 4

--j; // j becomes 2

– Again, ++i increments i, and --j decrements j

– In this small example, result is the same

Meaning i++ and ++i both increase i from 3 to 4.

And both --j and j– decrease j from 3 to 2.

Module 2: The Basics of Java page 98© Dr Jonathan Cazalas

Increment and

Decrement Operators

More details:

– If the statement is ONLY doing increment or

decrement, the effect of j++ and ++j is the same.

– However, the effect changes when these operators

are used in other types of statements.

Specifically:

– ++i: the increment is done before evaluating an expression

– i++: the increment is done after evaluated an expression

– Study the following table and examine the

results…

Module 2: The Basics of Java page 99© Dr Jonathan Cazalas

Increment and

Decrement Operators

Module 2: The Basics of Java page 100© Dr Jonathan Cazalas

Increment and

Decrement Operators

Consider the following code:

– Details:

Here, we first get the value of i (which is 10) and

calculate newNum.

Then, we increment i.

– i is not incremented until AFTER the expression is evaluated.

Module 2: The Basics of Java page 101© Dr Jonathan Cazalas

Increment and

Decrement Operators

Consider the following code:

– Details:

Here, we first increment i

Then, after i is incremented, we calculate newNum

Module 2: The Basics of Java page 102© Dr Jonathan Cazalas

Increment and

Decrement Operators

Another example:

– Consider the following code:

double x = 1.0;

double y = 5.0;

double z = x-- + (++y);

– What is the value of x, y, and z after are three lines

are executed?

x becomes 0.0

y becomes 6.0

z becomes 7.0

Module 2: The Basics of Java page 103© Dr Jonathan Cazalas

Increment and

Decrement Operators

More details:

– Using increment and decrement operators makes

expressions short

but it also makes them complex and difficult to read

– Avoid using these operators in expressions that

modify multiple variables, or the same variable for

multiple times such as this:

int k = ++i + i;

 Is this legal?

– Yes. But it is confusing!

– Message: don’t use increment/decrement like this.

Module 2: The Basics of Java page 104© Dr Jonathan Cazalas

Numeric Type Conversions

Can you perform binary operations with

operands of different types?

– Meaning, can we add an integer literal with a

double literal?

– Answer: YES.

 If you add an integer with a floating-point number, Java

automatically coverts the int to a floating point value.

– Example:

3 * 4.5 is the same as

3.0 * 4.5

Module 2: The Basics of Java page 105© Dr Jonathan Cazalas

Numeric Type Conversions

Details:

– You can always assign a value to a numeric

variable just so long as the value is within the

limits/range of the data type.

– Example:

You can save an int into a double, because the double is

much wider (larger) than the int

int x = 4;

double y;

y = x;

This is allowed, because x can easily “fit” into y.

Module 2: The Basics of Java page 106© Dr Jonathan Cazalas

Numeric Type Conversions

Details:

– However, you cannot assign a value to a variable

of a data type with a smaller range of values.

Unless you use type casting

– Casting is an operation that coverts a value of one

data type into a value of another data type

Casting a type with a small range to a type with a larger

range is known as “widening a type”

Casting a type with a large range to a type from a

smaller range is known as “narrowing a type”

Module 2: The Basics of Java page 107© Dr Jonathan Cazalas

Numeric Type Conversions

Casting:

– Java will automatically widen a type, but you must

request a narrowing explicitly

– Syntax:

specify the target type in parentheses, followed by the

variable’s name or the value to be cast

– Example:

System.out.println((int)1.7);

1 gets printed.

Why? Because 1.7 was converted into an int.

Module 2: The Basics of Java page 108© Dr Jonathan Cazalas

Numeric Type Conversions

Casting:

– Example:

System.out.println((double)1/2);

0.5 gets printed.

Why? Because 1 is cast into 1.0. Then 1.0 is divided by

2.

– Example:

System.out.println(1 / 2);

Be careful!

Here, 0 (zero) gets printed. Why? 1 and 2 are both inters

and the result should be an integer.

Module 2: The Basics of Java page 109© Dr Jonathan Cazalas

Type Casting

Implicit casting

double d = 3; // (type widening)

Explicit casting

int i = (int)3.0; // (type narrowing)

int i = (int)3.9; // (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

byte, short, int, long, float, double

range increases

 See sample program: JavaBasics.java

Module 2: The Basics of Java page 110© Dr Jonathan Cazalas

Conversion Rules

When performing a binary operation involving two

operands of different types, Java automatically

converts the operand based on the following rules:

1. If one of the operands is double, the other is

converted into double.

2. Otherwise, if one of the operands is float, the other is

converted into float.

3. Otherwise, if one of the operands is long, the other is

converted into long.

4. Otherwise, both operands are converted into int.

Module 2: The Basics of Java page 111© Dr Jonathan Cazalas

Program 8: Sales Tax

Write a program that reads a purchase amount

from the user, calculates the sales tax, and

then displays the result.

– But we want to print the tax with only two

decimal places

Remember:

– Step 1: Problem-solving Phase

– Step 2: Implementation Phase

Module 2: The Basics of Java page 112© Dr Jonathan Cazalas

Program 8: Sales Tax

Step 1: Design your algorithm

1. Get purchase amount from user.

 Use Scanner object

 Save purchaseAmount as a double

2. Compute the tax:

 Use a simple tax rate (6%)

 Use the formula:

– tax = purchaseAmount * 0.06

3. Display the result

 Print the result, but show only two decimal places

Module 2: The Basics of Java page 113© Dr Jonathan Cazalas

Program 8: Sales Tax

Example:

– If purchaseAmount is entered as 197.55

– Then the sales tax is evaluated as 197.55 * 0.06

This equals 11.853

– So how do we display this with only two decimals?

1. Multiply 11.853 by 100

• 11.853 * 100 = 1185.3

2. Cast the result as an integer

• Now 1185.3 becomes 1185 (the .3 is removed)

3. Now, divide by 100.0, which is a double

• And we get 11.85

Module 2: The Basics of Java page 114© Dr Jonathan Cazalas

Program 8: Sales Tax

Step 2: Implementation

 See sample program: SalesTax.java

Module 2: The Basics of Java page 115© Dr Jonathan Cazalas

Casting in an Augmented Expression

 In Java, an augmented expression of the form

x1 op= x2 is implemented as

– x1 = (T)(x1 op x2)

where T is the type for x1.

Example
int sum = 0;

sum += 4.5; // sum becomes 4 after this statement

– This is equivalent to:

sum = (int)(sum + 4.5);

Here, OP means operation.

Module 2: The Basics of Java page 116© Dr Jonathan Cazalas

Software Development Process

Module 2: The Basics of Java page 117© Dr Jonathan Cazalas

Requirement Specification

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

A formal process that seeks to understand

the problem and document in detail what

the software system needs to do. This

phase involves close interaction between

users and designers.

Most of the examples in this book are simple,

and their requirements are clearly stated. In

the real world, however, problems are not

well defined. You need to study a problem

carefully to identify its requirements.

Module 2: The Basics of Java page 118© Dr Jonathan Cazalas

System Analysis

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Seeks to analyze the business

process in terms of data flow, and

to identify the system’s input and

output.

Part of the analysis entails modeling

the system’s behavior. The model is

intended to capture the essential

elements of the system and to define

services to the system.

Module 2: The Basics of Java page 119© Dr Jonathan Cazalas

System Design

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

The process of designing the

system’s components.

This phase involves the use of many levels

of abstraction to decompose the problem into

manageable components, identify classes and

interfaces, and establish relationships among

the classes and interfaces.

Module 2: The Basics of Java page 120© Dr Jonathan Cazalas

IPO

Requirement

Specification

System

Analysis

System

Design

Input, Process, Output

Testing

Implementation

Maintenance

Deployment

The essence of system analysis and design is input,

process, and output. This is called IPO.

Module 2: The Basics of Java page 121© Dr Jonathan Cazalas

Implementation

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

The process of translating the

system design into programs.

Separate programs are written for

each component and put to work

together.

This phase requires the use of a

programming language like Java.

The implementation involves

coding, testing, and debugging.

Module 2: The Basics of Java page 122© Dr Jonathan Cazalas

Testing

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Ensures that the code meets the

requirements specification and

weeds out bugs.

An independent team of software

engineers not involved in the design

and implementation of the project

usually conducts such testing.

Module 2: The Basics of Java page 123© Dr Jonathan Cazalas

Deployment

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Deployment makes the project

available for use.

For a Java program, this means

installing it on a desktop or on the

Web.

Module 2: The Basics of Java page 124© Dr Jonathan Cazalas

Maintenance

Requirement

Specification

System

Analysis

System

Design

Testing

Implementation

Maintenance

Deployment

Maintenance is concerned with

changing and improving the

product.

A software product must continue to

perform and improve in a changing

environment. This requires periodic

upgrades of the product to fix newly

discovered bugs and incorporate changes.

Module 2: The Basics of Java page 125© Dr Jonathan Cazalas

Program 9: Money Units

Write a program that asks the user for an

amount of money in dollars and cents. Then

your program should output a report listing the

number of dollars, quarters, dimes, nickels,

and pennies (and in that order) in your

program.

Remember:

– Step 1: Problem-solving Phase

– Step 2: Implementation Phase

Module 2: The Basics of Java page 126© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

– A reminder about U.S. monetary units:

1 dollar = 100 cents (or pennies)

1 quarter = 25 cents

1 dime = 10 cents

1 nickel = 5 cents

– So if you need to give someone 42 cents in

change, you should give:

One quarter, one dime, one nickel, and two pennies

Module 2: The Basics of Java page 127© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

– First step: UNDERSTAND the problem!

– So let us look at an example run:

– Is it clear what the problem is asking of us?

Make sure you understand the question before starting

Module 2: The Basics of Java page 128© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

1. Get the total amount of money by asking the user

to enter a double value
 money = input.nextDouble();

– Example: $11.56

2. Convert this amount into cents (multiply by 100)
 totalCents = (int)money*100;

– Example: 11.56 * 100 = 1156

Module 2: The Basics of Java page 129© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

3. Get the total number of dollars by now dividing

by 100. And get remaining cents by using

totalCents % 100.
 totalDollars = totalCents / 100;

– Example: 1156 / 100 = 11

remainingCents = totalCents % 100;

– Example: 1156 % 100 = 56

Module 2: The Basics of Java page 130© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

4. Get the total # of quarters by dividing

remainingCents by 25. And then recalculate

remainingCents.
 totalQuarters = remainingCents / 25;

– Example: 56 / 25 = 2

 remainingCents = remainingCents % 25;

– Example: 56 % 25 = 6

Module 2: The Basics of Java page 131© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

5. Get the total # of dimes by dividing

remainingCents by 10. And then recalculate

remainingCents.
 totalDimes = remainingCents / 10;

– Example: 6 / 10 = 0

 remainingCents = remainingCents % 10;

– Example: 6 % 10 = 6

So nothing changed at this step

– remainingCents is still 6.

Module 2: The Basics of Java page 132© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

6. Get the total # of nickels by dividing

remainingCents by 5. And then recalculate

remainingCents.
 totalDimes = remainingCents / 5;

– Example: 6 / 5 = 1

 remainingCents = remainingCents % 5;

– Example: 6 % 5 = 1

Module 2: The Basics of Java page 133© Dr Jonathan Cazalas

Program 9: Money Units

Step 1: Problem-solving Phase

7. The value stored in remainingCents is the

number of pennies left over

8. Display the result!

Module 2: The Basics of Java page 134© Dr Jonathan Cazalas

Program 9: Money Units

Step 2: Implementation

Module 2: The Basics of Java page 135© Dr Jonathan Cazalas

Program 9: Money Units

Step 2: Implementation

Module 2: The Basics of Java page 136© Dr Jonathan Cazalas

Program 9: Money Units

Run the program:

 See sample program: PrintMoney.java

Module 2: The Basics of Java page 137© Dr Jonathan Cazalas

Common Errors and Pitfalls

Common Error # 1: Undeclared/Uninitialized

Variables and Unused Variables

– a variable must be declared and a value assigned

to it before you use it.

– Common errors include not declaring or not

initializing a variable

– Example:

double interestRate = 0.05;

double interest = interestrate * 45;

– Java is case sensitive. In the 2nd line, interestrate is not

defined, because the R is not capitalized

Module 2: The Basics of Java page 138© Dr Jonathan Cazalas

Common Errors and Pitfalls

Common Error #2: Integer Overflow

– Remember: numbers are stored with a limited

number of digits

– If you try to save a value that is too large for a

variable, an overflow error will occur

– Example:
 int value = 2147483647; // allowed

– but this number is the biggest possible int, therefore…

 value++; // will result in an error

Module 2: The Basics of Java page 139© Dr Jonathan Cazalas

Common Errors and Pitfalls

Common Error #3: Round-off Errors

– a round-off error, also called a rounding error, is

the difference between the exact mathematical

value of a number and the approximated value that

was calculated.

– Example:

1/3 is approximately 0.333 if you use three decimals

and it is 0.3333333 if you use seven decimal places

The number of digits you can store is limited

So having round-off errors is inevitable (a guarantee!)

Module 2: The Basics of Java page 140© Dr Jonathan Cazalas

Common Errors and Pitfalls

Common Error #3: Round-off Errors

– Calculations with floating-point numbers are also

approximated

Because they are not stored with complete accuracy

– Example:
 System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

– The output should be 0.5, but the output is really

0.5000000000000001
 System.out.println(1.0 - 0.9);

– The output should be 0.1, but the output is really

0.09999999999999998

– Message: use integers for exact/precise results!

Module 2: The Basics of Java page 141© Dr Jonathan Cazalas

Common Errors and Pitfalls

Common Error #4: Unintended Integer Division

– Perhaps you want “normal” division

Example: 3 / 2 = 1.5

– However, if both operands are integers, Java will

automatically use integer division

– If you do not want integer division, you should

make one of the operands a floating-point number

 int number1 = 1;
int number2 = 2;

double average = (number1 + number2) / 2;

System.out.println(average);

(a)

int number1 = 1;

int number2 = 2;

double average = (number1 + number2) / 2.0;

System.out.println(average);

(b)

Module 2: The Basics of Java page 142© Dr Jonathan Cazalas

Common Errors and Pitfalls

Common Pitfall #1: Repeated Input Objects

– New programmers often make many Scanner

objects each time they want input

This is a mistake!

– See the code below:

Module 2: The Basics of Java page 143© Dr Jonathan Cazalas

Common Errors and Pitfalls

Common Pitfall #1: Repeated Input Objects

– The code is not wrong, but it is inefficient (slow)

– It creates two input objects, which is a waste

– The correct code is below:

Module 2:

Elementary Programming

The Basics of Java

