
Module 1: Introduction to Java page 1© Dr Jonathan Cazalas

Module 1:

Introduction to Computers,

Programs, and Java

Module 1: Introduction to Java page 2© Dr Jonathan Cazalas

Objectives
 To review Program Design and Problem-Solving Techniques

 To describe the relationship between Java and the World Wide Web (§1.5).

 To understand the meaning of Java language specification, API, JDK, and IDE

(§1.6).

 To write a simple Java program (§1.7).

 To display output on the console (§1.7).

 To explain the basic syntax of a Java program (§1.7).

 To create, compile, and run Java programs (§1.8).

 To use sound Java programming style and document programs properly (§1.9).

 To explain the differences between syntax errors, runtime errors, and logic

errors (§1.10).

 To develop Java programs using NetBeans (§1.11).

Module 1: Introduction to Java page 3© Dr Jonathan Cazalas

What is Computer Science?

Computer Science can be summarized with

two simple words: problem solving.

Computer Science is the study of problems,

problem-solving, and the solutions that come

out of this problem-solving process.

Given a problem, the goal is to develop an

algorithm to solve the problem.

An algorithm is a step-by-step list of

instructions to solve the problem.

Module 1: Introduction to Java page 4© Dr Jonathan Cazalas

What is Programming?

Once you have developed the algorithm on

paper, you must now “prove it” and show

that it works.

Programming is the process of encoding your

algorithm into a programming language, so

that it can then be executed by a computer.

But what is the first step?

You need a solution.

You need an algorithm!

Module 1: Introduction to Java page 5© Dr Jonathan Cazalas

So who is good at Programming?

Are you good at problem solving?

Are you good at strategy?

These are the core fundamentals of

programming.

Module 1: Introduction to Java page 6© Dr Jonathan Cazalas

Program Design &

Problem-Solving

Techniques

Module 1: Introduction to Java page 7© Dr Jonathan Cazalas

How Do We Write a Program?

 A Computer is not intelligent.

 It cannot analyze a problem and come up with a solution.

 A human (the programmer) must analyze the problem, develop

the instructions for solving the problem, and then have the

computer carry out the instructions.

 To write a program for a computer to follow, we must go through a

two-phase process: problem solving and implementation.

Module 1: Introduction to Java page 8© Dr Jonathan Cazalas

Problem-Solving Phase

 Analysis and Specification- Understand (define) the
problem and what the solution must do.

 General Solution (Algorithm)- Specify the required
data types and the logical sequences of steps that
solve the problem.

 Verify- Follow the steps exactly to see if the solution
really does solve the problem.

Module 1: Introduction to Java page 9© Dr Jonathan Cazalas

 Concrete Solution (Program)- Translate the
algorithm (the general solution) into a programming
language.

 Test- Have the computer follow the instructions.
 Then manually check the results.
 If you find errors, analyze the program and the algorithm

to determine the source of the errors, and then make
corrections.

 Once a program is tested, it enters into next phase
(maintenance).

 Maintenance requires Modification of the program to
meet changing requirements or to correct any errors
that show up while using it.

Implementation Phase

Module 1: Introduction to Java page 10© Dr Jonathan Cazalas

Steps in program

development

Module 1: Introduction to Java page 11© Dr Jonathan Cazalas

Steps in Program Development

1. Define the problem into three separate

components:

• inputs

• processing steps to produce required outputs.

• outputs

Module 1: Introduction to Java page 12© Dr Jonathan Cazalas

2. Outline the solution.

• Decompose the problem to smaller steps.

• Establish a solution outline.

3. Develop the outline into an algorithm.

• The solution outline is now expanded into an

algorithm.

Steps in Program Development

Module 1: Introduction to Java page 13© Dr Jonathan Cazalas

4. Test the algorithm for correctness.

• Very important in the development of a program,

but often forgotten

• Major logic errors can be detected and corrected

at an early stage.

5. Code the algorithm into a specific

programming language.

Steps in Program Development

Module 1: Introduction to Java page 14© Dr Jonathan Cazalas

6. Run the program on the computer.

• This step uses a program compiler and

programmer-designed test data to machine-

test the code for

• syntax errors

• logic errors

7. Document and maintain the program.

Steps in Program Development

Module 1: Introduction to Java page 15© Dr Jonathan Cazalas

Algorithms &

Flowcharts

Module 1: Introduction to Java page 16© Dr Jonathan Cazalas

 What is pseudocode?

Structured English (formalized and abbreviated to

look like high-level computer language)

 What is an algorithm?

Lists the steps involved in accomplishing a task

(like a recipe)

An algorithm must:

Be lucid (clear), precise and unambiguous

Give the correct solution in all cases

Eventually end

Module 1: Introduction to Java page 17© Dr Jonathan Cazalas

Pseudocode & Algorithm

Example 1: Write an algorithm to determine a

student’s final grade and indicate whether it

is passing or failing. The final grade is

calculated as the average of four marks.

Module 1: Introduction to Java page 18© Dr Jonathan Cazalas

Pseudocode & Algorithm

Pseudocode:

 Input a set of 4 marks

 Calculate their average by summing and dividing
by 4

 if average is below 50

Print “FAIL”

else

Print “PASS”

Module 1: Introduction to Java page 19© Dr Jonathan Cazalas

Pseudocode & Algorithm

Detailed Algorithm

Step 1: Input M1,M2,M3,M4

Step 2: GRADE (M1+M2+M3+M4)/4

Step 3: if (GRADE < 50) then

Print “FAIL”

else

Print “PASS”

endif

Module 1: Introduction to Java page 20© Dr Jonathan Cazalas

Flowchart

• A graphical representation of the sequence of
operations in an information system or program.

• Program flowcharts show the sequence of
instructions in a single program or subroutine.

• shows logic of an algorithm

• emphasizes individual steps and their

interconnections

• e.g. control flow from one action to the next

Note: Different symbols are used to draw each

type of flowchart.

Module 1: Introduction to Java page 21© Dr Jonathan Cazalas

Flowchart Symbols

Oval

Parallelogram

Rectangle

Diamond

Hybrid

Name Symbol Use in Flowchart

Denotes the beginning or end of the program

Denotes an input operation

Denotes an output operation

Denotes a decision (or branch) to be made .

The program should continue along one of

two routes . (e.g. IF/THEN/ELSE)

Denotes a process to be carried out

e.g. addition , subtraction , division etc .

Flow line Denotes the direction of logic flow in the program

Module 1: Introduction to Java page 22© Dr Jonathan Cazalas

Example 1

• Write a Pseudocode, an algorithm and draw
a flowchart to convert the length in feet to
centimeter.

Pseudocode:

• Input the length in feet (LFT)

• Calculate the length in cm (LCM) by
multiplying LFT with 30

• Print length in cm (LCM)

Module 1: Introduction to Java page 23© Dr Jonathan Cazalas

Example 1

Algorithm

• Step 1: Input LFT

• Step 2: LCM LFT x 30

• Step 3: Print LCM

START

Input

LFT

LCM LFT x 30

Print

LCM

STOP

Flowchart

Module 1: Introduction to Java page 24© Dr Jonathan Cazalas

Example 2

Write a Pseudocode, an algorithm and draw a

flowchart that will read the two sides of a

rectangle and calculate its area.

Pseudocode

• Input the Length (L) and width (W) of a

rectangle

• Calculate the area (A) by multiplying L with W

• Print A

Module 1: Introduction to Java page 25© Dr Jonathan Cazalas

Example 2

Algorithm

• Step 1: Input L, W

• Step 2: A L x W

• Step 3: Print A

START

Input

L , W

A L x W

Print

A

STOP

Flowchart

Module 1: Introduction to Java page 26© Dr Jonathan Cazalas

Decision Structures

• The expression A>B is a logical expression

• it describes a condition we want to test

• if A>B is true (if A is greater than B) we take the
action on left

• print the value of A

• if A>B is false (if A is not greater than B) we
take the action on right

• print the value of B

Module 1: Introduction to Java page 27© Dr Jonathan Cazalas

Decision Structures

is

A>B

Print BPrint A

Y
N

Module 1: Introduction to Java page 28© Dr Jonathan Cazalas

IF–THEN–ELSE

STRUCTURE
• The structure is as follows

If condition then

true alternative

else

false alternative

End if

Module 1: Introduction to Java page 29© Dr Jonathan Cazalas

IF–THEN–ELSE

STRUCTURE
• The algorithm for the flowchart is as

follows:

If A>B then

print A

else

print B

endif

is

A>B

Print BPrint A

Y N

Module 1: Introduction to Java page 30© Dr Jonathan Cazalas

Relational Operators

Relational Operators

Operator Description

> Greater than

< Less than

= Equal to

 Or >= Greater than or equal to

 Or <= Less than or equal to

 Or != Not equal to

Module 1: Introduction to Java page 31© Dr Jonathan Cazalas

Example 4

• Write an algorithm that reads two values, determines the
largest value and prints the largest value with an
identifying message.

ALGORITHM

Step 1: Input VALUE1, VALUE2

Step 2: if (VALUE1 > VALUE2) then

MAX VALUE1

else

MAX VALUE2

endif

Step 3: Print “The largest value is”, MAX

Module 1: Introduction to Java page 32© Dr Jonathan Cazalas

Example 4

MAX VALUE1

Print

“The largest value is”, MAX

STOP

Y N

START

Input

VALUE1,VALUE2

MAX VALUE2

is

VALUE1>VALUE2

Module 1: Introduction to Java page 33© Dr Jonathan Cazalas

Programs

Computer programs, known as software, are instructions to

the computer.

You tell a computer what to do through programs. Without

programs, a computer is an empty machine. Computers do

not understand human languages, so you need to use

computer languages to communicate with them.

Programs are written using programming languages.

Module 1: Introduction to Java page 34© Dr Jonathan Cazalas

Programming Languages
Machine Language Assembly Language High-Level Language

Machine language is a set of primitive instructions
built into every computer. The instructions are in
the form of binary code, so you have to enter binary
codes for various instructions. Program with native
machine language is a tedious process. Moreover
the programs are highly difficult to read and
modify. For example, to add two numbers, you
might write an instruction in binary like this:

1101101010011010

Module 1: Introduction to Java page 35© Dr Jonathan Cazalas

Programming Languages
Machine Language Assembly Language High-Level Language

Assembly languages were developed to make
programming easy. Since the computer cannot understand
assembly language, however, a program called assembler is
used to convert assembly language programs into machine
code. For example, to add two numbers, you might write an
instruction in assembly code like this:

ADDF3 R1, R2, R3

Module 1: Introduction to Java page 36© Dr Jonathan Cazalas

Programming Languages
Machine Language Assembly Language High-Level Language

The high-level languages are English-like and easy to learn

and program. For example, the following is a high-level

language statement that computes the area of a circle with

radius 5:

area = 5 * 5 * 3.1415;

Module 1: Introduction to Java page 37© Dr Jonathan Cazalas

Popular High-Level Languages

Language Description

Ada

BASIC

C

C++

C#

COBOL

FORTRAN

Java

Pascal

Python

Visual

Basic

Named for Ada Lovelace, who worked on mechanical general-purpose computers. The Ada

language was developed for the Department of Defense and is used mainly in defense projects.

Beginner’s All-purpose Symbolic Instruction Code. It was designed to be learned and used easily

by beginners.

Developed at Bell Laboratories. C combines the power of an assembly language with the ease of

use and portability of a high-level language.

C++ is an object-oriented language, based on C.

Pronounced “C Sharp.” It is a hybrid of Java and C++ and was developed by Microsoft.

COmmon Business Oriented Language. Used for business applications.

FORmula TRANslation. Popular for scientific and mathematical applications.

Developed by Sun Microsystems, now part of Oracle. It is widely used for developing platform-

independent Internet applications.

Named for Blaise Pascal, who pioneered calculating machines in the seventeenth century. It is a

simple, structured, general-purpose language primarily for teaching programming.

A simple general-purpose scripting language good for writing short programs.

Visual Basic was developed by Microsoft and it enables the programmers to rapidly develop

graphical user interfaces.

Module 1: Introduction to Java page 38© Dr Jonathan Cazalas

Interpreting/Compiling Source Code

• A program written in a high-level language is

called a source program or source code.

• Because a computer cannot understand a source

program, a source program must be translated

into machine code for execution.

• The translation can be done using another

programming tool called an interpreter or a

compiler.

Module 1: Introduction to Java page 39© Dr Jonathan Cazalas

Interpreting Source Code

An interpreter reads one statement from the source

code, translates it to the machine code or virtual

machine code, and then executes it right away, as

shown in the following figure. Note that a statement

from the source code may be translated into several

machine instructions.

Module 1: Introduction to Java page 40© Dr Jonathan Cazalas

Compiling Source Code

A compiler translates the entire source code into a

machine-code file, and the machine-code file is

then executed, as shown in the following figure.

Module 1: Introduction to Java page 41© Dr Jonathan Cazalas

Why Java?

The answer is that Java enables users to develop and

deploy applications on the Internet for servers, desktop

computers, and small hand-held devices. The future of

computing is being profoundly influenced by the Internet,

and Java promises to remain a big part of that future. Java

is the Internet programming language.

Java is a general purpose programming language.

Java is the Internet programming language.

Module 1: Introduction to Java page 42© Dr Jonathan Cazalas

Java, Web, and Beyond

Java can be used to develop standalone

applications.

Java can be used to develop applications

running from a browser.

Java can also be used to develop applications

for hand-held devices.

Java can be used to develop applications for

Web servers.

Module 1: Introduction to Java page 43© Dr Jonathan Cazalas

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Companion
Website

www.cs.armstrong.edu/liang/JavaCharacteristics.pdf

Module 1: Introduction to Java page 44© Dr Jonathan Cazalas

Characteristics of Java
 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java is partially modeled on C++, but greatly

simplified and improved. Some people refer to

Java as "C++--" because it is like C++ but

with more functionality and fewer negative

aspects.

Companion
Website

Module 1: Introduction to Java page 45© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java is inherently object-oriented.

Although many object-oriented languages

began strictly as procedural languages,

Java was designed from the start to be

object-oriented. Object-oriented

programming (OOP) is a popular

programming approach that is replacing

traditional procedural programming

techniques.

One of the central issues in software

development is how to reuse code. Object-

oriented programming provides great

flexibility, modularity, clarity, and

reusability through encapsulation,

inheritance, and polymorphism.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 46© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Distributed computing involves several

computers working together on a network.

Java is designed to make distributed

computing easy. Since networking

capability is inherently integrated into

Java, writing network programs is like

sending and receiving data to and from a
file.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 47© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

You need an interpreter to run Java

programs. The programs are compiled into

the Java Virtual Machine code called

bytecode. The bytecode is machine-

independent and can run on any machine

that has a Java interpreter, which is part of

the Java Virtual Machine (JVM).

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 48© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java compilers can detect many problems

that would first show up at execution time

in other languages.

Java has eliminated certain types of error-

prone programming constructs found in

other languages.

Java has a runtime exception-handling

feature to provide programming support

for robustness.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 49© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java implements several security

mechanisms to protect your system against

harm caused by stray programs.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 50© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Write once, run anywhere

With a Java Virtual Machine (JVM),
you can write one program that will
run on any platform.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 51© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Because Java is architecture neutral,
Java programs are portable. They can
be run on any platform without being
recompiled.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 52© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java’s performance Because Java is
architecture neutral, Java programs are
portable. They can be run on any
platform without being recompiled.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 53© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Multithread programming is smoothly
integrated in Java, whereas in other
languages you have to call procedures
specific to the operating system to enable
multithreading.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 54© Dr Jonathan Cazalas

 Java Is Simple

 Java Is Object-Oriented

 Java Is Distributed

 Java Is Interpreted

 Java Is Robust

 Java Is Secure

 Java Is Architecture-Neutral

 Java Is Portable

 Java's Performance

 Java Is Multithreaded

 Java Is Dynamic

Java was designed to adapt to an evolving
environment. New code can be loaded on the
fly without recompilation. There is no need for
developers to create, and for users to install,
major new software versions. New features can

be incorporated transparently as needed.

Companion
Website Characteristics of Java

Module 1: Introduction to Java page 55© Dr Jonathan Cazalas

JDK Versions

 JDK 1.02 (1995)

 JDK 1.1 (1996)

 JDK 1.2 (1998)

 JDK 1.3 (2000)

 JDK 1.4 (2002)

 JDK 1.5 (2004) a. k. a. JDK 5 or Java 5

 JDK 1.6 (2006) a. k. a. JDK 6 or Java 6

 JDK 1.7 (2011) a. k. a. JDK 7 or Java 7

 JDK 1.8 (2014) a. k. a. JDK 8 or Java 8

Module 1: Introduction to Java page 56© Dr Jonathan Cazalas

JDK Editions

 Java Standard Edition (J2SE)

– J2SE can be used to develop client-side standalone

applications or applets.

 Java Enterprise Edition (J2EE)

– J2EE can be used to develop server-side applications

such as Java servlets, Java ServerPages, and Java

ServerFaces.

 Java Micro Edition (J2ME).

– J2ME can be used to develop applications for mobile

devices such as cell phones.

This book uses J2SE to introduce Java

programming.

Module 1: Introduction to Java page 57© Dr Jonathan Cazalas

Popular Java IDEs

NetBeans

 Eclipse

Module 1: Introduction to Java page 58© Dr Jonathan Cazalas

Developing Java Programs

Using NetBeans
NetBeans is a free IDE for developing Java

Programs

What is an IDE?

Stands for “Integrated Development Environment”

An IDE is a software application that provides

computer programmers a suitable environment for

software development

Module 1: Introduction to Java page 59© Dr Jonathan Cazalas

Developing Java Programs

Using NetBeans
Creating a Java Project:

Before you can create Java programs, you must

create a Java Project in NetBeans.

Think of a project as a folder to your Java program

and all supporting files.

You should create a new project for each Java

program you write.

Module 1: Introduction to Java page 60© Dr Jonathan Cazalas

Creating a Java Project in NetBeans

1) Choose File, New Project to display the New Project dialog

box, as shown below:

Module 1: Introduction to Java page 61© Dr Jonathan Cazalas

Creating a Java Project in NetBeans

2) Select Java in the Categories section and Java Application in

the Projects section and then click Next, which will display

the New Java Application dialog box, as shown below:

Module 1: Introduction to Java page 62© Dr Jonathan Cazalas

Creating a Java Project in NetBeans

3) We must now name the project. Type demo in the Project

Name field. Keep the default settings for Project Location

and Folder. And uncheck the two check-boxes.

4) Click Finish to create the Project, as shown below:

Module 1: Introduction to Java page 63© Dr Jonathan Cazalas

Creating a Java Project in NetBeans

 We just created a project.

 Now that the project is created, we can create Java programs

inside the project.

 This process is called “Creating a Java Class”.

Module 1: Introduction to Java page 64© Dr Jonathan Cazalas

Creating a Java Class in NetBeans

1) From the left side of NetBeans, you can see your new

project, demo, under the Projects tab. Right-click on the

actual project name, “demo”. A menu appears. Choose New,

Java Class, which displays the New Java Class dialog box,

as shown below:

Module 1: Introduction to Java page 65© Dr Jonathan Cazalas

Creating a Java Class in NetBeans

2) You must now give your new Java program a name. Type

Welcome in the Class Name field. You can leave all other

fields as their default values.

Module 1: Introduction to Java page 66© Dr Jonathan Cazalas

Creating a Java Class in NetBeans

3) Click Finish to create the Welcome class. Because the

package field was left empty, the source code for your new
program, Welcome.java, will be placed under the

<default package> node.

4) Now that we have our first Java program, we can modify the

code inside the Welcome class to make it match the figure on

the next page.

Module 1: Introduction to Java page 67© Dr Jonathan Cazalas

Creating a Java Class in NetBeans

Module 1: Introduction to Java page 68© Dr Jonathan Cazalas

Run your Java Program in NetBeans

 The final step is easy: just run the program and see the result.

 To run Welcome.java, right-click Welcome.java to display

a menu, and then choose Run File, or simply press Shift + F6.

Module 1: Introduction to Java page 69© Dr Jonathan Cazalas

Creating, Compiling, and

Running Programs

Module 1: Introduction to Java page 70© Dr Jonathan Cazalas

Compiling Java Source Code
You can port a source program to any machine with appropriate
compilers. The source program must be recompiled, however, because
the object program can only run on a specific machine. Nowadays
computers are networked to work together. Java was designed to run
object programs on any platform. With Java, you write the program
once, and compile the source program into a special type of object
code, known as bytecode. The bytecode can then run on any computer
with a Java Virtual Machine, as shown below. Java Virtual Machine is
a software that interprets Java bytecode.

Module 1: Introduction to Java page 71© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Trace a Program Execution
Enter main method

animation

Module 1: Introduction to Java page 72© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Trace a Program Execution

Execute statement

animation

Module 1: Introduction to Java page 73© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Trace a Program Execution
animation

print a message to the

console

Module 1: Introduction to Java page 74© Dr Jonathan Cazalas

Two Small Programs

Programming is fun!

Fundamentals First

Problem Driven

Output:

Module 1: Introduction to Java page 75© Dr Jonathan Cazalas

Two Small Programs

0.39759036144578314

Output:

Module 1: Introduction to Java page 76© Dr Jonathan Cazalas

Anatomy of a Java Program

Class name

Main method

Statements

Statement terminator

Reserved words

Comments

Blocks

Module 1: Introduction to Java page 77© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Class Name

Every Java program must have at least one class.

Each class has a name. By convention, class names

start with an uppercase letter. In this example, the

class name is Welcome.

Module 1: Introduction to Java page 78© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Main Method

Line 2 defines the main method. In order to run a

class, the class must contain a method named main.

The program is executed from the main method.

Module 1: Introduction to Java page 79© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Statement
A statement represents an action or a sequence of actions.

The statement System.out.println("Welcome to Java!") in

the program in Listing 1.1 is a statement to display the

greeting "Welcome to Java!“.

Module 1: Introduction to Java page 80© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Statement Terminator

Every statement in Java ends with a semicolon (;).

Module 1: Introduction to Java page 81© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

Reserved words

Reserved words or keywords are words that have a

specific meaning to the compiler and cannot be used for

other purposes in the program. For example, when the

compiler sees the word class, it understands that the word

after class is the name for the class.

Module 1: Introduction to Java page 82© Dr Jonathan Cazalas

Blocks

A pair of braces in a program forms a block that groups

components of a program.

public class Test {

 public static void main(String[] args) {

 System.out.println("Welcome to Java!");

 }

}

Class block

Method block

Module 1: Introduction to Java page 83© Dr Jonathan Cazalas

Special Symbols

Character Name Description

{}

()

[]

//

" "

;

Opening and closing

braces

Opening and closing

parentheses

Opening and closing

brackets

Double slashes

Opening and closing

quotation marks

Semicolon

Denotes a block to enclose statements.

Used with methods.

Denotes an array.

Precedes a comment line.

Enclosing a string (i.e., sequence of characters).

Marks the end of a statement.

Module 1: Introduction to Java page 84© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

{ … }

Module 1: Introduction to Java page 85© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

(…)

Module 1: Introduction to Java page 86© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

;

Module 1: Introduction to Java page 87© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

// …

Module 1: Introduction to Java page 88© Dr Jonathan Cazalas

// This program prints Welcome to Java!

public class Welcome {

public static void main(String[] args) {

System.out.println("Welcome to Java!");

}

}

" … "

Module 1: Introduction to Java page 89© Dr Jonathan Cazalas

Programming Style and

Documentation

Appropriate Comments

Naming Conventions

Proper Indentation and Spacing Lines

Block Styles

Module 1: Introduction to Java page 90© Dr Jonathan Cazalas

Appropriate Comments

Include a summary at the beginning of the
program to explain what the program does, its key
features, its supporting data structures, and any
unique techniques it uses.

Include your name, class section, instructor, date,
and a brief description at the beginning of the
program.

Module 1: Introduction to Java page 91© Dr Jonathan Cazalas

Comments

Line comment: A line comment is preceded by two

slashes (//) in a line.

Paragraph comment: A paragraph comment is enclosed

between /* and */ in one or multiple lines.

javadoc comment: javadoc comments begin with /**

and end with */. They are used for documenting

classes, data, and methods. They can be extracted into

an HTML file using JDK's javadoc command.

Three types of comments in Java.

Module 1: Introduction to Java page 92© Dr Jonathan Cazalas

Naming Conventions

Choose meaningful and descriptive names.

Class names:

– Capitalize the first letter of each word in the

name. For example, the class name

ComputeExpression.

Module 1: Introduction to Java page 93© Dr Jonathan Cazalas

Proper Indentation and Spacing

 Indentation

– Indent using a tab

– Or with three to five spaces.

– Be CONSISTENT!

Spacing

– Use blank line to separate segments of the code.

Module 1: Introduction to Java page 94© Dr Jonathan Cazalas

Block Styles

Use end-of-line style for braces.

public class Test

{

 public static void main(String[] args)

 {

 System.out.println("Block Styles");

 }

}

public class Test {

 public static void main(String[] args) {

 System.out.println("Block Styles");

 }

}

End-of-line

style

Next-line

style

Module 1: Introduction to Java page 95© Dr Jonathan Cazalas

Programming Errors

Syntax Errors

– Errors that are detected by the compiler

– Examples: mistyping a keyword, using an

opening brace but not the closing, etc.

– Usually easy to detect, because the compiler

tells you where the error is and what caused

them.

Module 1: Introduction to Java page 96© Dr Jonathan Cazalas

Programming Errors

Syntax Error Example:

• The keyword void is missing before main in line 2.

• The string Welcome to Java should be closed

with a closing quotation mark in line 3.

Module 1: Introduction to Java page 97© Dr Jonathan Cazalas

Programming Errors

Syntax Error Example:

Since a single error will often display many

lines of compile errors, it is a good practice to

fix errors from the top line and work

downward.

Fixing errors that occur earlier in the program

may also fix additional errors that occur later.

Module 1: Introduction to Java page 98© Dr Jonathan Cazalas

Programming Errors

Runtime Errors

– Causes the program to terminate in an

abnormal way

– Known as “crashing” or “my program

crashed”

– Often caused by input mistakes, where the user

enters a value the program cannot handle

– Another example: divide by zero

Module 1: Introduction to Java page 99© Dr Jonathan Cazalas

Programming Errors

Runtime Error Example

Module 1: Introduction to Java page 100© Dr Jonathan Cazalas

Programming Errors

Logic Errors

– Produces incorrect result

– Program does not run the way we intended

– Usually the result of logical mistakes

– In fact, the program “works”, but the output is

wrong due to our logical mistake.

– These errors are harder to detect.

Module 1: Introduction to Java page 101© Dr Jonathan Cazalas

Programming Errors

Common Errors

– Missing a closing brace, missing a semicolon,

missing quotation marks for strings, and

misspelling names are common errors for new

programmers.

Module 1: Introduction to Java page 102© Dr Jonathan Cazalas

Programming Errors

Common Errors

– Missing a semicolon:

Module 1: Introduction to Java page 103© Dr Jonathan Cazalas

Programming Errors

Common Errors

– Missing quotation marks:

– Thankfully, your IDE (such as NetBeans)

will insert the closing quotation marks

automatically

Module 1: Introduction to Java page 104© Dr Jonathan Cazalas

Programming Errors

Common Errors

– Misspelling Names:

– main is misspelled as Main

– String is misspelled as string

