ENHANCING DATA STREAM MINING IN
WIRELESS SENSOR NETWOKS USING
CLUSTERING ALGORITMS

By
Yassmeen Sanad Ahmad Alghamdi

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Master Degree in Computer Science

Supervised By
Dr. Manal Abdulaziz Abdullah

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY
KING ABDULAZIZ UNIVERSITY
JEDDAH - SAUDI ARABIA
Shaaban 1438 H — May 2017 G






ENHANCING DATA STREAM MINING IN
WIRELESS SENSOR NETWOKS USING
CLUSTERING ALGORITMS

By
Yassmeen Sanad Ahmad Alghamdi

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Master Degree in Computer Science

Supervised By
Dr. Manal Abdulaziz Abdullah

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY
KING ABDULAZIZ UNIVERSITY
JEDDAH - SAUDI ARABIA
Shaaban 1438 H — May 2017 G



ENHANCING DATA STREAM MINING IN
WIRELESS SENSOR NETWORKS USING
CLUSTERING ALGORITHMS

By
Yassmeen Sanad Ahmad Alghamdi

This thesis has been approved and accepted in partial fulfillment of the
requirements for the degree of Master of Computer Science

EXAMINATION COMMITTEE

Name Rank Field Signature

Advisor and | Dr Manal | Associate | Computer
Rapporteur Abdullah Professor | Networks (\/&-\LM( : \O&M

External | Prof. Yasser Electrical | /71(&1% .

Examiner Kadah PRGICHITY Engineering

Internal Dr Laila Associate | Computer /6‘/
Examiner Nassef Professor | Networks VC-%‘”U (F

- KING ABDULAZIZ UNIVERSITY
Shaaban 1438 H — May 2017 G




DEDICATION

This work is dedicated to my loving parents, my husband and daughters. To my
brothers and sister.
To my family and friends. To anyone contributed in the success of this research.
To a special friend who always was with me to continue my thesis journey.



ACKNOWLEDGMENT

In the Name of Allah, the Most Merciful, the Most Compassionate, all praise be to
Allah, the Lord of the Worlds, and prayers and peace be upon Mohamed, His servant
and messenger. First and foremost, | must acknowledge my limitless thanks to Allah,
the Ever-Magnificent, the Ever-Thankful, for His help and blessing. | am sure that this
work would have never been completed without His guidance.

I am grateful to the people who worked hard with me from the beginning to the
completion of this present research, particularly my supervisors, Dr. Manal
Abdulaziz for her efforts, motivation, encouragement, and continuous support. It was
an honor for me to work with her. I would also like to express my wholehearted thanks
to my family (my father, mother, husband, sister, brothers, daughters and my
friends especially Azoof) for the generous support they have provided me throughout
my life and particularly throughout my Master’s degree. Because of their
unconditional love and prayers, | have had the chance to complete this thesis.

Yassmeen Alghamdi



ENHANCING DATA STREAM MINING IN WIRELESS SENSOR
NETWORIKS USING CLUSTERING ALGORITHMS

Yassmeen Sanad Alghamdi

ABSTRACT

The past few years have witnessed an increased interest in the potential use of Wireless
Sensor Networks (WSNSs) in a wide range of applications in the field of military
surveillance, fire detection, habitat monitoring, industry, health monitoring and many
more. WSNSs consist of individual nodes that are able to interact with their environment
by sensing and controlling physical parameters. Sensor nodes tend to generate a large
amount of sequential small and tuple-oriented data that is considered as Data Streams.
Data streams usually are huge data sets that arrive in an online fashion, flowing rapidly
in a very high speed, where they are unlimited and there is no control on the arrival
processing order. Due to sensor network limitations, some challenges are faced and
urgently need to be solved. Such challenges include long lasting the WSN lifetime and
reducing nodes energy consumption. Data mining could deal with the WSN

challenges. Clustering is one of mining techniques and plays an important role in



organizing WSNs. It has proven its efficiency on network performance by extending
network lifetime, saving energy of sensor nodes, reducing delay and delivering more
data packets. This research develops an algorithm called the Density Grid-base
Clustering algorithm (DeGiCA) that enhances the clustering mining technique in
WSNs by combining density and grid techniques. The deployment density variation
technique can find arbitrary shaped clusters while the grid technique is used to avoid
clustering quality problems by discarding the boundary points of grids. DeGiCA helps
to face the limitations found in WSNs that carry data streams. By using a MATLAB-
based simulator, DeGiCA is compared with other clustering algorithms in WSNs that
manipulate data streams. Fuzzy Clustering Means algorithm (FCM) and K-means
algorithm are two selected algorithms used to be compared with DeGiCA performance
metrics results. The simulation results indicate that the performance of DeGiCA
outperforms K-Means in terms of network lifetime by 15%, energy consumption by
13% and packet delivery ratio by 40%. DeGiCA also outperforms FCM in terms of
network lifetime by 17%, energy consumption by 11% and packet delivery ratio by

70%.
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Introduction

1.1 Introduction

Today, new technologies that appeared recently such as science of computer, genetic
engineering and the emerging field of nanotechnology, differ from technologies that
preceded them. Telephone, automobile, television and air travel accelerated for a
while, transformed the society, but then settled into a manageable rate of change. In
other words, computer science, biotechnology and nanotechnology don't work that

way, they are called self-accelerating, where they grow continuously and rapidly.

In recent years, a widespread use of Wireless Sensor Networks (WSNSs) have been
found in several real life applications. They are increasingly used and found in many
fields such as environmental, industrial, military, and agriculture [1]. WSNs are a
special kind of networks that have the ability to sense and process information. The
main functionality of a WSN is to monitor a certain physical phenomenon across a

geographic area.

A WSN refers to a large-scale ad hoc wireless network of hundreds or even thousands
of tiny, independent built-in devices called Sensor Nodes (SN) scattered in a sensing

area. Sensor nodes are effective tools for sensing and gathering data in a variety of



environments [2]. Each sensor node contains four basic components: sensing unit,
processing unit, transducer, and energy source. They have various functions for
monitoring a wide variety surrounding conditions and collecting high precision and
speed data such as light, temperature, humidity, magnetic field, pressure, acoustic and
voice-level information [3]. Unfortunately, sensor nodes are low-power transceivers
and known to be “energy constrained with limited computation capacity”. They are
limited in terms of power, processing, and memory (remove). Obviously, they have
sensing circuitry to measure ambient conditions from a surrounding environment [4]
and continuously report parameters and collect sensed signals from real-life
applications that consumes node battery leading to consume network energy thus
shorten its lifetime. WSNs depend hardly on their sensors that consume a large amount
of battery energy. Unfortunately, the nature of WSNs make it very difficult to recharge

sensor node batteries [1].

In some sensor network applications, sensor nodes tend to generate a large amount of
sequential small and tuple-oriented data that is considered as Data Streams. Data
streams usually are huge data sets that arrive in an online fashion, flowing rapidly in a
very high speed, where they are unlimited and there is no control on the arrival
processing order [5]. Synoptically, there are some differences between sensor streams
and traditional streams. Sensor streams are only samples of the entire population,
imprecise, noisy, and with a moderate size. While in traditional streams the entire

population is used, data is exact, error-free, and huge in size.

Due to difficulties in recharging node battery in remote harsh environments or even
hostile terrains, energy is considered to be a significant resource and an important

objective design in WSNs. Energy consumption in WSNs can be categorized into two



parts, communication and computation. Most energy is exhausted through
communication among nodes rather than sensing or computing. Most studies attempt
to extend network lifetime, allowing scalability for large numbers of sensors, and
supporting fault tolerance for battery consumption and broken nodes. Applying these
traditional approaches reduces overall network lifetime [3]. WSNs suffer from several
resource constraints, such as bandwidth, storage, processing and energy constrain.
Therefore, WSNs algorithms should be accurately designed in terms of facing

challenges [5].

The widespread deployment of WSNs and the need for data aggregation requires
efficient organization network topology to reach load balancing, network lifetime
extension and energy consumption reduction. Data mining techniques deal with such
requirements by using a special grouping technique called Clustering. Clustering has
proven to be an effective approach for organizing a network into a connected
hierarchy. At any rate, clustering technique plays an important role in network
organization and performance. Owing to a variety of advantages, clustering is
becoming an active branch in WSN data mining. Figure 1.1 shows a simple structure

of a clustered WSN.
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Figure 1.1 Simple Clustered WSN Structure [6]



As shown in figure 1.1, sensed streaming data is collected from surroundings by sensor
nodes in a clustered WSN, upper level nodes with special characteristics called
Cluster Heads (CHs) aggregate sensed data streams from sensor nodes to perform
data processing and redundancy deletion. Each CH is considered to be leader on a
group of sensor nodes called Cluster. After that, aggregated data is sent to another
upper level with special observers called Base Stations (BSs) to be transferred later
on to end users. A BS is relatively resourceful as compared to normal sensor nodes. It
usually acts as a gateway to other networks. Transferring sensed data streams in a low-

to-high level hierarchy through sensed medium exhausts network and consumes its

energy [1].

In brief, clustering process starts when grouping similar senor nodes in clusters. A
node with specific parameters (i.e. residual energy, cluster ID, weight, etc.) or
combination of parameters is selected to be a CH in a cluster. A CH is used to collect
and aggregate data streams from other ordinary sensor nodes in its cluster. All sensor
nodes within one cluster communicate and send data to their CH. CHs then aggregate

data streams to be sent to the BS [4].

Due to WSNs restrictions listed above, sending a large amount of streaming data
consumes nodes energy whenever transferred through wireless medium in a multi-hop
data communication to reach the BS. For this reasons, it is aimed in this research to
enhance data stream mining using clustering technique by developing a distributed
clustering data stream algorithm called the Density Grid-base Clustering algorithm
(DeGiCA) that enhances clustering mining technique in WSNs by combining density
and grid techniques. By using a MATLAB-based simulator, DeGiCA is compared with

other clustering algorithms in WSNs that manipulate with data streams. Simulation



results indicate that the developed DeGiCA outperforms its competitors in terms of

network lifetime, energy consumption and packet delivery ratio.

1.2 Thesis Motivation

WSNs are playing a vital role in daily lives. Humans have depended on wired sensors
for several years, from simple tasks such as temperature monitoring, to complex ones
such as monitoring life-signs in hospital patients. Suddenly, WSNs appeared and
provided unexpected applications, starting from military applications such as
battlefield mapping and target surveillance, to creating context aware homes. In this
case, sensors can monitor safety and provide automated services designed specially to
individual users.

This thesis tried to narrow the performance gap of data stream mining in WSNs using
density grid algorithms. Some existing clustering algorithms in WSNs don’t provide
high performance metrics. So, the DeGiCA is developed to enhance performance of

some existing algorithms.

1.3 Problem Statement

With the urgent need of WSNs in several applications that process data streams, it is
found that WSNs suffer from insufficient network lifetime that may impede workflow
due to node battery energy consumption. Such applications require a long-lasting
network lifetime. The most prominent challenges are how to long-last a WSN lifetime,
How to reduce sensor nodes energy consumption, How to ensure delivering data

stream packets from source to destination in this type of networks without failure.



To address such challenges, it is required to enhance data stream mining techniques in
WSNs by using clustering technique. Data stream mining is concerned with extracting
knowledge structures represented in models and patterns in non-stopping streams of
information. Clustering plays an important role in organizing WSNs and affects
network performance by extending network lifetime, saving energy of sensor nodes

and ensuring delivery of data stream packets.

1.4 Thesis Aim and Objectives

Although WSNs are becoming a highly pursued research topic to be studied, evolving,
increasingly used in various applications in data stream mining fields, WSNs still
suffer from several important aspects it should characterize. Accordingly, the main

research objectives of this thesis are:

1. The ambition to conserve sensor node energy during WSNs lifetime within the
sensed area by using the efficient clustering data mining technique and
consequently reducing their energy consumption as much as possible.

2. Applying clustering hierarchy that has proven its efficiency and effectiveness in
prolonging WSNSs lifetime while sensing streaming data.

3. Many clustering algorithms may fail while streaming data causing data loss. It is
the aim to consider data streams during designing a clustered WSN. To ensure data
stream packet delivery from source to final destination, clustering is used to benefit

fault tolerance.

1.5 Research Methodology
To achieve the desired objectives, the thesis goes through the following steps:
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1. Study related works in the field of WSNSs, clustering and data streams. In terms
of definitions, properties, structures and techniques welling to support
background.

2. Review issues related to clustered WSNs schemes that stream data streams and
study recently existing WSN clustering algorithms in terms of their advantages
and disadvantages.

3. Developing Density Grid-based Clustering Model that needed several steps to
be accomplished. Studying methods and combining techniques until putting
together an overview of the proposed model.

4. Implementing DeGIiCA and its competitors using MATLAB-based simulator.
Take into consideration points of strengths and weaknesses, recording each and
trying to solve weak points to achieve more enhancement.

5. Selecting two well-known WSN clustering algorithm that may address data
stream: the standard Fuzzy Clustering-Means algorithm (FCM) and the well-
known K-means. Both are considered to be DeGiCA competitors where they are
used to evaluate the developed algorithm.

6. Testing and evaluating DeGiCA and comparing its performance metrics
outcomes with its competitors’ outcomes by using MATLAB-based simulator.
Analyzing and discussing simulation experimental results and providing

suggestions about future work.

1.6 Research Contribution

In recent researches, most WSNs clustering algorithms involving data streams heading

towards a FCM-based clustering. FCM-based clustering algorithms are based on the



standard FCM. FCM is considered to be the most suitable WSN clustering algorithm
that manipulates data streams due to its fuzzification nature. FCM-based clustering

algorithms are developed to enhance FCM as discussed in chapter 2.

The DeGiCA has proven to be also a suitable environment for manipulating data
streams in WSNs without being a FCM-based clustering algorithm. In fact, DeGiCA

solves some problems found in FCM, as discussed later in chapter 3.

The research developed the DeGiCA that enhances clustering mining technique in
WSNs by combining density and grid techniques. The density technique can find
arbitrary shaped clusters while the grid technique is used to avoid clustering quality
problems by discarding boundary nodes of grids. DeGiCA helps to face the limitations

found in WSNs that involve data streams.

1.7 Thesis Organization

Thesis documentation is orderly organized and divided into five main chapters. The

remaining of thesis documentation is organized as follows:

Chapter 2 presents thorough literature review and previously related works.
Specifically, it presents an overview on data mining and a survey of data clustering. It
provides a discussion about WSNs, data streams and data mining. It provides a
classification of WSN clustering algorithm described in details. Chapter 3 presents the
proposed DeGiCA. It provides DeGiCA main parts and phases in detail. Each part of
DeGiCA is explained by a pseudo code and flowchart. The dataset streaming data

description is presented in chapter 4. It explains DeGiCA performance metrics,



experimental parameters and simulation analysis. Optimum values are obtained to
scale the developed algorithm. Finally, chapter 5 presented thesis conclusion where

comments on DeGiCA simulation results then suggested future work.
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Chapter 11

Literature Review

2.1 Introduction

In recent years, a widespread use of WSNs have been seen in various applications. A
WSN is a special kind of ad-hoc networks that has the ability to sense and process
information. They can be used in many fields such as environmental, industrial,
military, and agriculture fields. WSNs contain tiny independent built-in devices called
sensor nodes. Sensor nodes contain four basic components: sensing unit, processing
unit, transducer, and energy source [7]. Sensor nodes are mainly used in data
processing and continuously report parameters. Reports are transmitted by the sensor

nodes and collected by special observers called Base Stations (BSS).

A WSN has several resource constraints, such as low computational power and limited
energy source. WSNs depend hardly on their sensors that consumes a lot of battery
energy. Unfortunately, the nature of WSNs makes it very difficult to recharge the
sensor nodes batteries. Therefore, energy efficiency is an important objective design
in WSNs [1] and their algorithms should be accurately designed based on energy

saving.
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In some sensor network applications, data that WSNs process usually contain a large
amount of datasets that flow rapidly in a very high speed and arrive in an online
fashion. Data are unlimited and there is no control on the arrival order of the elements
being processed. Such data are called Data Streams [5, 7]. In general, there are some
differences between sensor streams and traditional streams. Sensor streams are only
samples of the entire population, imprecise, noisy, and with a moderate size. While in
traditional streams the entire population is used, the data is exact, error-free, and huge

in size [5].

The widespread deployment of WSNSs and the need for aggregating data streams from
them requires an efficient organization of network topology to reach load balancing
and network lifetime extension. This can be done by using mining techniques.
Clustering is a mining technigue that has proven to be an effective approach in WSNs
to solve the problem of network lifetime, energy consumption, data aggregation, load
balancing, scalability [8, 9], delay and delivering data packets. It organizes WSNs into
a connected hierarchy. Generally, there are two categories of networks in WSNs, flat
networks and clustered (i.e. hierarchical) networks [10]. At any rate, clustering
phenomenon plays an important role in network organization, and also affects the
network performance. Owing to a variety of advantages, clustering is an active branch
in mining WSNSs data. In a clustered WSN, the network is divided into groups called
clusters, each cluster has a leader elected from the sensor nodes called Cluster Head
(CH) and other Member Nodes (MNs). Data streams are aggregated from the MNs by
their CH inside a cluster. Then it is transmitted from CHs to the BS. Transmitting data
streams in the wireless medium by a multi-hop communication to reach the BS

resumes the energy of sensor nodes leading to shorten the network lifetime.
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This chapter briefly provides some important concepts in WSNSs, data streams, data
stream mining, simulation, simulators, and clustering algorithms. The chapter is
organized as follows: section 2.2 presents an overview on Wireless Sensor Networks
(WSNSs). Section 2.3 presents data streams in WSNs. Section 2.4 is an overview on
data mining in WSNSs. Section 2.5 presents data streams mining clustering technique
in WSNSs. Section 2.6 is a general classification for clustering protocols. Lastly, section

2.7 is the conclusion.

2.2 Wireless Sensor Networks (WSNSs)

WSNs are the key to gather information needed by smart environments, whether in
buildings, utilities, homes, shipboard, transportation systems automation, or elsewhere
[11]. A WSN is a special kind of ad-hoc networks that have the ability to sense and
process information. They can be used in many fields such as environmental,
industrial, military, and agriculture fields [7]. In harsh regions, running wires or
cabling is usually impractical. A WSN is required to be fast and easy to install and
maintain [11]. WSNs contain tiny independent built-in devices called sensor nodes.

Sensor nodes contain five basic components as shown in figure 2.1 [7].

Memory

Controller Sensors/actuators

Power Supply

Communication

device

Figure 2.1 Main Sensor Node Hardware Components [7]
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Nodes contain sensors, processor, memory and wireless transceivers often are small
and have only very limited computational power and communication bandwidth [12].
There are two main types of applications for sensor networks: monitoring and
actuating applications. In monitoring applications, the nodes only processes the data.
In actuating applications, the nodes can interfere in the monitored environment [13].
In WSNs, the network lifetime is an important issue when building any algorithm and
it can be defined as the time until the first/last node in the network depletes its energy,

or it can be defined as the time until a node is disconnected from the BS [14].

2.3 Data Streams in WSNs

In many emerging applications, huge data streams are monitored in a network
environment. For example, large sensor networks are widely used in wildlife
monitoring, road traffic monitoring, and environment surveillance. Each sensor
generates a data stream where new data entries keep arriving in a continuous manner.
In order to aggregate and analyze streaming data under monitoring, it is often required

to transmit data streams over the network [12].

WSNs are energy constrained, and the extension of their lifetime is one of the most
important issues during the design. WSNs process a specific type of data called data
streams. Nodes tend to generate the data streams in a large amount of sequential small
and tuple-oriented form. Data streams usually are huge datasets that arrive in an online
fashion, flowing rapidly in a very high speed, where they are unlimited and there is no

control on the arrival processing order [5, 7]. However, there is a difference between
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sensor streams and traditional streams. Sensor streams arrive continuously, thus

clustering algorithms have to perform in a single scan.

An important characteristic of data streams is that they can be mined in a distributed
fashion. Individual processors may have limited processing and memory. In sensor
networks, it may be desirable to mine data streams with limited processing and

memory [15].

2.3.1 Traditional Data Mining and Data Stream Mining in WSNs

Traditional data mining differs from WSN data stream mining. The traditional data
mining is centralized, computationally expensive, and focuses on disk-resident
transactional data. It collects data at the central site which is not bounded by
computational resources. On the other hand, a WSN data streams flow continuously in
systems with varying update rates. It is impossible to store the entire data stream or to
scan it through multiple times, due to its high speed, huge amount and high storage
cost [16]. Specifically, data stream clustering analysis causes some challenges for
traditional clustering algorithms. First, data can only be examined in one pass. Second,

viewing a data stream as a long vector of data is not enough in many applications [17].

2.3.2 Data Stream Characteristics in WSNs

Data stream has different characteristics of data collection compared to the traditional
database model. First, when data stream arrives, it isn’t easy to be controlled by arrival

order. Second, data streams are continuously generated as time progresses. Third, data
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streams are dynamic. Additionally, data stream must be read and processed based on
the arrival order. The order of data cannot be changed to improve the results [18].
Based on the data stream characteristics, the processing of data stream requires first,
each data element must be examined once, because it is impossible to keep the entire
stream in the main memory. Second, each data element in data streams should be
processed as soon as possible. Third, the memory usage for mining data streams should
be limited even though new data elements are continuously generated. Finally, the
results generated by the online algorithms should be immediately available upon user

request [18].

2.3.3 Algorithms of Data Streams

There are several data stream algorithms found in literature to handle the data streams
through various environment [15]. The following two techniques provide breif
descriptions on the concept of clustering in data streams and mining streams in sensor
networks that are fouced on the research scope study. Clustering is a widely studied
problem in data mining. Due to the one-pass constraint on the dataset, it is difficult to
adapt arbitrary clustering algorithms to data streams. In the context of data streams, it
is better to determine clusters in specific user defined horizons rather than on the entire
dataset. The micro-clustering technique determines clusters over the entire dataset.
Many applications of micro-clustering which can perform effective summarization

based analysis of the dataset [15].

On the other hand, it has become possible to track large amounts of data in a distributed

fashion with the use of sensor technology. The large amounts of data collected by the
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sensor nodes makes the problem of monitoring. Due to the resource limitations in
sensor networks, when a given network have millions of sensor nodes, it becomes very
expensive to localize all data at a given global node for analysis. This is a point of view

on storage and communication [15].

2.4 Overview of Data Mining in WSNs

A widespread use of data mining is found in several application fields and various
environments in the last decades. Data mining is defined as the computational process
of discovering patterns in large datasets involving methods at the intersection of
artificial intelligence (Al), machine learning, statistics and database systems [19].
Large amount of databases in various areas have been generated from the development
of information technology (IT). The research in databases and IT has given the
importance to store and manipulate such data for further decision making. Data mining
is a process of extracting information and patterns from huge data [20] or even rapidly

flowing data such as data streams.

2.4.1 Common Classes of Data Mining

There are six common classes of tasks for data mining [21]:

e Anomaly detection: (outlier/change/deviation detection) unusual data records

identification or data errors that require further investigation.
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e Association rule learning: (dependency modelling) searches for relationships
between variables. For example, in market basket analysis, a supermarket might
gather data on customer purchasing habits by using this rule.

o Clustering: it is the task of discovering groups of data that are similar to each other.

o Classification: it is the task of generalizing known structure to apply to new data.

o Regression: it allows to find a function which models the data with the least error.

e Summarization: it provides a compact representation of the dataset, including

visualization and report generation.

2.4.2 Data Stream Mining in WSNs

Today many organizations have a lot of large databases that grow without limit at a
rate of several million records per day. Mining these continuous data streams brings
new challenges. Knowledge discovery systems are constrained by three main limited
resources: time, memory and sample size. In contrast, in many data mining

applications, the bottleneck is time and memory, not samples [22].

Managing and processing data streams in WSNs has become a topic of research in
several fields of data mining. The main purpose of deploying the WSNs is to make the
real-time decision which has been proved to be challenging due to many resource
constrained computing, communicating capacities, and huge volume of data streams
generated by WSNSs. This challenge helps the research community to find data mining
techniques dealing with extracting knowledge from large continuous arriving data

streams from WSNSs. Traditional data mining techniques are not suitable for mining

18


https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Automatic_summarization

data streams in WSNs, due to the nature of sensor streaming data, their characteristics,

and network limitations [16].

2.4.2.1 Challenges of Data Stream Mining in WSNs

Conventional data mining techniques when handling data streams in WSNs are

challenging for the following reasons, [16]:

1-

Resource constraint. The sensor nodes are resource constraints in terms of power,
memory, communication bandwidth, and computational power.

High data rate and huge data size. The nature of streaming data in WSNs is having
a very high speed. They flow rapidly and continuously. In many fields, data
streams arrive faster than they could be mined. The challenge for data mining
techniques is how to manipulate with the continuous, rapid, and changing data
streams and also how to incorporate user interaction during high-speed data
stream arrival.

Online data stream distributed mining. In WSNs, data stream is geographically
distributed, inputs arrive continuously and so far newer data may change the
results based on older ones. Most data mining techniques that analyze data in an
offline manner do not meet the requirement of handling distributed stream data.
So, how to process distributed streaming data online is a big challenge.
Modeling changes of mining results over time. Data-generating phenomenon is
changing over time. So the extracted model should be updated continuously. Due
to the continuity of data streams, capturing the change of mining results is more

important than mining the results.
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5- Data transformation. Sensor nodes are limited in terms of bandwidth. So,
transforming original data over the network is not easy.

6- Dynamic network topology. Sensor networks are deployed in harsh, uncertain,
heterogenic, and dynamic environments. Sensor nodes may move among different
locations at any point over time. This can increase the complexity of designing an

appropriate mining technique.

2.4.2.2 Taxonomy of Data Stream Mining Techniques for WSNs

There are three main classification levels in data stream mining techniques for WSN.
The highest-level [16] of classification is based upon the general data mining classes
used, such as frequent pattern mining, sequential pattern mining, clustering, and
classification. For the frequent pattern mining and sequential pattern mining, they have
adopted the traditional frequent mining techniques to find the association among large
WSNs data. For the clustering, it adopted the K-mean, hierarchical, and data
correlation-based. While in the classification, the traditional classification techniques
were adopted. Such techniques are decision trees, rule-based, nearest neighbor, and

support vector machines.

The second level [16] of classification is based on the ability to process data streams
in a centralized or distributed manner. Since WSNs nodes has limited resource, the
approach meant for distributed processing requires one-pass algorithms to complete a
part of data mining locally, and then gather the results. The distributed approaches are
used to increase the WSNs lifetime, and can extract a large number of data streams

from the environment.
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The third level [16] of classification is selected based on how to face a specific
problem. In WSNSs, research has been focused on two aspects: performance and
application. Mainly, sensor nodes are constrained in some resources, so, algorithm that
address such constrains are needed to maximize the WSNs performance. On the other
hand, a WSNs application requires data accuracy, fault tolerance, event prediction,

scalability and robustness.

2.4.2.3 Application Areas of WSNs Data Stream Mining

The following points are examples of real-world WSNs applications using data stream

mining techniques [16]:

1. In the environmental monitoring, sensors are deployed in an unattended region to
monitor the natural environment. Data mining techniques can identify when and
where an event may occur and gives an alarm whenever detection.

2. For the health monitoring, patients are equipped with small sensors on multiple
different positions of their body to monitor their health or behavior. Data mining
technique can identify the abnormal behavior and help to take effective action.

3. Sensors in object tracking are embedded in moving targets to track them in real-
time. Data mining techniques help to find the location of targets and to make
tracking more accurate.

4. WSNs are usually deployed in harsh environments. Sensor nodes are resource
constrained especially in terms of power. Data mining techniques help to identify

the faulty or dead nodes.
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In data analysis, data mining techniques help to discover data patterns in a sensor
network for a certain application.
In real-time monitoring, data mining techniques help to identify certain patterns

and predict future events, which make real-time response and action feasible.

2.4.2.4 Implementation of WSNs Data Stream Mining

Three main techniques are used for data stream mining implementation in WSNs [16]:

1-

Evaluation method. Analytical modeling (very complex), simulation (the most
popular and effective), and real deployment (difficult) are the most commonly used
techniques to analyze the performance of data stream mining technique in WSNSs.
Data source. The dataset used to experimentally validate the proposed technique.
Two types of dataset are used, synthetic and real. Most techniques use simulation
on synthetic dataset to validate results.

Optimization objective. WSNs are constrained in different resources such as
network size, communication overhead, energy efficiency, memory requirements,
node mobility, and so on. Data stream mining techniques should consider those
constraints but mostly they cannot efficiently cover all the performance metrics.
The large variations in the performance metrics makes it difficult to present a

comprehensive evaluation.
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2.4.2.5 Limitations of Existing Data Stream Mining Techniques for WSNs

Existing data stream mining algorithms have many limitations. Some of these

limitations are: [16]

1. Most techniques do not take into account the heterogeneous streaming data and
assume that sensor streaming data is homogenous.

2. Most techniques have a high computational complexity and a reduced accuracy
due to considering only spatial, temporal or spatiotemporal correlations among
sensor streaming data of neighboring nodes and ignoring the attribute dependency
among sensor nodes.

3. The techniques that consider spatial correlation suffer from the choice of
appropriate neighborhood range, while techniques which consider temporal
correlation suffer from the choice of sliding window size.

4. Most techniques use centralized approach where data streams are transmitted to
the BS for identifying certain patterns. The centralized approach causes
communication overhead and more delay.

5. Although a lot of simulators are available and play an important role for developing
and testing new techniques, simulation results may not be accurate.

6. The techniques evaluated by analytical modeling use certain simplification and
assumption to evaluate the performance of proposed technique. This may lead to
inaccurate results with limited confidence.

7. Most techniques assume stationary sensor nodes and do not consider node
mobility. Applying these techniques for mobile networks or networks with

dynamic changed topology would be challenging.
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8. Frequent pattern mining approaches suffer from the choice of proper and flexible
support and confidence threshold. Clustering techniques suffer from the choice of
an appropriate parameter of cluster width, and computing the distance between
data instances in heterogeneous data is computationally expensive. Classification-
based techniques require some prior knowledge to classify the incoming data

stream.

2.5 Data Stream Mining Clustering Techniques in WSNs

Clustering technique plays an important role in affecting a network performance and
organization. There are several key limitations in WSNs clustering schemes must
consider, such as [23], energy of nodes, network lifetime, abilities of nodes and
application dependency, where an optimal clustering algorithm should be able to adapt
to a variety of application requirements. Data Clustering is grouping similar objects.
In clustering, it is easy to identify dense and sparse regions and also discover overall
distributed patterns and correlations among data attributes [20]. In order to support
data aggregation through efficient network organization, nodes can be partitioned into
a number of small groups called Clusters. Each cluster has a coordinator called Cluster

Head (CH), and a number of Member Nodes (MNs) [1].

2.5.1 Components of Clustered WSNs

Clustering in the organizational structure of WSNs has five important components

shown in figure 2.2, and listed as the following:

24



e Sensor nodes, which are considered the core component of any WSN. They can
take on multiple roles, such as, sensing, storing data, routing, and processing.

e Clusters, which are considered the organizational unit for WSNs. The natures of
these networks require to be broken down into clusters to simplify tasks.

e Cluster heads, which are used as an organization leaders of a cluster. They are
required to organize activities in the cluster. Such activities include data
aggregation and organizing the communication schedule of a cluster.

e The BS, which is used at the upper level of the hierarchical WSN. It gives the
communication link between the sensor network and the end-user.

e End User, the queries in a sensor network are generated by the end user due to the

wide-range of applications found in the sensor networks [8, 14].

2.5.2 Hierarchical Clustering Structure in WSNs

In a hierarchical network structure, each cluster has a CH that performs special tasks

(i.e. fusion and aggregation) and several common sensor nodes as members [24].
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Figure 2.2 Clustered Sensor Networks Architecture [8] [21]
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The cluster formation leads to a three-level hierarchy where the BS is the highest level,
CHs form the middle level and sensor nodes form the lower level. The sensor nodes
periodically transmit their data to their corresponding CHs. CHs aggregate streaming
data packets and then transmit them to the BS. This can be directly or through the
intermediate communication with other CHs. CHs spend a lot of energy more than
other sensor nodes due to sending the aggregated data all the time to higher distances.
A common solution to balance the energy consumption among all nodes in the
network, is to periodically re-elect new CHs (rotating the CH role among all nodes
over time) in each cluster. Figure 2.3 shows an example of a hierarchical data
communication in a clustered network (assuming single-hop intra-cluster
communication and multi-hop inter-cluster communication) [24]. The BS is the point
of data processing for the data received from sensor nodes, and where data is accessed
by the end user. The BS is considered to be fixed and at a far distance from the sensor
nodes. CHs act as gateways between the sensor nodes and the BS. In some way, any

CH is a sink for its nodes, and the BS is the sink for the CHs.
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Figure 2.3 Data Communication in a Clustered Network [18]

26



2.5.3 WSNs Clustering Characteristics

In WSNSs, several clustering methods could be applied separately or combined to reach
the best network organization, depending mainly on the application being used.
Clustering methods are: the partitioning method, the hierarchical (i.e. divisive)
methods, the density based methods, the grid-based methods and the model-based
methods [20]. The DeGiCA is a combination of three methods (i.e. hierarchical,
density and grid-based methods). The clustering methods share the following

clustering characteristics: [1]

1. Rotating the role of CHs, it is important to rotate the role of CH between nodes not
to overload some nodes with more duties than others.

2. Node duty cycle, allowing sensors to sleep when not active, is a main factor that
extends the battery lifetime. Node’s duty cycle can be done in one of two ways,
depending on the type of application. First, non-CH nodes are allowed to sleep when
they are not communicating or not sensing. Second, an application needs sensors to
monitor the field for unexpected events continuously.

3. Optimal cluster size, most clustering protocols assume a fixed cluster transmission
range that results in similar cluster sizes. However, this results in unequal CHs load

distribution.

4. Node synchronization, when sensor nodes are synchronized, distributed clustering
protocols achieve their best performance. Node synchronization ensures that

clustering process starts at the same time in the network.
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2.5.4 Cluster Head and Member Node Properties in Clustering Thechnique

Clustered nodes in WSNs has some properties include:

1- Connectivity: there are two types of communication. Single-hop communication
Is a direct communication between sensor nodes and the BS. It is simple and easy
to implement. Multi-hop communication is usually more complex where it uses
some kind of intermediate nodes when transmitting data packets from a source to
a BS. The DeGiCA uses a multi-hop communication in a hierarchical structure.

2- Mobility: Node mobility increases the complexity of any WSN data mining
technique. The majority of techniques assume that sensor nodes are static, only
few techniques consider the mobility of nodes.

3- Node Role: Nodes can take one of the following roles:

e Regular Sensor. These nodes have limited resources, they are used to sense the
environment and send the sensed data to the BS.

e Cluster Head (CH). This can be a regular sensor node, or can be a node with
rich resources. In centralized approaches, CHs are regular sensor nodes. In
distributed approaches, besides responding for cluster formation, CHs perform
aggregation/fusion of the collected data.

e Relay. A node that acts as medium to transmit data packets from one node to

another.

4- Node Task: In centralized approach, nodes are used to sense the environment
being monitored and send the sensed data to the BS. In distributed approaches,

nodes can make computations, and take actions based on detected events [16].
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2.5.5 Designing Clustered WSNs

There are several key attributes designers must carefully consider when designing

clustered WSNs [23]:

1. Cost of clustering. Although clustering plays a vital role in organizing sensor
networks, there are some resources, such as communication and processing that
are required in the creation and maintenance of clustering.

2. Selecting CHs. Clustering concept provides lots of benefits for WSNs. However,
when designing a particular application, designers must carefully examine the
formation of clusters in the network. This prerequisite may have an impact on how
CHs are selected in a certain application.

3. Real time operation. Some applications such as habitat monitoring, simply
receiving data is enough for analysis, meaning that delay is not an important issue.
Other applications such as military tracking, real-time data acquisition becomes
much more vital.

4. Synchronization. One of the primary limitations in WSNs is the limited energy
capacity of nodes. Slotted transmission schemes, allow nodes to regularly schedule
sleep intervals to minimize energy consumption. Such schemes require
synchronization mechanisms to setup and maintain the transmission schedule.

5. Data aggregation. The ability for data aggregation in WSNs is one of its
advantages. In crowded networks, there are many nodes sensing similar data. Data
aggregation allows distinguishing between sensed data and useful data.

6. Repair mechanisms. WSNs are often vulnerable to node mobility, node death and

interference that can result in link failure. So, it is important to surround the
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mechanisms of link recovery and reliable data communication in clustering
schemes.

7. Quality of Service (QoS): QoS has requirements in WSNs. Many of these
requirements are application dependent (i.e. acceptable delay and packet loss
tolerance), it is important to look at these metrics when choosing a clustering

scheme.

2.5.6 WSNs Clustering Parameters

Clustering has many parameters, listed as follows [24, 25]:

1. Number of clusters (cluster count). The number of clusters is a critical parameter
with regard to the efficiency of clustering algorithm.

2. Intra-cluster communication. The communication between a sensor and its
designated CH is assumed to be a one-hop communication. However, multi-hop
communication is required when the communication range of CHs is limited.

3. Nodes and CH mobility. When CHs or nodes are assumed to be mobile, the cluster
membership for each node should dynamically change and clusters need to be
continuously maintained. On the other hand, static CHs tend to yield stable clusters
and facilitate intra-cluster and inter-cluster network management.

4. Nodes types and roles. In heterogeneous networks, CHs are able to have more
computation and communication resources than others. In homogeneous networks,
all nodes have the same capabilities and some are designated as CHSs.

5. Cluster formation methodology. Clustering mostly is performed in a distributed

manner without coordination. In few earlier approaches, a centralized (or hybrid
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especially when CHs are in rich resources) approach uses one or more coordinator
nodes to partition the whole network off-line and control the cluster membership.
. Cluster-Head selection. CHs can be pre-assigned in heterogeneous environments.
In most cases, CHs are selected from the deployed set of nodes. They can be chosen
randomly or based on other criteria such as the residual energy, connectivity etc.

. Algorithm complexity. The clustering algorithm complexity can be constant or
dependent on the number of CHs and/or sensors.

. Adaptability. A clustering algorithm is said to be adaptive when the number of
clusters changes and the node’s membership evolves overtime. Otherwise, it is
considered fixed when sensors do not switch among clusters and the number of
clusters is not changed.

Number of levels. The concept of a multi-level cluster hierarchy provides better
energy distribution and total energy consumption instead of using only one cluster

level.

Table 2.1, shows some clustering parameters for some clustering algorithms. Many

clustering protocols shown in table 2.1 are considered to be distributed. They could

randomly select their CHs but has a limited node mobility such as the Low-energy

Adaptive Clustering Hierarchy (LEACH) [24, 25] and Two-Level Hierarchy LEACH

(TL-LEACH) [25, 26]. The Centralized-Low energy adaptive clustering hierarchy

(LEACHC) [24, 25] selects CHs randomly and has a limited node mobility but is

considered to be a centralized clustering protocol. Linked Cluster Algorithm (LCA)

[24] is a distributed clustering protocol with a possible node mobility and an ID-based

selection for CHs. Some distributed protocols are based on the highest energy for CH

selection with no node mobility such as the Energy Efficient Clustering Scheme
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(EECS) [24, 25]. On the other hand, some are depending on the connectivity in CH
selection with possible node mobility such as the Algorithm for Cluster Establishment
(ACE) [24]. The distributed Weighted Clustering Algorithm (WCA) [24] uses a
weight-based CH selection with node mobility. GROUP [24] is a hybrid clustering

protocol with no node mobility.

TABLE 2.1 Some Clustering Algorithms with Clustering Parameters

Name of CH Selection Node Clustering In cluster Multiple
Algorithm Mobility Methodology topology Levels
LCA ID-based Possible Distributed 1-hop No
LEACH Random Limited Distributed 1-hop No
HEED Random Limited Distributed 1-hop No

TL-LEACH Random Limited Distributed 1-hop Yes

GROUP Proximity No Hybrid k-hop No
EECS Energy No Distributed 1-hop No
WCA Weight-based Yes Distributed 1-hop No
ACE Connectivity Possible Distributed k-hop No
LEACHC Random Limited Centralized 1-hop No

2.5.7 Implementing Clustered WSNs

The most popular and effective method to build and evaluate WSNs is the Evaluation
Method as mentioned in section 2.4.2.4, by using a simulation tool. In simulation, the
behavior of a network can be modeled by calculating the interaction between different
network components using mathematical formulas. A simulation can be used together
with different applications and services in order to observe end-to-end or point-to-
point performance in networks [27]. Network simulators are useful in allowing
network designers to test new networking protocols or to change existing protocols in
a controlled and reproducible manner. Network simulators model the real world
networks. However, network simulators are not perfect. They can't perfectly model all
the details of the network. If well modeled, they are close enough to give researchers

meaningful insights about networks under test and show operation changes [27]. Some
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examples of commercial simulators are the OPNET, and QualNet. While open source

simulators are NS2, NS3, OMNeT++, SSFNet, and J-Sim [27].

The developed DeGiCA is implemented and evaluated by using a MATLAB-based
simulator. MATLAB [28] (matrix laboratory) is a multi-paradigm numerical
computing environment and fourth-generation programming language. It
allows matrix manipulations, plotting of functions and data, implementation
of algorithms, creation of user interfaces, and interfacing with programs written in

other languages, including C, C++, C#, Java, Fortran and Python.

2.6 Classification of Clustering Protocols

Clustering protocols could be generally classified into three main types in this research
scope. First, WSNs clustering algorithms. Second, clustering algorithms involving
data stream. Third, WSNs clustering algorithms involving data stream. The following

sections describe in details the main three classifications.

2.6.1 Clustering Protocols in WSNs not involving Data Streams

This section presents the first classification of clustering algorithms. Based on network
structure, protocols found in WSNSs can be divided into two categories: protocols for
either flat networks or hierarchical networks. In a flat network topology, all nodes
perform the same tasks and have the same functionalities. Data transmission is
performed hop by hop using some form of flooding. Clustering protocols in flat WSNs

include Flooding and Gossiping, Sensor Protocols for Information via Negotiation
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(SPIN), Directed Diffusion (DD), Rumor, Greedy Perimeter Stateless Routing
(GPSR), Trajectory Based Forwarding (TBF), Energy-Aware Routing (EAR),
Gradient-Based Routing (GBR), Sequential Assignment Routing (SAR). These
clustering protocols are effective in small-scale networks. However, flat WSNs
protocols are undesirable in large-scale networks because resources are limited, but all

sensor nodes generate more data processing and bandwidth usage [10].

On the other hand, in a hierarchical topology, nodes perform different tasks and are
organized into lots of clusters according to specific requirements or metrics. Generally,
each cluster has a CH and number of MNs. In general, CHs have the highest energy in
the clusters to perform data processing and information transmission, while nodes with

low energy act as MNs and perform the task of information sensing [10].

Clustering protocols in a hierarchical WSN topology include Low-energy Adaptive
Clustering Hierarchy (LEACH), Hybrid Energy-Efficient Distributed clustering
(HEED), Distributed Weight-based Energy-efficient Hierarchical Clustering protocol
(DWEHC), Position-based Aggregator Node Election protocol (PANEL), Two-Level
Hierarchy LEACH (TL-LEACH), Unequal Clustering Size (UCS) model, Energy
Efficient Clustering Scheme (EECS), Energy-Efficient Uneven Clustering (EEUC)
algorithm, Algorithm for Cluster Establishment (ACE), Base-Station Controlled
Dynamic Clustering Protocol (BCDCP), Power-Efficient Gathering in Sensor
Information Systems (PEGASIS), Threshold sensitive Energy Efficient sensor
Network protocol (TEEN), The Adaptive Threshold sensitive Energy Efficient sensor
Network protocol (APTEEN), Two-Tier Data Dissemination (TTDD), Concentric
Clustering Scheme (CCS), Hierarchical Geographic Multicast Routing (HGMR), and

etc. Clustering technique is an active branch in hierarchical WSNs due to many
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advantages, such as more scalability, data aggregation/fusion, less load, less energy
consumption, more robustness [10]. Clustering WSNSs protocols not manipulating with

data streams has two types of clustering, proactive and reactive clustering.

2.6.1.1 Proactive and Reactive Clustering in WSNs

Proactive clustering algorithms are based on assuming that sensors always have data
to send, for this reason, they should all be considered during cluster formation process.
On the other hand, reactive algorithms take the advantage of user queries for the sensed
data or of specific triggering events occur in WSNs. Namely, nodes may react
immediately to sudden hard changes in the value of a sensed attribute. Reactive
approach is useful for time-critical applications, but not suited for applications where
data retrieval is required on a regular basis [24]. Figure 2.4, shows some examples of

“proactive” and “reactive” clustering protocols.

Low-energy Adaptive Clustering Hierarchy (LEACH)

E‘oactive Clustering Hybrid Energy Efficient Distributed Clustering (HEED)

Energy Efficient Hierarchical Clustering (EEHC)
Threshold sensitive Energy Efficient sensor Network protocol (TEEN)
Adaptive Periodic-TEEN (APTEEN)

‘;eactive Clustering Decentralized Reactive Clustering (DRC)

Clustering Algorithms in WSNs

Clustered AGgregation (CAG)

Dynamic-Clustering Reactive Routing (DCRP)

Figure 2.4 Proactive and Reactive Clustering Protocols
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2.6.1.2 Clustering Algorithm Schemes in WSNs

Clustering WSNs algorithms could be considered under specific schemes, such
schemes are, hierarchical scheme, grid scheme, heuristic scheme, weighted scheme,
PSO-Based scheme and other schemes. Each scheme is described in brief [14, 23, 29].
Figure 2.5 summarizes the clustering schemes in WSNs with examples of each

clustering scheme.

Clustering Algorithm Scchemes in WSNs ‘

Hierarchical . Heuristic Weighted PSO-Based
Scheme Grid Scheme Scheme Scheme Scheme Others
|| LEACH | PEGASIS | || LCA I_ WCA u PSO-C ‘ | | VoGC
HEED GROUP LCA2 BARC

1- Hierarchical scheme. The cluster formation in the hierarchical scheme leads to a
two-level hierarchy where CHs form the higher level and sensor nodes form the
lower level. LEACH, Low-Energy Adaptive Clustering Hierarchy (LEACH) is one
of the first major improvements on traditional clustering hierarchical approaches in
WSN:s. It provides a balancing of energy usage by rotating CHs randomly. Data-
fusion in LEACH can be used to reduce the amount of data transmission. The
decision of whether a node becomes a CH is made dynamically at each interval.
[17, 21]. LEACH is not suitable when CHs are far from the BS. Therefore, a large
number of algorithms have been proposed to improve LEACH, such as PEGASIS,
TEEN, APTEEN, MECH, LEACH-C, EEPSC [8]. To reduce inter-cluster and

intra-cluster collisions, LEACH uses a TDMA or a CDMA MAC. The energy
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consumption to transfer gathered information from nodes to the BS depends on the

number of CHs. So, it can be reduced by organizing nodes in clusters [29]. Table

2.2 gives some examples of the LEACH descendants.

TABLE 2.2 Descendant of LEACH Protocol

Descendant of | Name

LEACH

LEACH Low energy adaptive clustering hierarchy

LEACH-C Centralized-Low energy adaptive clustering hierarchy
LEACH-B Balanced-Low energy adaptive clustering hierarchy
LEACH-ET Energy threshold-Low energy adaptive clustering hierarchy
TL-LEACH Three Layer-Low energy adaptive clustering hierarchy
Armor-LEACH | Advance LEACH routing protocol for micro-sensor networks
O-LEACH Optical-Low energy adaptive clustering hierarchy
MR-LEACH Multi-hop hop routing-Low energy adaptive clustering hierarchy
LEACH-D Low energy adaptive clustering hierarchy-D

HEED, Hybrid Energy-Efficient Distributed Clustering, is a multi-hop hierarchical

clustering algorithm in WSNS. It focuses on efficient clustering by proper selection of

CHs based on the physical distance between nodes. HEED reduces energy

consumption during the CH selection phase and minimizes the network overhead. In

HEED, CH selection is determined based on two important parameters. First, the

residual energy of each node. Second, intra-cluster communication, to determine

which cluster to join. This is usually used when a given node falls within the range of

more than one CH [14, 23].

2- Grid scheme. This scheme divides the sensed area into equal size of cells called grids.

Sensor nodes are pointed inside grids. Grid scheme has proven to be an effective

technique to enhance WSNs performance. PEGASIS, Power-Efficient GAthering in

Sensor Information Systems, is a data-gathering algorithm where energy savings can

result from nodes not directly forming clusters. If nodes form a chain from a source to

a BS, only one node in any given transmission time-frame is transmitting. The average
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transmission range required by a node to relay information can be much less than in
LEACH [14, 23]. Another grid-based clustering algorithm is called GROUP. In
GROUP, one sink is called a primary sink, it dynamically and randomly builds the
cluster grid. Each new CH then selects more CHs along the grid until all CHs have
been selected. The selections are based on the residual energy of nodes near the corners
of the grid [14, 23].

Heuristic scheme. It is an algorithm that has one or both of its goals during solving a
problem. First, finding an algorithm with reasonable run-time. Second, finding an
optimal solution. Linked Cluster Algorithm (LCA), is one of the very first developed
heuristic clustering algorithms. It is developed for wired sensors, but later
implemented in WSNSs. In LCA, each node is assigned to a unique 1D and can become
a CH in two ways. Firstly, if a node has the highest ID number in a set including all
neighbor nodes and the node itself. Secondly, assuming none of its neighbors are CHs,
then it becomes a CH [14, 23]. Linked Cluster Algorithm 2 (LCA2) is proposed to
eliminate the election of an unnecessary number of CHs found in LCA. LCA2
introduced the concept of covered and non-covered nodes. A node is covered when
one of its neighbors is a CH [14, 23].

Weighted scheme. In this scheme, CH election depends on weights. Weighted
Clustering Algorithm (WCA), is a non-periodic procedure to CH election, invoked
when every time a reconstruction of networks topology is unavoidable. WCA finds a
long-lasting architecture during the first CH election. When a sensor loses connection
with its CH, the election procedure is invoked to find a new clustering topology. This
Is an important feature in power saving. WCA is based on a combination of metrics

such as node degree, transmission power, mobility and residual energy. WCA is fully
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distributed where nodes in the mobile network share the same responsibility acting as
CHs [14, 23].

PSO-Based scheme. Centralized-Particle Swarm Optimization (PSO-C). Nodes
having energy above the average energy resource are elected as CHs. Simulation
results show that PSO outperforms to LEACH and LEACH-C in term of network
lifetime and throughput [29].

Other clustering schemes. Voting-on-Grid Clustering (VoGC), is a combination of
voting method and clustering algorithm, developing new clustering schemes for WSNs
secure localization. VoGC is used instead of traditional clustering to reduce the
computational cost. This scheme can provide good localization accuracy and identify
a high degree of malicious beacon signals [29]. A new mathematical battery model for
implementation in WSNSs called Battery Aware Reliable Clustering (BARC), is used
in clustering algorithm. It improves WSNs performance over other clustering
algorithms due to using Z-MAC and CH rotation according to battery recovery
schemes. BARC enhances network lifetime greatly compared to other clustering

algorithms [29].

2.6.2 Clustering Protocols involving Data Streams

This section presents the second classification of clustering algorithms. It presents
some common clustering algorithms involving data streams not applied on WSNSs. In
2006, Feng Cao proposed the DenStream algorithm for clustering dynamic data stream
[30]. It is an effective and efficient method that can discover clusters of arbitrary shape
in data streams, but it is insensitive to noise [31]. DenStream extends the micro cluster

concept, and introduces the outlier and potential micro clusters to distinguish between
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real data and outliers. New data records are added to existing potential micro clusters,
which increases the radius of micro clusters [32]. Heng Zhu Wei proposed a density
and space clustering algorithm called CluStream [30]. CluStream is a data-stream
clustering algorithm based on k-means that is inefficient to find clusters of arbitrary
shapes and cannot handle outliers. Further, they require to know k parameter and user-
specified time window [17]. DenStream and CluStream are not able to reveal clusters
of arbitrary shape effectively and cannot distinguish clusters which have different

levels of density [30].

K-means algorithm is used in the offline phase of some algorithms such as Clustream.
It is a divide and conquer schemes that partition data streams into segments and
discover clusters in data streams. K-means has a number of limitations. First, it aims
at identifying spherical clusters but is incapable of revealing clusters of arbitrary
shapes. Second, it is unable to detect noise and outliers. Third, the algorithm requires
multiple scans of data, making it not directly applicable to a large data stream volume
[17, 30]. STREAM and CluStream are two well-known extensions of K-means on data
streams [32]. Many recent data stream clustering algorithms are based on CluStream’s
two-phase framework. Wang et al. [17] proposed an improved offline component
using an incomplete partitioning strategy. An extensions of this component including
clustering multiple data streams, parallel data streams, distributed data streams and

applications of data stream mining.

LOCALSEARCH, STREAM, DenStream and CluStream are clustering algorithms
involving data streams. They ignore grid border problems. Data streams come with a
large number in chronological order, and makes original grids no longer adapt to new

data mapping, so a large number of data is likely to fall on grids borders. But if the
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data is simply discarded, it affects the clustering quality. If grids are updated in time,

cost is greatly increased and the clustering efficiency is affected greatly [30].

D-Stream is a density grid-based real-time stream data clustering algorithm where data
points are mapped to the corresponding grids and grids are clustered based on their
density. D-Stream clustering quality depends on the granularity of the lowest grid
structure level. This may reduce the clusters accuracy despite the technique processing
time speed [32]. The algorithm uses an online component which maps each input data
record into a grid. It also has an offline component which computes the grid density
and clusters the grids based on their density. It adopts a density decaying technique to

capture the dynamic changes of a data stream [17].

MR-Stream is an algorithm that can cluster data streams at multiple resolutions [33].
It partitions the data space in cells and a data structure tree which keeps the space
partitioning. MR-Stream increases the clustering performance by determining the
exact time to generate clusters [32]. FlockStream is a density-based clustering
algorithm based on a bio-inspired model. It uses the flocking model, where
independent micro-cluster agents form clusters together. FlockStream merges online
and offline phases where agents form clusters at any time. It can get clustering results
without performing offline clustering. DenStream, MR-Stream, D-Stream and
FlockStream are density-based clustering algorithms evolving data streams. They can
affectively detect arbitrary shape clusters and handle noise, but their quality decrease
when using clusters with variant densities. In fact, D-Stream, MR-Stream and ExCC

are grid-based clustering algorithms over data streams [32].
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LOCALSEARCH algorithm uses dividing and conquering to partition data streams
into segments, and discovers clustering of data streams in finite space, by using the K-
means algorithm [30]. Later on, STREAM algorithm was proposed by O'Callaghan
which is based on the LOCALSEARCH. It puts equal weights to outdated and recent

data and cannot capture evolving characteristics of data stream [30].

Incremental DBSCAN is an incremental method for data warehouse applications. It
can only handle a relatively stable environment but it can’t deal with limited memory
and fast changing streams. The LOCALSEARCH is a subroutine performed every time
when a new chunk arrives to generate cluster centers of the chunk. HPStream
introduces the concept of projected cluster to data streams. It cannot be used to

discover clusters of arbitrary shapes in data streams [31].

A framework to dynamically cluster multiple evolving data streams called Clustering
on Demand (COD) was proposed [34]. It produces a summary hierarchy of data
statistics in the online phase, whereas clustering is performed in the offline phase [34].
It summarizes data streams using the Discrete Fourier Transform (DFT) technique.
Then it applies a K-means algorithm to cluster the summarized data streams [34]. An
Online Divisive-Agglomerative Clustering (ODAC) algorithm was also proposed to
incrementally construct a tree-like hierarchy of clusters using a top-down strategy. The
previous techniques assumes that all data streams are gathered at a centralized site

before they are processed [34].

Many density-based clustering algorithms for multi density datasets are not suitable
for data stream environments. First, they need two-pass of data and this condition is

impossible for data streams where they arrive continuously and need to be performed

42



in a single scan. GMDBSCAN and ISDBSCAN use a two-pass data. Second, some
multi density clustering algorithms need the whole data. Third, other algorithms have
a high execution time which makes them not applicable for data streams. DSCLU is a

density-based clustering for data stream in multi density environments [32].

A DD-Stream, is framework for density-based clustering stream data. It adopts a
density decaying technique to capture the evolving data stream and extracts the
boundary points of grids by using a DCQ-means algorithm. It is used to resolve the
problem of evolving automatic clustering of real-time data streams, it can find arbitrary
shaped clusters with noise and also avoid the clustering quality problems caused by
discarding the boundary points of grids. The DD-Stream has better scalability in

processing large-scale and high dimensional stream data as well [30].

2.6.3 Clustered WSNs involving Data Streams

This section presents the third classification of clustering algorithms. It is divided into
two categories: algorithms based on FCM algorithm and algorithms for multimedia
streaming data. The developed DeGiCA belongs to research study scope of algorithms

presented in this section.

Fuzzy C-Means or Fuzzy Clustering Means (FCM), is the most widely used algorithm
in the field of data mining clustering technique when involving data streams in WSNSs.
Most clustering algorithms are descendant from FCMs when solving data stream
problems in WSNs. FCM requires prior information of how many clusters C to

partition the data space into. The number of clusters C within the WSN datasets is
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unknown previously [35]. Figure 2.6 shows some algorithms based on K-means and

Fuzzy C-Means.
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Figure 2.6 Clustering Algorithms for Data Streams

An algorithm based on FCM, a distributed WSN data stream clustering algorithm
called SUBFCM (Subtractive Fuzzy Cluster Means) is proposed to minimize sensor
nodes energy consumption and extend the network lifetime in WSNs involving data
streams. The SUBFCM focuses on data stream clustering problem. Simulations show
that the energy efficient algorithm SUBFCM can achieve WSN data stream clustering
with significantly less energy than the FCM and K-means algorithms do. SUBFCM
reduces the total data transmission required without significantly affecting vital
information in data streams [35]. SUBFCM is a result of blending a subtractive

clustering algorithm with the FCM.

For algorithms based on multimedia streaming data, in Wireless Multimedia Sensor
Networks (WMSNs), multimedia clustering protocols use the quality of service (QoS)
parameters [36]. The requirements of QoS differ according to different types of
multimedia applications. QoS has several metrics such as delay, bandwidth, reliability,
jitter [37] and packet loss [36]. Many multimedia applications are time critical, they

need to be reported with a limited time. The multimedia sensors have the ability to
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capture video, image, audio and scalar sensor data. Then deliver the multimedia
content through sensors network [37]. A clustering algorithm for wireless multimedia
sensor networks has been proposed based on Overlapped Field of View (FoV) areas.
This algorithm aims to find the intersection polygon and computing the overlapped
areas to establish clusters and determine cluster membership. FoVs prolongs network

lifetime and saves energy [29].

2.6.3.1 Algorithms Based on FCM for Streaming Data in WSNs

This section provides an overview on FCM clustering algorithm and algorithms based
on it. It includes the reasons behind choosing the standard Fuzzy Clustering Means
algorithm (FCM) used in clustered WSN environment holding data streams.
Generally, clustering algorithms in WSNSs involving data streams are classified into
distributed, centralized and hybrid clustering algorithms [38]. In distributed clustering,
any node can choose itself as a CH or join an already existed cluster on its own
initiative, independent of other nodes. Distributed clustering techniques are classified
into four sub types based on cluster formation criteria and parameters used for CH
election. Sub-types are based on either identity, neighborhood information,
probabilistic or iterative [38]. In centralized techniques, global network information
are required to provide BSs the abilities to control the whole network. CHs are selected
by the BS in this approach. Hybrid techniques are a combination of centralized and
distributed approaches. In a hybrid environment, distributed schemes are responsible
for coordinating between CHs, while centralized schemes are used to build individual
clusters [38]. Based on the previous network topologies, clustering algorithms must
include a technique to compute similarities or distance between vectors. Distance is
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considered to be the most natural method for numerical data similarity measurement.
Lower values indicate more similarities. The most common distance metrics are the
Euclidean distance and Manhattan distance. However, the distance metric does not
work properly with non-numerical data. Fuzzy C-Means (FCM) and K-means use the
Euclidean distance [39] and considered to be the most suitable algorithm for WSNs
involving streaming data due to its soft clustering nature. Figure 2.7, shows some

FCM-based algorithms.

— FCM: Fuzzy C-Means Clustering

— FCMS: Fuzzy C-Means with Spatial Constraints

DFCMS: Distributed Fuzzy C-Means with Spatial Constraints

RFCMS: Rough Fuzzy C-Means with Spatial Constraints

Using data streams

DRFCMS: Distributed Rough Fuzzy C-Means with Spatial Constraints

— SUBFCM: SubtractiveFuzzy C-Means Clustering

— DFCM: Dual clustering based on FCM

— DDFCM: Distributed Dual clustering based on FCM

— FCM: Fuzzy C-Means Clustering

— IFCMs: Improved Fuzzy C-Means Clustering

without data stream

Fuzzy clustering algrithms in WSNs using FCM
|

CAFCPSO: fuzzy C-Means algorithm of Particle Swarm Optimization

— DFCP: Decentralized Fuzzy Clustering Protocol

— C-FCM: Centralized Fuzzy C-Means

Figure 2.7 Classification of FCM-Based Clustering Algorithms in WSNs

Most algorithms listed in figure 2.7 are FCM-based clustering algorithms. They
introduce the subtractive clustering algorithm (SUBFCM) to predetermine number of

clusters and their cluster centers [Appendix A.2.1]. As known, FCM requires a pre-
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knowledge of number of clusters and each cluster center, since the output rules depend

strongly on the initial values [40, 41]. Cluster formation at the subtractive clustering

assumes each node is a potential cluster center. Then a calculation is done to measure

possibilities that each node would define a cluster center.

2.6.4 Taxonomy of Clustering Protocols

As mentioned previously, clustering protocols are classified in our research to three

main types. First, clustering algorithms in WSNs (without data streams). Second,

clustering protocols for streaming data [42]. Third, clustered WSNs for data streams.

Figure 2.8 shows the clustering algorithm classification with examples of each class.

Clustering

WSNs

Clustering

Data Streams

Clustering Protocols

Clustered
WSNs for
Data Streams

Flat topology
(Small Scales)

EX: Flooding and Gossiping, SPIN, DD, Rumor,
GPSR, TBF, EAR, GBR, SAR.

Protocolsin |

Hirarchical topology
(Large Scale)

EX: LEACH, HEED, DWEHC, PANEL, TL-
LEACH, UCS model, EECS, EEUC, ACE,
BCDCP, PEGASIS, TEEN, APTEEN, TTDD

Primitive Clustering
Methods

EX: BIRCH, STREAM, CluStream,
SPKMEANS, HKA, Fractal Clustering (FC)

Protocols for |

Data Stream
Clustering Methods

COBWEB, OCTS, OCTSM, Improving HAC,
Fuzzy CMeans, d-stream (density and grid),
Improved K-Means, HPStream

FCM Based
Clustering
Algorithms

FCM, SUBFCM

Multimedia

FoG

Figure 2.8 Classification of Clustering Algorithms in WSNs

Moreover, table 2.3 provide several clustering algorithms according to the

classification of clustering algorithms.



TABLE 2.3 Classification of Clustering Algorithms

Clustering Classes Examples
Classification
Clustered WSNs | WSNs Subtractive Fuzzy Cluster Means (SUBFCM)
for Data Stream | WMSNSs Overlapped Field of View (FoVs)
Primitive BIRCH
Data Stream Clustering STREAM
Clustering Methods CluStream
Algorithms SPKMEANS
HKA
Fractal Clustering (FC)
Data Stream COBWEB
Clustering OCTS
Methods OCTSM
Improving HAC
Fuzzy C-Means
d-stream (density and grid)
Improved K-Means
HPStream
Density-Based | DenStream
Clustering DSCCLU
Algorithms FlockStream
CluStream
Density-Grid D-Stream
Based DD-Stream
Clustering MR-Stream
Algorithms
Grid Based Excc
Clustering
Algorithms
Other Distributed Single-pass Incremental Clustering (DISC)
Online Divisive-Agglomerative Clustering (ODAC)
Clustering on Demand (COD)
LEACH Low-energy Adaptive Clustering Hierarchy
TL-LEACH Two-Level Hierarchy LEACH
EECS Energy Efficient Clustering Scheme
HEED Hybrid Energy Efficient Distributed Clustering
EEUC Energy-efficient unequal clustering
EEHC Energy Efficient Hierarchical Clustering
MRPUC Multihop routing protocol with unequal clustering
) PEACH Power-efficient and adaptive clustering hierarchy
Clustering HSRP Hybrid-Structure Routing Protocol
Algorithmsin - "7pp Two-Tier Data Dissemination mechanism
W3Ns SEAD Scalable Energy efficient Asynchronous Dissemination
mechanism
HSRP Hybrid-Structure Routing Protocol
CODE Coordination-based data Dissemination mechanism
TEEN Threshold sensitive Energy Efficient sensor Network
protocol
APTEEN Adaptive Periodic TEEN
DMAC Distributed and Mobility-Adaptive Clustering Algorithm
DISC Distributed Single-pass Incremental Clustering
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TABLE 2.3 Classification of Clustering Algorithms (Cont.)

CACC

Clustering Algorithm based on Cell Combination

VAP-E

Energy-Efficient Clustering -Virtual Area Partition

CFL

Clustering for Localization

FoVs

Overlapped Field of View

KOCA

K-Hop Overlapping Clustering Algorithm

PEZCA

Power-Efficient Zoning Clustering Algorithm

VoGC

Voting-on-Grid clustering

BARC

Battery Aware Reliable Clustering

SEP

Stable Election Protocol

DEEC

Distributed Energy-Efficient Clustering algorithm

LCA

Linked Cluster Algorithm

LEACHC

Centralized-Low energy adaptive clustering hierarchy

LCA2

Linked Cluster Algorithm 2

WCA

Weighted Clustering Algorithm

PEGASIS

Power-Efficient GAthering in Sensor Information Systems

GAF

Geographic Adaptive Fidelity protocol [43]

HAS

Harmony Search Algorithms

DCA

Distributed Clustering Algorithm

PDCH

Pegasis Algorithm Improving Based on Double Cluster Head

DWEHC

Distributed Weight-Based Energy-Efficient Hierarchical
Clustering

FLOC

Fast Local Clustering service

ACE

Algorithm for Cluster Establishment

PSO-C

Centralized-PSO

2.7 Conclusion

The past few years have witnessed increased interest in the use of WSNs in a wide

range of applications and it has become a hot research area in the field of data mining.

This chapter focused on the most important concepts of WSNs, data stream mining,

and data streams and clustering algorithms. It provided an overview comparison

between clustering algorithms in WSNs. A classification for clustering algorithms was

given and based on the research study background. They were classified into three

main types. Clustering protocols in WSNs (without data streams), clustering protocols

for data streams and clustered WSNs for streaming data. The chapter focused in details

on WSNs clustering algorithms involving streaming data that are called FCM-based

clustering algorithms that are similar to the research study scope of the developed

DeGiCA.
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Chapter 111

Density Grid-Based Clustering Algorithm

3.1 Introduction

WSNs generate massive data streams with spatial and sensor measurements
information [44]. A WSN consists of a powerful BS that serves as sensed streaming
data final destination. Passing sensory streaming data to the BS requires energy. As
mentioned previously, a WSN suffers from some constrains such as energy, memory
and computational capabilities. One challenge is power consumption during data
stream transmission. Sensor nodes should be energy efficient. Energy efficiency
affects the entire WSN lifetime. Therefore, in order to ensure the WSN’s operational
longevity, energy consumption is a critical consideration during designing WSNs
algorithms. Furthermore, since sensor nodes are in difficult-to-reach locations,

replacing batteries is impractical [45].

A WSNs can benefit a great deal from stream mining clustering algorithms in terms of
energy saving. However, to achieve better energy conservation, data stream mining

has to be performed in a distributed manner, due to their resource constraints [39].
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Clustering algorithms are designed to achieve load-distribution among CHs, energy
saving, high connectivity, and fault tolerance. In WSNs, clustering provides resource
utilization and it minimizes energy consumption by reducing the number of nodes that
take part in long distance transmission [44]. Clustered WSNs algorithms running
streaming data are usually partitioned in two main steps, cluster formation step and
data transmission step [46]. But specifically, the cluster based operation of clustered
WSN algorithms consist of rounds. Rounds involve cluster formation, CH selection,

and data transmission to the BS.

Grid-based clustered WSNSs, are type of networks where a sensed area is partitioned
into a finite number of equal sized cells called grids. Grid-based clustering scheme has
been proven to have a fast processing time compared to other types of clustering
algorithm schemes due to clustering operations are performed on the grid cells instead

of the whole dataset stream [9].

This chapter proposes a grid-based clustering algorithm for WSNs model called
Density Grid-based Clustering Algorithm (DeGiCA), a distributed clustering
algorithm proposed due to its suitability for the suggested environment. The DeGiCA
is a clustering algorithm based on combining a density technique and a grid technique.
Beside the advantages of the clustering technique listed above, the density technique
can find arbitrary shaped clusters with noise while the grid technique is used to avoid
clustering quality problems by discarding the boundary points of grids. This powerful
combination of techniques decrease the algorithm computational time, reduce energy
consumption and thus extend the network lifetime resulting the desirable simulation
results. To reach the aim of this research, DeGiCA must combine the limited dataset

streams as fast as possible, to ensure that a processor can take on next set of streams.
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This chapter presents the DeGiCA proposed model. It is organized as follows: section
2 presents an overview on the DeGiCA. Section 3 presents the general DeGiCA

algorithm. In section 4, the conclusion of this chapter is given.

3.2 Overview on Density Grid-Based Clustering Algorithm (DeGiCA)

The proposed Density Grid-based Clustering Algorithm (DeGiCA) is a clustering
algorithm that forms clusters based on the density of each grid in a gridded WSN. The
proposed scheme is done by dividing a sensor network area into equal size of grids.
Grids then are classified into three main density classes, high density grids, low density
grids and empty grids. The density classification for each grid is done by comparing
its nodes number with a specific value o called threshold. By using the DeGiCA, grids
close to each other are combined after finding their density to form clusters. Empty

grids are used as delimiters to reduce the algorithm execution time.

In general, the DeGiCA goes through three main phases as shown in figure 3.1. First,
the establishment phase that creates the gridded sensor network. It classifies each grid
based on its density and combine close grids to form an arbitrary shaped cluster. After
this phase, DeGiCA selects initially a CH for each cluster based on the nearest distance
to the BS. The establishment phase is done once. The second phase is called the data
transmission phase, it is responsible for transmitting sensed streaming data from source
nodes to the final destination at the BS through CHs. CHs aggregate sensed streaming
data and remove redundancy. The third phase is the CH-Election phase, it selects new
CHs based on nodes residual energy. Data transmission phase and CH-Election phase

are repeated in rounds until the end of network lifetime.
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Main phases of DeGiCA

Phase 1: Phase 2: Phase 3:

Establishment Phase Data Transmission Phase CH-Election Phase

Figure 3.1 Three Main Phases of DeGiCA Algorithm

Figure 3.2 presents the general flowchart of the proposed DeGiCA. As shown in the
flowchart, DeGiCA starts its first process called the initialization process which
includes firstly the establishment phase. At the establishment phase, a sensed area with
(M x M) square unit is created permanently and the BS is located at the center of the
sensed area. The sensed area is divided into equal size of grids G with n sensor nodes
are randomly scattered in the gridded WSN. Clusters are formed based on the density
of grids. When the establishment phase ends, the initial process selects CHs based on
nodes having the nearest distance to the BS. The initial process is done only once

during the WSN lifetime.

After this process, the DeGICA moves to the rounds process and the sensed area is
ready to flow streaming data. At the rounds process, the data transmission phase and
the CH-Election phases are rotated until the network lifetime ends. For each round,
CHs are elected inside their clusters based on nodes having the highest residual energy
among cluster nodes. After each round completion, processed streaming data packets

are sent to the BS.
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Start initialization process
1- Establishment phase
1.1 Create a WSN area with ( l-"h’)mr
1.2 Locate BS at WSN center in (M2,W2)
1.3 Divide WSN to equal size of small grids G
1.4 Scatter randomly n nodes inside gridded WSN
1.5 Classify grids based on density
1.6 Create clusters based on density calculations
2- Selecting clusters CHs initially once based on the
nearest distance to BS.

CP=

YES

Data transmission phase

!

CH-Election phase based on [—
highest residual energy

Figure 3.2 Proposed DeGiCA General Flowchart

3.2.1 General DeGiCA Assumptions

For the sake of clarity, some assumptions are made about the proposed DeGiCA

network model. These assumptions are listed as follows:

1- Network area size or sensed area is equal to (M x M) square unit (i.e. m?). The
area exist between coordinates (0,0) to (1000, 1000).

2- Network is created at the establishment phase once during the whole network
lifetime at the beginning of DeGiCA.

3- The sensed area is gridded once establishing the network outside rounds process.

1- Grids G has number of grids G ..., IS equal to (%)2, where g € X,and g €Y.
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2- Number of nodes in the network is n.

3- Nodes are assumed to be immobile, homogenous and energy constrained.
4- BS is immobile and located in the middle of the sensed area at (%,%). Itis assumed

to be a central BS.
5- All nodes have the same initial residual energy measured in joules.

6- Data stream packets are formed in a standard research purpose form as shown later

in figure 4.1.

3.2.2 Algorithm Phases Description

DeGiCA phases are partitioned to several stages with different techniques for each

stage. Figure 3.3 shows the techniques used for each phase in the proposed DeGiCA.

- FillGrid
ClassifyDense
reateClusters
- MinHighDense
- AddNeighbo

- BSprocess

-NodeProcess - CHProcess

Phase
Phase

Figure 3.3 Techniques used in DeGiCA phases

In brief, DeGiCA is divided into two main processes, initialization process that is done
once at the beginning of a WSN lifetime and rounds process that is repeated

rotationally until the end of a WSN lifetime.

The initialization process has two main steps. Firstly, the establishment phased and
secondly, CH initial election based on the nearest distance to the BS. The

establishment phase has many techniques used during sensed area creation. First of all,
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a WSN area is created permanently with a size equal to (M * M) m? and a BS
positioned at the center (%,%). The area is divided into small equal size of grids and

n nodes are scattered randomly inside grids. This step is applied by a FillGrid method.
To form the network clusters, grids are classified based on their density into either a
high dense grid (H), or a low dense grid (L), or an empty grid cell (E). Grid density
classification is done by using a method called ClassifyDense. It classifies grids by
comparing number of nodes in a specific grid with a threshold . Additionally, any
empty grid cell on network boarder or within sensed area are discarded. After
classifying all grids in the network, clusters are created by using three methods,
CreateClusters, MinHighDense and AddNeighbor. After completing the
establishment phase, the initialization process selects initially a CH for each cluster
based on the nearest distance to the BS. It also determines centers v of each cluster, to
be used in FCM and K-means cluster formation (i.e. for comparison purposes). The
network after initialization process is ready to receive and process streaming data

packets.

The second main part of DeGiCA is the rounds process. It is repeated rotationally
between the data transmission phase and the CH-Election phase. Data transmission
phase is responsible for transmitting sensed streaming data from source nodes to the
final destination at the BS through CHs. This is done by methods called BSprocess
and NodeProcess. The third phase is the CH-Election phase. It is done by CHProcess,
where it selects CHs based on nodes having highest residual energy among cluster
nodes. It also makes CHs aggregate sensed streaming data and remove redundancy.

This discussion is provided in more details on section 3.3.
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Figure 3.4 shows orderly steps used to build the proposed DeGiCA algorithm. It shows

in brief techniques used during the WSN lifetime.

Initialization part

2- Partetioning the WSN into equal size

. . . of grids and mapping all nodes randomly

START 1- Creating the WSN. into the grids by using a technique called
(FillGrids).

Network Establishment Phase

4- A long procedure is done to create the unknown
clusters. Clusters should be predetermined before going ) R .
through rounds. This is done by using a technique called the dﬁ:ﬁ?rﬁfﬂski{:‘{ﬁzﬁ’ I::gh
(CreateClusters) supported by two sub-technique called techniaue called (cl assifyDe ﬁ% )
(MinHighDense) and (AddNeighbor). 4 -/ =

3- Starting to classify each grid inside

P |
Rounds part
I P CH._Election |
| Phase |
l 3- Both network rounds l
| are repeated until the |
| end of the network |
lifetime. It needs sevral
| techniques called | END
| (BSprocess), |
Data {CHprocess) and
| L (NedeProcess). |
| Transmission |
| Phase |
L -

Figure 3.4 Overview on DeGiCA Algorithm Steps

To completely represent DeGiCA more, figure 3.5 shows DeGiCA phases and
methods. It has two main parts and each part has its phases. Phases are further

partitioned to stages and each stage uses its own techniques.
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DeGiCA
Algorithm
mechanism

Phase Stage

Stages Techniques

How each
technique works

Create WSN permanently

— Fill Grids [ FillGrid
Create grids and map nodes to
each grid
Main
Phases - Classify grids based on density
Classify grids
1 b densgi — ClassifyDense [— (empty grids, low density grids,
e high density grid)
_| Establishment | |
phase Clustering nodes around
Initialization minimum high dense grid until
" process || reaching a number compared to
g
— CreateClusters
Predetermine number of clusters
C and their centers v
| Cluster WL
formation - . . .
ALTF | Find minimum high dense grid
MinHighDense and exclude grids at the border
Select CHs . Conditions when to add a grid to
i | | initially based — AddNeighbors [— another to create a specific
on nearest to cluster
BS
DeGiCA Rounds Process
NodeProcess | —  Sensesincoming streams and
minimize data transmission
| | Data transsmition| | Enter rounds with C, v
phase and data stream packet
| Recieves data from CHs, process
HUPTIEREES data and send it to the end user
Aggregate data from nodes, process
] . Selct CHs based on the | | i
ICH-Election phasi highest residual energy CHProcess itand remc;\é%sdrteéjlénsdancy, then

Figure 3.5 DeGiCA Algorithm Mechanism
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3.3 DeGIiCA Detailed Algorithm

The proposed DeGiCA is a clustering algorithm that enhances WSNs mining
streaming data. It enhances the traditional Fuzzy C-Means (FCM) algorithm

[Appendix A.1.2], by solving its two problems:

1- FCM requires two input data that have to be known a priori and predetermined
specifically. These inputs are (number of clusters C, and center of each cluster v).
2- Finding some nodes belong to more than one cluster. So, it is important to disjoint

those points.

3.3.1 Initialization Process of DeGiCA

The initialization process is the most important part that distinguishes DeGiCA from
other WSNs clustering data stream mining algorithms. It enhances WSNs data stream
mining by a powerful combination of clustering, grid and density techniques. The
initialization process has two steps. First, the establishment phase. Second, the initial
CHs selection of each cluster based on the nearest distance to the BS before moving

to the rounds process.

3.3.1.1 Establishment Phase of DeGiCA

The establishment phase goes through three sequential processing steps: setup process,
gridding network process and cluster formation process. At the setup process, a WSN

experimental area is created permanently with size equal to (M * M) m? and a BS

positioned at the center of the sensed area (%,%). During gridding network process,
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the experimental sensed area is divided to small equal size of grid G, and n nodes are
scattered randomly inside grids, all nodes have equal initial energy, see figure 3.6 (a).
Grids are classified based on their density into either a high dense grid (H), or a low
dense grid (L), or an empty grid cell (E), figure 3.6 (b). Each grid is classified by
calculating its nodes number and comparing it with a threshold . Experimental sensed

area boarders are eliminated and empty grids are discarded.

At the cluster formation process, figure 3.6 (c) and 3.6 (d), close grids are combined
with each other to form one specific cluster by assuming that any two adjacent high
dense grids are joined in a cluster, any two adjacent high dense grid and low dense
grid are also joined in a cluster, and any two adjacent low dense grids are being an
outlier for a cluster as discussed lately. Figure 3.6 (), presents a final DeGiCA WSN

structure.
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Figure 3.6 Proposed DeGiCA Model Structure
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In step representation, the following subsections provide more details about the

DeGiCA processes:
Setup Process

Step 1. As assumed at section 3.2.1, a WSN experimental area is created permanently

with size equal to (M * M) m? and a BS positioned at the center of a sensed area

M M
Gridding Network Process

Step 2. Partitioning a network sensed area permanently once during the whole network
lifetime into equal size of cells called grids G to find later their effect on the proposed
DeGiCA. After that, a number of n nodes are randomly mapped inside grids. This step

is done by using a method called FillGrid algorithm shown in figure 3.7.

Input: static data

Output: Grid matrix with data points
Gridx=ceil (Node x dimension /width)
Gridy=ceil (Node 7 dimension /length)

[ B - A

Grid Counterigrid x dimension ,grid v dimension )= Grid Counter (grid x

dimension, grid v dimension |+ 1

Figure 3.7 Fill Grid Algorithm

Step 3. Finding number of clusters € and their centers v by applying a special density

grid-based technique. It is briefly obtained by following the steps:

a) Empty grid (E) is used as outlier. Each non-empty grid in the network is classified
to either high dense grid (H), low dense grid (L). Grid classification procedure is
done by comparing the number of nodes in each grid with a threshold a. The
threshold is obtained from calculating a Standard Deviation $D of network nodes

number n. The threshold is calculated by equation (3.1).
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o=5Dx2 (3.1)

Where SD = \/@

and n is the total number of nodes in a WSN is, x is a single node in the network, and
x is the mean of network nodes.

This step can be applied using the ClassifyDense algorithm presented in figure 3.8.

. Input: Grid Matrix

. Dutput: Grid type Matcrix

. Standard Deviation = Standard Deviation Function (Grid matrix):
threshold= Standard Deviation *2Z;

[¥ T T I S R

for ewvery grid in the network field

£. 1f (there is no nodese in the Grid)

7. Grid type is 'empty':

8. e2ls2 if({the number of nodes in the grid is less than threshold)

9. Grid type is 'Low';

10. else ifi(the number of nodes in the grid is more than or =gual than
threshold)

11. Grid type is 'High':

12. endif

13. endfor

Figure 3.8 Classify Dense Algorithm

Cluster Formation Process

b) Creating clusters, where nodes are clustered around a minimum high dense grid
until a certain number of nodes is reached to the cluster threshold o, this is done

by using a CreateClusters algorithm shown in figure 3.9.

Input: Grids in the fie=ld

Cutput: Clusters

$determine first high

. for every grid not in the border of the network field

. 1f (the grid type is dense)

number of High grid incremented ;

. minimum = hold the x and 7 dimensions for the minimum high dense grid;

endif

. endfor

. minimum high dense grid x and v dimensions = findMinHigh(ClusterMarix,width, length);

. 3Cluster around the minimum high

10. for (every High dense grids in center sub matrix)

11. if (MNeighbour not in cluster && Neighbour Type is "High " && Cluster valus less than or egual Cluster threshold
Add Neighbour to cluster;

go to the next Neighbour( Grid);

elseif (Neighbour not in cluster && Neighbour Type is "Low’ && Cluster value less than or equal Cluster threshold)
Add Neighbour to cluster;

go to the next Neighbour (Grid)

endif

W -] o e b

endfor

Figure 3.9 Create Clusters Algorithm
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In more details, figure 3.10 shows how to create clusters based on their grids density.
Nodes are clustered around a selected minimum high dense grid as shown in figure
3.11 until reaching a specific number of nodes as cluster threshold. Assuming that two
adjacent high dense grids (H) are joined in a cluster, two adjacent high dense grid (H)
and low dense grid (L) are also joined in a cluster, and two adjacent low dense grids

(L) are being an outlier for a cluster.

Network boarder]

3

= =
< <
£ | £
— 3 Top left Top right S
= op op I =
=2 =2
— = . = —
E Left Right I .E
|z I z_|
Bottom Bottom Bottom ]
1

Network boarder

Figure 3.10 Cluster Formation Process

1. Input: Cluster Matrix , width , high

2., Output: minimum high dense grid x and v dimensions

3. for (everv grid in center sub matrix)

4, if (Grid type is 'High' && it is not in a cluster && grid nodes< minimum )
5. minimum = The Grid = and v dimension ;

£. endif

7. endfor

Figure 3.11 Minimum High Dense Algorithm

For every next minimum high dense grid, if it is not included in any cluster before, the

algorithm AddNeighbors shown in figure 3.12 is used to find its cluster.
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Input: Cluster Matrix

Cutput: Add Grid to Cluster

1. 5 add Neighbour of the Neighbour function

2. go to the next Neighbour | Grid) |

3. while end not reached

if (MNeighbour not in cluster &L&lNeighbour Type is "High " &&next
Neighbour Type is "High" &£& Cluster walue less than or equal Cluster
threshold)

5. Add MNeighbour to cluster

£. go to the next Neighbour (Grid) ;

7. elseif (Neighbour not in cluster &&lNeighbour Type is "High " && next
Neighbour Type is "low" &£&Cluster walue less than or sgqual Cluster
threshold)

8. Add MNeighbour to cluster:

9. go to the next Neighbour (Grid) :

10. elseif (Neighbour not in cluster && Neighbour Type is "Low "
&enext Neighbour Twype is "High" && Cluster wvalus less than or
equal Cluster threshold)

11. Add MNeighbour r to cluster

12. go to the next Neighbour (Geid) ;

13. elseif (Neighbour not in cluster &&leighbour Type is "Low

&& next Neighbour Type is "low" &&Cluster walus less than or

equal Cluster threshold)

19. Add Neighbour to cluster;

. break;

. endif

. endwhile

()

E) B) OBD
wob

. } end of go to the next Neighbour function

Figure 3.12 Add Neighbors Algorithm

c) After forming all clusters, CHs in each cluster are initially selected based on the

nearest distance to the BS.

d) Finding the center of each cluster v, for comparison purpose.

Step 4. Extracting nodes found on network boundaries, figure 3.10, and eliminating

noise (i.e. empty grids).

DeGiCA is now ready to run data stream packets and move to the rounds process.
Using number of clusters C and their centers v obtained from the previous steps are
used for comparison purpose. Figure 3.13 presents the initialization process pseudo
code of DeGiCA. The complete process of DeGiCA initialization is provided in a

flowchart shown in figure 3.14.
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Peeudo cods of DelGiC.A Inftialization Process
Impats: o, G, M. o
Onatpats: O, o

Initialize n = 100, &gy = 0. M = 1000, 0 = 0.
Craagte WEDN permmansmthy with M ¢ M sguars unit.
Lacate BS at center (M /2, M F2).

Create zrids 5.

hap nodes n into &w § 2= 0.

Puti = n

Wrhile (i = 03{

1.
11.
12.
15.
14
15.
14.

17.

15,

1%,

-
=

-
-

-
-

Calculate 5D = “I#

Ty T)E v € {12, ..,100} i =i—1;} end loop

o =50 2.
Calculate j =&, . 0 € (0,0) — (M, M},
Wrhile (j = 07 W Classify grids based on density (empty, low, high).
if (no nodes in &), thea &; = “empty™;
elea if (mumber of nodes in 0, < o), then & = “low™.
elea if (mumber of nodes in 0, = o), then &, = “high™.
J=j+ 11} "End while loop.
Find minirmim high danse grid
Exclude zrids at network barder.
Clustering nodes around mimimum high dense grid until reaching a number
compared to o.
Examinimg sight neizhibors of minimam high srid.
a. If (meighbor zrid “high™ || “low™) && (chostered previounzly)y! && (o not
reached), then & iz mclodad.
b, Faepest (2) until satisfying the following conditions:

iii.

if (meighbar iz “high™) &4 sroe of its adjacent neizhivors iz “hish™), then
both ara inchided in the cluster.

else if (meighbar is “high™ && amy of itz adjacent neizhbars iz “low™),
then both are iscloded in the clustar.

else if (peighkbor iz “low"™ && itz neighbor iz “high™), than both ars
mchaded in the clustar.

glze if {meighbor is “low”™ && itz neighbor iz “low™), then both are
mmcluded and thiz forms closter boarder.

Eepaat (a) and (b} for every next mininmum hizh dense grid if it is pot inchaded
any cluster before.
Calculate f =mamber of &, w & € (0,07 — (M. M.

Fer(J=0; j=0; j+ 4+
. {5elect CH g of each cluster bazed on nesrest to the BS.}
. Oatput £ and v.

Figure 3.13 Initialization Process Pseudo Code
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Figure 3.14 Initialization Process of DeGiCA Flowchart

3.3.2 Rounds Process of DeGiCA

After establishing a WSN infrastructure as mentioned in section 3.3.1, DeGiCA is
ready to flow streaming data packets and begin network rounds process. Each round
is divided into two phases, data transmission phase and CH-Election phase. During
first round, CH of each cluster is chosen previously based on its shortest distance to

the BS. Then each round selects the next round CHs at the CH-Election phase before
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starting the next round. Both phases are repeated rotationally at round process until the
end of network’s lifetime. Processing data streams is done only at the rounds process.
Figure 3.15 describes the DeGiCA rounds process pseudo code. Rounds process runs
a data stream packet DS,k t0 result data D aggregated by CHs from all sensor
node n. CHs send data D to the BS, then lately to the end user. Additionally, for more

clarity, figure 3.16 explains the rounds process flowchart.

Pseudo code of the DeGiCA Rounds Process

Inputs: CHgg, C, DSpacket » M

Outputs: processed data sent to the end user

Initialize N = number of node in each cluster.
for(i=0;i<C;i++)

{ CHcyrrent(r) = CHBS(;’);}

Run data stream packet DS, ;cet-
do{for(i=0;i<C;i++)

{Sense DSpqcket VN EC;

Process DS,qcket VN € C

Aggregate data D from V node € C; by CH yrrent(r)
Send data from CH_y,pyent(i) to BS.}

10. '\ check highest energy

1l.for (j=0; j<C;j++) {

12. for (k =0;k = N;k+ +)

13. { if (energy of ny > energy of CH.yrrent(j))
14. CHeyprent(j) = Nis}

15. } while (n > 0) '\ do while network is alive

0 PN P e W

Figure 3.15 Rounds Process Pseudo Code
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——— - if (eneTgy of node in same cluster =

energy of CH-current)

then, put node as CH-current. }

Figure 3.16 DeGiCA Rounds Process Flowchart

3.3.2.1 Data Transmission Phase of DeGiCA

Clustering technique used in DeGiCA leads to a two-level hierarchy where CHs form
the higher level and nodes form the lower level. Nodes periodically transmit streaming
data to their corresponding CHs. CHs aggregate, process streaming data packets,
eliminate their redundancy and transmit them to the BS. The BS is the point of data
processing for data received from nodes, and where data is accessed by the end user.
The BS is considered to be at the center of the sensed area to be approximately near to

all clusters. CHs act as gateways between sensor nodes and the BS.
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Once all nodes in a cluster receive a join message, and a transmission schedule is
initialized at the BS, sensor nodes start to perform data sensing and transmission to
CHs. Once CHs receive all data, they perform data aggregation and processing. The
resultant data are sent from CHs to the BS. This communication is a multi-hop
communication in a hierarchical WSN topology. A multi-hop communication reduces
the amount of information being transferred, hence reducing energy consumption. This
phase is applied by using a method called NodeProcess that senses incoming streams
and minimizes data transmission and BSprocess that process data and send it to the
end user. In the proposed DeGiCA, three types of messages are used to perform the
whole communication process. These messages are:

e Advertise message (ADV); in case any node own a new data to be shared with the
nodes, it should firstly employ ADV message in order to advertise that it has some
data to share.

e Request message (REQ); after sharing the data, any node accepts this data should
take a response to ADV message by sending REQ message as indication that it
wants to be a recipient for actual data.

e Data message (DATA); includes the actual data to be shared by the node that
initiate the communication process by ADV message.

During data transmission, an amount of nodes' energy is consumed, to calculate energy

consumption of each node individually inside a cluster or even calculating the energy

consumption for the whole network, the following function in figure 3.17 is used.

ClusterEnergy(j, x) = Cda(j,3); Y%mnode j over x rounds
if(Cda(j,3) >.0001)
Cda(j,2) = Cda(j,2) + 1;
Cda(j,4) = Cda(j,4) + Cdist(j) ~randn = 5e — 1+ 1;

end

Figure 3.17 DeGiCA Energy Consumption Function
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At the end of each round, the energy consumption function has the ability to calculate
the residual energy of each node inside a cluster and calculate the energy consumption
of each cluster to outcome the overall network energy consumption. Calculating
consumed energy of each node is a required process to obtain their residual energy.

Node residual energy is used during CH election between cluster nodes.

3.3.2.2 CH-Election Phase of DeGiCA

CHs spend a lot more of energy than other normal sensor nodes do, due to sending the
aggregated data to a higher distances (i.e. BS). A common solution to balance energy
consumption among all nodes, is to periodically re-elect new CHs (rotating the CH
role among all nodes over time) in each cluster. For each cluster, CH-Election is done
by electing the node has the highest residual energy among all nodes including the
current CH. This enhances energy consumption thus extends network lifetime. CHs
election process for the upcoming rounds is done locally in each cluster. The current
CHs (that are elected from the previous round) calculate the energy level of all alive
nodes in its cluster. The competition between candidate nodes to be a CH is done by a
method called CHProcess that also aggregates, processes streaming data, eliminates

redundancy and sends data to the BS.

3.4 Conclusion

Density-based clustering can detect arbitrary shape clusters, handle outliers and do not
need the number of clusters in advance. In this chapter, an overview of the proposed

Density Grid-based Clustering Algorithm (DeGiCA) model was given. The chapter
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provided in details the phases of DeGiCA: establishment phase, data transmission

phase and CH-Election phase.

The DeGiCA is based on the concept of density of each grid to create the clusters in a
gridded WSN. The idea of the proposed scheme was based on dividing a sensor
network area into equal size of grids. Meanwhile, grids are classified to three main
classifications, high dense, low dense and empty grids. Grids then are combined to
form clusters and empty ones are used as delimiters. Advance nodes are elected to
become CHs. CHs are initially chosen based on the shortest distance to BS. Then CHs

are elected based on highest residual energy in the remaining rounds.
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Experimental Results and Analysis



Chapter IV

Experimental Results and Analysis

4.1 Introduction

Clustering has proven to be an effective approach for organizing WSNs into connected
hierarchy. Clustering technique, density technique and grid, have proven their
efficiency to reach a high network performance. Besides clustering advantages, density
can find arbitrary shaped clusters with noise and network gridding avoids clustering
quality problems by discarding boundary points of grids. The combination of

techniques enhances clustering performance as being presented later in this chapter.

This chapter provides an evaluation of the developed Density Grid-based Clustering
Algorithm (DeGiCA) to indicate its efficiency among other stream mining clustering
algorithms to enhance WSNs performance. Moreover, the chapter discusses several
comparisons between the two competitors mentioned previously (i.e. FCM and K-
means), their final simulation results and performance metrics. To achieve fair
evaluation of DeGIiCA, both standard FCM and K-means in such comparisons and
evaluations have been modified to stream data and run same dataset streaming packets.
For a research purpose, a standard dataset streaming packet form is used with the three

competitors to show their final experimental results.
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The procedure used to obtain the final experimental results for three competitors is by
running DeGiCA first to form its clusters, then gain number of clusters € and their
centers v. After that, DeGiCA competitors are run each individually using € and v.
DeGiCA and its competitors form three different individual WSNs with same number
of clusters. A comparison function is then used to compare between performance
metrics results of the three competitors. Comparisons between competitors are done
for three main metrics, in terms of overall network lifetime, overall energy
consumption for entire network, and lastly, overall packet delivery. The rest of this
chapter is organized as follows: section 2 represents DeGiCA performance metrics.
Section 3 presents DeGiCA system requirements that are needed for implementation.
Section 4 presents DeGiCA simulation experimental analysis. Section 5 presents the
effect of gridding on a WSN lifetime. Finally, section 6 presents the chapter

conclusion.

4.2 DeGIiCA Performance Metrics

This section provides the most important definitions and concepts related to required
research work. Clarifying definitions and concepts simplifies some difficulties faced
during simulation result analysis. The following points are performance metrics

definitions specializes for DeGiCA and its competitors:

1- Network Lifetime. The lifetime of a WSN can be defined as the time elapsed until
the last node dies, or a fraction of nodes dies. Network Lifetime is usually
measured in seconds. For scientific research, it is assumed to initially charge nodes

with very small energies, equivalent to 1 joule, so that nodes die faster to get
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results in seconds. Common network lifetime definition is the time until the
first/last node in the network depletes its energy and the time until a node is

disconnected from the BS [47].

total network energy

Network Lifetime = Number of round = -
total energy consumed in each round

Energy Consumption. It is a measure of amount at which energy is dissipated by
sensor nodes in a WSN within a specific period of time. Energy consumption is
measured in joules.

Packet Delivery Ratio. It is the ratio of total number of delivered packets
successfully received by the BS to the number of packets sent by all sensor nodes
in the network. It is expressed in percentage. Packet delivery ratio depends on
number of lost packets in physical and MAC layers. Packet loss may occur only
when nodes start to die, but in this case, CHs are responsible for transmitting

packets. So, all packets are received by the BS in DeGiCA.

4.3 DeGiCA System Requirements

This sections presents main requirements to implement DeGiCA. It provides dataset

description, simulation experimental parameters and minimum simulator

requirements.

4.3.1 DeGIiCA Dataset Description

Dataset streaming packet used in this research is a standard form used for scientific

research purposes, where used simulator (i.e. based on MATLAB) doesn’t generate
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randomly a desirable dataset streaming packet. Dataset packet is generated randomly
from distributed nodes. Packet’s form is suitable for different clustering schemes and
algorithms. Dataset streaming packet is assumed to be non-uniform. If uniformed,
cluster formation is considered to be uniformed and the clustering algorithm research

study becomes inefficient.

Each node in the experimental sensed area has a specific data structure consists of the

following:

1- Nodes are immobile. So, each node has coordinates (x, y) that defines its location
inside the sensed area.

2- Node energy that represents a node current energy is holding. Initially, all nodes
have an energy = 1 joule. This value is actually used for some scientific research
studies. Using a value greater than 1 Joules during research experiments causes
long execution time and may effect on the used machine usability.

3- Energy losses factor at each frame transmission.

4- Status of the node. Nodes could be active during sensing and transmitting
otherwise they remain sleep.

5- Index of the node.

The dataset streaming packet is designed in an appropriate manner to fit the requested
network. It is built in a simple form used to communicate between nodes. Generally,
dataset streaming packets flow in a very high speed. At streaming packet arrival, time
is recorded whenever an event occurs. Needless, data streams are not saved. They are

read and processed then released immediately. Saving such data leads to the process
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of manipulating with big data in warehouses which is not considered in this research

scope.

Data streams differs from static data. Static data are unchangeable and not a real-time
data. Data streams are all about real-time data where data are collected from various
sensors. Data stream packet used in the developed DeGiCA is a 126 byte/message, it

has the following parameters as shown in table 4.1:

TABLE 4.1 Structure of Data Stream Packet

Parameter Size Parameter Size
Delimiter 1 byte Source Address 8 bytes
Length 2 bytes Destination Address 8 bytes
Network ID 2 bytes Options Flag 1 byte
PAN ID 2 bytes Payload Data 100 byte
Node Type 1 byte Checksum 1 byte

Table 4.1 shows the structure of dataset streaming packet used by this research for

DeGiCA and its competitors. Each parameter in dataset stream packet is described as:

e Delimiter. The starting of the data stream packet frame indicator.

e Length. Length of the data stream packet frame.

e Network ID. Refers to the overall network.

e PAN ID. Refers to cluster ID.

e Node type. Indicates the leaf node, head of cluster ... etc.

e Source address. A 64-bit address of the node for the sent data.

e Destination address. A 64-bit address of the node that is receiving the data.
e Options flag. It provides the network management options.

e Payload data. The message or streaming data.

e Checksum. The data validation check sum.
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Figure 4.1 presents the dataset stream packet structure used in DeGiCA and its

competitors.

Delimiter | Length Network | PANID Source Destination | Options | Options | Payload Check
ID Address Address Flag Flag Data sum
1 byte 2 byte 2 byte 2 byte 1 byte 8 byte 8 byte 1 byte 127 byte 1 byte

Figure 4.1 Structure of Dataset Streaming Packet

Figure 4.1 shows each dataset streaming packet component size in byte. This structure
is used in DeGiCA simulation experiments. Due to scientific research purpose, data in

the sample is considered to be digital, so it is presented without payload data.

4.3.2 Experimental Setup Parameters

Before evaluating DeGiCA, experimental setup parameters used to implement the
developed algorithm and its competitors are clarified in this section. Table 4.2 presents

experimental setup parameters and corresponding values used in evaluation and

scalability experiments.

TABLE 4.2 Experimental Setup Parameters

Experimental Parameters

Experimental Parameters Values

Sensed area network size

1000m X 1000m

Initial energy for each node 1/ /node

Number of nodes n 100,200 node
Egec(transmit/receive energy) 100 pJ/bit

Data message / Data packet size | 126 byte/message
Control packet 26 byte

Node Communication

IEEE 802.15.4 Industrial Wireless Sensor Networks

BS location At the centre of all networks; its coordinates are
(500, 500)

Threshold o 4,5,6

Grid size g 80,110,120,130,140,150,155 m
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4.3.3 DeGIiCA Simulator Requirements

In order to evaluate the developed DeGiCA, the experimental setup parameters are
used to implement three different simulations (i.e. DeGiCA and its competitors) using
the famous MATLAB software version R2008b. In this research experiments,
MATLAB is used in a machine with Windows 7 Service Pack 1 with 1TB disk space,
64-bit operating system, Intel ® Core ™ i7 processor and 8GB RAM. Table 4.3 shows

machine minimum requirements to install this version of MATLAB.

TABLE 4.3 Machine Minimum Requirement for MATLAB R2008b

Operating System Processors Disk Space RAM
1- Windows XP (Service 1- Intel Pentium 510 MB 1024 MB
Pack 1 or 2) (Pentium 4 and | (MATLAB (2048
2- Windows Server 2003 x64 above) only) recommended)
(Service Pack 1 or 2, R2) | 2- Intel Celeron
3- Windows Vista 3- Intel Xeon
4- Intel Core
5- AMD64

The reason behind using this version of MATLAB is due to its ability to handle
operations and procedures of DeGiCA and its techniques with no need for more
advanced libraries as seen in MATLAB 2016 that requires long time to process and
start running. Competitors stream the same dataset streaming packet in an environment

with 100 node scattered randomly at an equivalent sensed area space size.

4.4 DeGiCA Simulation Experimental Analysis

Several simulation experiments are done on DeGiCA and its competitors. Many
experiments had preferable DeGiCA performance metrics outcomes compared to its

competitors. Ten best performance metrics simulation experiments are chosen to be
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presented in this research. Obviously, setup parameters are used at the initialization
process. Grid size g and threshold o are parameters that are being tested until finding
their optimum values. Table 4.4 presents ten best experiments to evaluate DeGiCA

and obtain optimum g and .

TABLE 4.4 Ten Best Simulation Experiments for DeGiCA

Threshold o Grid Size g Clusters €
80
110
120
130
140
130
140
150
155
140

w
[op]

N EIESIRSGSGIES EN NS
NowlwiNd oo~ s

This section is the most important part of thesis research study. It provides a detailed
discussion about DeGiCA simulation experimental results. First, it provides a
description about all presented graphs from simulator. Second, it evaluates DeGiCA
by comparing its final outcomes with its competitor’s outcomes. Third, it provides a
study on the optimum network grid size and threshold for a DeGiCA WSN. Fourth,

based on the obtained optimum grid size and threshold, DeGiCA is scaled.

4.4.1 DeGIiCA Expected Outcomes Description

Representing outcomes and visualizing results in graphs is preferred to achieve
simplicity and realization. DeGiCA has several expected results requires clarification
to measure its performance metrics. So, the following description provides a selected
DeGiCA experiment results, assuming its experimental area size equivalent to

(1000 x 1000) m? with n = 100. Each node has a random specific position with
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initial energy = 1 joule. Figure 4.2 presents this experiment at the establishment

phase during grid process when g = 150 and threshold o = 5.
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Figure 4.2 Establishment Phase during Sensed area Gridding when g = 150 and ¢ =
5

Grids are classified based on their density, then nodes are clustered based on cluster
formation process in DeGiCA. Figure 4.3 (a) shows grid classification based on
density, green cells for high dense grids, dark blue for low dense while light blue cells
are empty grids. Figure 4.3 (b) shows corresponding clusters. Each cluster has a
specific color and a clear CH. After cluster formation process and accomplishing

network initialization steps, rounds process starts, and results are obtained.
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Figure 4.3 Establishment phase when g = 150 and o = 5 (a) Grid Classification (b)
Corresponding Cluster Formation
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To measure DeGiCA performance metrics, a scheme of its network lifetime shows the

relationship between time and number of a live nodes, as shown in figure 4.4.

node
100

Number of life nodes

Network life time scheme

0
0 200 400 600 800 10
Time

I 1 | | |
00 1200 1400 1600 1800 2000

sec

Figure 4.4 Network Lifetime Graph when g = 150 and ¢ = 5

In addition, a scheme calculates energy consumption for each cluster is represented. It

shows the relationship between time and energy. Figure 4.5 presents energy

consumption for each cluster in the network, (a) for the first cluster and (b) for the

second cluster.

Joule Energy consumption schem for cluster no_ 1
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[
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Energy consumption schem for cluster no. 2
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Time:
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(b)

Figure 4.5 Energy Consumption for each Cluster when g = 150 and o =5 (a) for

First Cluster (b) for Second Cluster

Energy consumption scheme for the whole network shows the relationship between

time and energy as shown in figure 4.6.
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Figure 4.6 Energy Consumption for whole Network when g = 150 and ¢ = 5

To measure DeGIiCA selected experiment percentage of packet delivery ratio, a

scheme for total network packets delivered is shown in figure 4.7.
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Figure 4.7 Packet Delivery Ratio for each Cluster and for whole Network when g =
150 ando =5

4.4.2 Evaluating DeGiCA in terms of Network Lifetime and Energy Consumption

Three best selected simulation experiments are chosen to compare DeGiCA and its
competitors between their final performance metrics result in terms of network lifetime
and energy consumption. First experiment is when g = 130 and ¢ = 5. Second

experiment is when g = 155 and o = 5. The last experiment is when g = 140
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and ¢ = 6. All competitors in their experiments are streaming the same dataset stream
packet with size 126 byte/message in a (1000 x 1000) m? sensed area, with n =
100 nodes scattered randomly each with an initial energy equal to 1 joule. Figure 4.8
presents a comparison between DeGiCA, FCM and K-means when g = 130 and ¢ =
5 in terms of (a) network lifetime, (b) their energy consumptions. Other experimental
results comparing DeGiCA, FCM and K-Means when g = 130 and ¢ = 5 are shown

in Appendix B (figure B.1, figure B.2).

node Network life time scheme Joule Energy cor ption scham for plete network
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(a) (b)

Figure 4.8 Comparing DeGiCA, FCM and K-means when g = 130 and 0 = 5 in
terms of (a) Network Lifetime (b) Corresponding Energy Consumption

From the figure, we noticed that number of alive nodes are dropped sharply at 600 sec.
DeGiCA is better than FCM and K-Means. The energy consumption are dropped

sharply at 100 sec. DeGiCA has little performance than its competitors.

For the second experiment, figure 4.9 presents a comparison between DeGiCA, FCM
and K-means when g = 155 and o = 5 in terms of (a) network lifetime, (b) their
energy consumptions. Other experimental results comparing DeGiCA, FCM and K-

Means with g = 155 and o = 5 are shown in Appendix B (figure B.3, figure B.4).
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Figure 4.9 Comparing DeGiCA, FCM and K-means when g = 155 and 0 = 5 in
terms of (a) Network Lifetime (b) Corresponding Energy Consumption

From the figure, we noticed that number of alive nodes are dropped sharply at 500 sec.

DeGiCA is better than FCM and K-Means. The energy consumption are dropped

sharply at 100 sec. DeGiCA has little performance than its competitors.

Lastly, the third simulation experiment is shown in figure 4.10 presents a comparison

between DeGiCA, FCM and K-means when g = 140 and o = 6 in terms of (a)

network lifetime, (b) their energy consumptions. Other experimental results comparing

DeGiCA, FCM and K-Means when g = 140 and ¢ = 6 are shown in Appendix B

(figure B.5, figure B.6).
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Figure 4.10 Comparing DeGiCA, FCM and K-means when g = 140 and ¢ = 6 in
terms of (a) Network Lifetime (b) Corresponding Energy Consumption
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From the figure, we noticed that number of alive nodes are dropped sharply at 400 sec.
DeGiCA is better than FCM and K-Means. The energy consumption are dropped

sharply at 100 sec. DeGiCA has little performance than its competitors.

Briefly, as shown in the simulated experimental result graphs, it is clear that the
developed DeGiCA has the longest network lifetime compared to its competitors.
Table 4.5 provides examples for some live nodes in a certain running time during

network lifetime of DeGiCA, K-means and FCM. First Node to Die is referred to FND.

TABLE 4.5 Number of Live Nodes in DeGiCA, K-means and FCM at a Certain Time

Time DeGiCA K-means FCM
FND 95 50 60
g =130 100 96 83 80
g=>5 300 24 25 14
500 8 9 5
1000 4 2 1
1500 4 1 1
2000 4 1 1
FND 50 50 50
g =155 100 90 77 73
g=>5 300 29 17 13
500 14 7 5
1000 8 3 3
1500 6 2 2
2000 6 2 2
FND 100 40 50
g =140 100 100 80 79
o=6 300 23 25 15
500 19 17 6
1000 4 2 1
1500 4 1 0
2000 3 1 0

Table 4.5 is expressed by using charts to present live nodes in DeGiCA and its

competitors. By applying Rounds for X-axis and number of live nodes for Y-axis,
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figures 4.11 presents number of live nodes when g =130 and o = 5. Other
experimental results presents number of live nodes for DeGiCA and its competitors
when g = 155 and ¢ = 5 and when g = 140 and ¢ = 6 as shown in Appendix B
(figure B.7, figure B.8). K-means usually has the first node to die while DeGiCA has
the last one to die. So, it seems that DeGiCA has the longest network lifetime than

both competitors where FCM has the shortest lifetime.

Number of Live Nodes in a Certain Time
(g =130)

H DeGiCA EK-Means ®FCM
node

83 go
2425
l. 895 4341 411 4711
. 1 ™ —— — —
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Figure 4.11 Number of Live Nodes when g = 130 and o = 5

In average, for the simulationed experimental result comparisons shown above,
DeGiCA has shown to have the longest network lifetime compared to both FCM and
K-means. Network lifetime is enhanced in DeGiCA comared to its cometitors. This

can be presented in figure 4.12, where X-axis presents the averge network lifetime.
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Figure 4.12 Average Network Lifetime for DeGiCA, FCM and K-means
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For energy consumption analysis shown in figure 4.8 (b), figure 4.9 (b) and figure 4.10
(b), the developed DeGiCA consumes less energy than its competitors. Table 4.6
provides some approximated consumed energy results for DeGiCA, K-means and

FCM for the selected simulation experiments when g = 130,155,140 respectively.

TABLE 4.6 Percentage of Consumed Energy Results in DeGiCA, K-Means and
FCM in a Certain Time

Percentage of Remaining Energy in Joule
Time DeGiCA K-means FCM
10 67 75 60
g =130 25 33 35 28
o=35 50 15 16 10
75 8 8 7
100 8 7 4
200 6 2 1
300 4 2 1
450 3 1 1
500 3 1 1
10 65 80 80
g =155 25 35 38 36
o=>5 50 19 17 11
75 15 9 5
100 11 8 5
200 10 8 3
300 9 7 2
450 7 5 2
500 6 4 1
10 65 60 69
g =140 25 35 29 30
og=6 50 17 12 13
75 9 6 4
100 9 4 3
200 6 3 2
300 4 2 2
450 4 2 1
500 4 2 1
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To effectively express table 4.6, Figures 4.13 presents energy consumption percentage
when g = 130 and 0 = 5 at a certain time, Other experimental results presents
energy consumption percentage for DeGICA and its competitors when g = 155
and ¢ = 5 and when g = 140 and o = 6 as shown in Appendix B (figure B.9, figure
B.10). It seems that the developed DeGiCA consumes less energy than both

competitors.

Energy Consumption Percentage at Certain Time
(g =130)

Joule B DeGiCA mK-Means BFCM

60
335
10
III II 887 874 6,1 431 311 311
10 100 200 300 450 500 sec
Figure 4.13 Energy Consumption Percentage when g = 130 and ¢ = 5 in a Certain

Time

Obveiuosly, DeGiCA resumes less energy than its competitors do. As a matter of fact,
it extends network lifetime but uses only its sufficient amount of energy. Figure 4.14

shows that average energy consumtion in DeGiCA and competitors.

Average Energy Consumption in Joule

A 1

Y o-cicA
A - e
56 58 60 62 64 66 68 70 Joule

Figure 4.14 Average Energy Consumption for DeGiCA, FCM and K-mean
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4.4.3 Evaluating DeGiCA in terms of Packet Delivery Ratio

Three best simulation experiments are chosen to perform a comparison between
DeGiCA and its competitors and finally evaluating the developed algorithm in terms
of packet delivery ratio. Competitors are streaming same dataset stream packet having
a size equivalent to 126 byte/message in a (1000 x 1000) m? sensed area, with n =
100 nodes scattered randomly each with an initial energy equal to 1 joule. The first
experiment iswhen g = 80 and ¢ = 3. Second experimentiswhen g = 110 and ¢ =

4. The last experiment is when g = 140 and o = 6.

The following figures show delivered packets ratio for the competitors. Figure 4.15
presents a chart when g = 80 and a = 3, other experimental results charts when g =
110 and o = 4 and when g = 140 and ¢ = 6 as shown in Appendix B (figure B.11,

figure B.12).

- o o~

Percentage of total metwork packets %

~ w

Figure 4.15 Overall Packet Delivery Ratio when g = 80 and o = 3

In average, the developed DeGiCA has proven strongly to deliver a high ratio of data
packets compared to FCM and K-Means. It almost recives all data packets at the final
distination. The delivery ratio is enhanced in DeGiCA compared to its competitors,

this can be shown in figure 4.16.
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Figure 4.16 Average Delivered Packets for Competitors

4.4.4 DeGiCA Experimental Results to Determine Optimum g and o

This section provides strategy used to determine the optimum value of grid size g and
threshold o used at clustering formation process in DeGiCA. Once determining

optimum values, DeGiCA starts scalability testing found in the next section.

It’s required to specify the parameters related to each other in DeGiCA and find their
relationship. DeGiCA has three main parameters related to each other: number of
clusters C, grid size g and threshold . Number of clusters is obtained from the
algorithm, so it is an output based on g and a. To determine the optimum value of g
and o, several simulation experiments were selected to find the best performance
metrics based on keeping g fixed while o is a variable and vice versa. Table 4.7

presents selected experiments with best performance metrics results.

TABLE 4.7 Grid Size and Threshold Simulation Experiment Selection to Determine
their Optimum Values of g and o

o is fixed and g is a variable g is fixed and o is a variable
o g (o g o C
120 4 4 6
4 130 5 140 5 3
140 6 6 2

93



As a matter of fact, and from several simulation experimental results, whenever grid
size increases, number of clusters decreases resulting an inverse relationship, but in
this section it seems to be not. The reason behind that is, the best selected values of
g are almost close to each other and all selected five experiments shown in the previous
table have a high enhancement of network performance metrics. Table 4.8, presents
performance metrics results of five selected simulation experiments to determine the

optimum value of g and o.

TABLE 4.8 Performance Metrics of Competitors for 5 best selected Simulation
Experiments to Determine the Optimum Values

DeGiCA FCM K-means
Lifetime | Energy | Packets | Lifetime | Energy | Packets | Lifetime | Energy | Packets
9 ::110 5% 8% 14% 2% 2% 11% 0% 0% 12%
9 ::110 7% 9% 17% 1% 1% 10% 6% 5% 13%
g ::1‘:" 7% 9% 17.5% 1% 1% 9% 5% 6% 13%
9 ::1‘;" 4% 5% 16% 2% 2% 9% 3% 1% 13%
9 ::1‘;0 2% 3% 14% 1% 2% 10% 1% 1% 12%

As clearly presented in table 4.8, it is found that the optimum value of g and o is when
g = 140 and o = 4, where network lifetime, energy consumption and packet delivery
ratio are enhanced perfectly compared to other selected g and a. In table 4.8,
percentage of remaining nodes is used to measure network lifetime in a certain time,
percent of remaining energy in the network is used to measure its energy consumption
in a certain time and finally percent of delivered packets is used to measure packet

delivery ratio in a certain time
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4.4.5 DeGIiCA Scalability

To measure DeGiCA scalability, optimum values of both grid size g and threshold o
are used in DeGiCA scalability test. DeGiCA has the ability to be scaled based on
applying the developed algorithm on two different environments running the same
dataset stream, then comparing the resulted performance metrics with its competitor’s
results. DeGIiCA is scaled using the following simulation experiments with g =

140 and o = 4:

Table 4.9, presents simulation experimental results of DeGiCA scalability compared

to its competitors using optimum values when g = 140 and o = 4.

TABLE 4.9 DeGiCA Scalability Based on Optimum Values at Certain Time

DeGiCA FCM K-means
n=100 | n=200 | n=100 | n=200 | n=100 | n =200
Network Lifetime 7% 6% 1% 1% 5% 1%
Energy Consumption 9% 14% 1% 16% 6% 17%
Packet Delivery Ratio | 17.5% | 19% 9% 15% 13% 16%

In table 4.9, percentage of remaining nodes in the network is used to measure network
lifetime in a certain time, percent of remaining energy in the network is used to
measure its energy consumption in a certain time while percent of delivered packets is
used to measure packet delivery ratio in a certain time. Methodology followed to scale
DeGiCA is by firstly running the algorithm in (1000 x 1000) m? sensed area, with
n = 100 node then running it in (1000 x 1000) m? sensed area, with n =

200 node, It seems that DeGiCA enhances performance metrics compared to its
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competitors but it provide less enhancement than when n = 100 node. Still, DeGiCA

is assumed to be scalable.

4.5 Effect of DeGiCA Gridding on WSN Lifetime

This section provides analysis and discussion about the effect of grid technique on
network lifetime. To discussions the effect of grid size g on DeGiCA network lifetime
performance metrics, four different simulation experiments are chosen based on grid
size (i.e. g =110,120,130,140). Each experiment streams the same dataset
streaming packet with size 126 byte/message in a (1000 x 1000) m? sensed area,
with n = 100 nodes scattered randomly each with an initial energy equal to 1 joule.
Threshold o is set to 4 for all experiments resulting in 4 gridded networks with 4, 4, 5
and 6 clusters consequently. The following figures represent four gridded WSNs where
grid size g is predetermined to divide both X- axis and Y- axis resulting network with
equal size of cells. Figure 4.17 presents a gridded network when (a) g = 110, (b) g =
120, other experimental results presents gridded networks when g = 130 and when

g = 140 as shown in Appendix B (figure B.13, figure B.14).
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Figure 4.17 Gridded WSN when (a) g = 110 (b) g = 120
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After gridding the networks by DeGiCA, density and grid techniques found in the
establishment phase in turn take role to form clusters based on density classification,
resulting clustering formation process as shown in the following figures. Figure 4.18
presents establishment phase when g = 110 at (a) grid classification and (b)
corresponding cluster formation resulting 4 clusters. Figure 4.19 presents
establishment phase when g = 120 at (a) grid classification and (b) corresponding
cluster formation resulting 4 clusters. Other experimental results grid classification and
cluster formation when g = 130 and when g = 140 as shown in Appendix B (figure
B.15, figure B.16, figure B.17, and figure B.18). Each cluster is colored in a specific

color and the node with biggest size is considered to be a CH in its cluster.
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Figure 4.18 Establishment phase when g = 110 at (a) Grid Classification and (b)
Corresponding Cluster Formation
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Figure 4.19 Establishment phase when g = 120 at (a) Grid Classification and (b)
Corresponding Cluster Formation

97



Whenever clusters are formed, network is ready to stream data packets and starts

processing rounds until the end of network lifetime. Round process goes through two

main phases, data transmission phase and CH-Election phase. As discussed, the aim

of DeGiCA is to extend a WSN lifetime, reduce its energy consumption and reach a

high percent of delivered data packets compared to similar algorithms (i.e. FCM and

K-Means) where the technique of density-gridding plays a main role to achieve those

goals. The purpose of this section is to find the effect of cluster size g found in

DeGiCA onaWSN lifetime. Figure 4.20 (a) presents the death of first node when g =

110, while (b) presents the death of first node when g = 120, other experimental

results presents the death of first node when g = 130 and when g = 140 as shown in

Appendix B (figure B.19, figure B.20).

Network ifa tima schema

Figure 4.20 Death of First Node when (a) g = 110 (b) g = 120
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As shown from the previous figures, whenever cluster size g becomes larger, the death
of first node becomes earlier. In addition, whenever the grid size g is increasing, the
network lifetime extended. Table 4.10 shows the time of first node to die and number

of nodes in a certain time.

TABLE 4.10 Number of Nodes to Die in Networks when g = 110,120, 130, 140

Grid Size | death of the Number of live node in a certain time in (sec)
first node ins | 150 | 300 | 500 | 800 | 1200 | 1800 | 6000 | 60000 90000
110 80s 74 123 |7 7 4 4 4 4 4
120 75s 74 123 |7 7 4 4 4 4 4
130 70s 72 123 |12 |9 8 8 8 5 5
140 45s 70 |24 |12 |10 |8 8 8 6 6

Figure 4.21 represents table 4.10, as clearly shown, network lifetime is extended
whenever grid size g is increased. Unfortunately, a gridded network starts to have its
first node to die before gridded networks having smaller grid size. For the selected
experimental sensed area, the best grid size g iswhen (80 < g < 150) for a threshold
between (3 < o < 6) resulting a number of clusters between (2 < € < 6). Gridding
Is an effective tool used to enhance the mining clustering technique in WSNs flowing
streaming data in terms of network lifetime. There has to be an agreement when
choosing both grid size g and threshold o to result an appropriate number of

clusters C.

GRID EFFECT ON NETWORK LIFETIME
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Figure 4.21 Number of Nodes to Die in a Certain Time when
g = 110,120,130, 140
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4.6 Conclusion

The developed DeGiCA is a built-from-scratch algorithm that is based on the density
grid-based technique in clustered WSNs. This combination has proven its efficiency
in reaching high network performance. It can find arbitrary shaped clusters with noise
by applying the density technique and avoid clustering quality problems by discarding

boundary points of a grid.

Based on the evaluation analysis, DeGiCA enhances clustering miming technigue in
WSNs streaming data streams in terms of network lifetime, energy consumption and
packet delivery ration compared to its competitors resulting simulated performance
metrics. By determining DeGiCA optimum parameter values, DeGiCA has proven

strongly its ability to be scaled compared to its competitors.

The chapter presented also several points mentioned, as dataset stream packet
description, displaying the data stream packet in some simulated experiments, the

effect of gridding on a WSN running data streams.

100



Chapter V

Conclusions and Future Work



Chapter V

Conclusions and Future Work

5.1 Research Summary

A widespread use of WSNs have been found in several real life applications. They can
be used in many fields such as environmental, industrial, military, and agriculture
fields. A WSN suffers from several resource constraints, such as high computational
power and limited energy source that affect its lifetime. WSNs depend hardly on their
sensors that consumes a lot of battery. Unfortunately, the nature of WSNs makes it
very difficult to recharge the sensor nodes batteries. Therefore, energy efficiency is an

important objective design in WSN algorithms.

In some sensor network applications, data streams are processed by WSNSs, they
usually contain a large amount of datasets that flow rapidly in a very high speed and
arrive in an online fashion. Data are unlimited and there is no control on the arrival
order of the elements being processed. Thus, flowing streaming data consumes a large

amount of energy that reduces its lifetime.

To solve WSN challenges listed above and achieve thesis objectives, this research

developed an algorithm called Density Grid-base Clustering Algorithm (DeGiCA) that
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enhances clustering mining technique in WSNs by developing a powerful combining
between clustering technique and both density and grid techniques. Clustering
algorithms are designed to achieve load-distribution among CHSs, energy saving, high
connectivity, and fault tolerance that guarantee a safe data stream transmission through
the sensed media. In WSNSs, clustering provides resource utilization and minimizes
energy consumption by reducing number of nodes that take part in long distance
transmission. Density technique can find arbitrary shaped clusters with noise, while
grid technique is used to avoid clustering quality problems by discarding boundary
points of grids. The density-grid technique combination enhances clustering mining
technique during cluster formation process by eliminating unused spaces (i.e. empty
spaces without sensor nodes) in a WSN area. The powerful combination enhances the
WSN performance by focusing on used spaces and reducing data transmission, thus,
consuming less battery of sensor nodes, saving overall network energy, extending

network lifetime, that in turn guarantee data stream packet delivery.

The procedure used to build the developed DeGiCA is done in two main processes:
initialization process and rounds process. The initialization process is divided into
establishment phase, and CHs initial selection based on a node in each cluster having
the nearest distance to the BS. The rounds process has the data transmission phase and
CH-Election phase iterated rotationally through several rounds until the end of
network lifetime. Initialization process is done once and permanently at the network
deployment before running data streams and starting network lifetime during rounds

process.

Thesis contribution focuses mainly on the initialization process that distinguishes

DeGiCA from other WSN clustering data stream mining algorithms. It enhance WSNs
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data stream mining by the powerful combination of techniques. In brief, at the
initialization process, a WSN is divided into equal size of grids (i.e. grid size is
determined previously). Nodes then are distributed randomly inside grids. Each grid is
classified based on its density to either high dense grid, low dense grid or empty grid.
Density classification depends on comparing number of nodes in each grid with a
special threshold. A grid having possibility to be a cluster center is selected and
considered to be an active grid. Another possible grid is then selected to expand the
active grid and so on, until all network nodes are included within their specific clusters.
After this process, number of clusters is determined and available for other use. The
final step in the initialization process is CHs initial selection based on nodes in each
cluster having nearest distance to the BS, this is done separately for each cluster. After
initialization process completion, DeGIiCA moves to its round process, where CH
election is done at each round depending on a node having the highest residual energy
among all nodes in its cluster. At each round, data are streamed and phases starts its

processes.

The DeGiCA helps to face limitations found in WSNs that stream data streams. By
using a simulator implemented by MATLAB R2008b, compared to other clustering
algorithms in WSNs that stream data streams (i.e. standard FCM and well-known K-
means), simulation results conclude that the developed DeGiCA enhances the
performance of a WSN by prolonging its network lifetime, reducing energy

consumption, decreasing delay and providing better packet delivery ratio.
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5.2 Conclusion of Results and Findings

Final obtained DeGiCA performance metrics results were compared with its
competitor’s results (i.e. FCM and K-means) with same system parameters and
circumstances to evaluate the developed algorithm. DeGiCA and its competitors have
run the same dataset streaming packet. DeGiCA is more complex than its
commentators, due to the need to gets number of clusters after cluster formation
process; for comparison purposes. During simulation experiments, DeGiCA is run first
to create clusters, thus, results number of clusters € and their centers v. C and v are
used as inputs in both DeGiCA competitors. Then, both competitors are run

individually to get their performance metrics results.

After running DeGiCA and its competitors, three different individual networks with
same number of clusters are created, each with its own results of performance metrics.
A comparison function is then used to compare between performance metrics results
of the three competitors. Comparison is done between three main metrics, in terms of
overall network lifetime, overall energy consumption for entire network, and lastly

packet delivery ratio.

Some preliminary experiments are conducted to decide the optimum grid size g, and
optimum threshold o. These optimum values give the best performance of the three
algorithms in terms of energy consumption, network lifetime and packet delivery ratio.

These values are then used to test DeGiCA evaluation and scalability.
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5.2.1 DeGiCA Performance

Several simulation experiments were discussed and analyzed in chapter 4. This section

presents the results obtained from the simulation analysis as follows:

1-

For the selected experimental sensed area, it is found that the best grid size g is
when (80 < g < 150) for a threshold between (3 < o < 6) resulting a number
of clusters (2 < € < 6). Gridding is an effective tool used to enhance the mining
clustering technique in WSNs flowing streaming data in terms of network lifetime,
energy consumption and packet delivery ratio. There has to be an agreement when
choosing both grid size g and threshold o to result an appropriate number of
clusters €. Choosing a threshold (3 > o > 6) in DeGiCA system parameters and
circumstances results number of clusters (2 > € > 8) that may not be desired in
some applications. Still even if number of obtained cluster are undesirable,

DeGiCA outperforms its competitors.

After comparing DeGiCA with is competitor’s performance metrics, it is found

that DeGiCA enhances the well-known K-means and the standard FCM as well.

The following presents the DeGiCA enhancement in average percent for each

performance metrics in details:

a- The DeGiCA extends network lifetime by about 15% more than K-mean and
by about 17% more than FCM. DeGiCA processes small grids, were all
operations are performed on grid cells rather than processing the whole sensed
area space and exhaustion the network as found in K-means and FCM.

b- The DeGiCA reduces energy consumption by about 13% less than K-means

and by about 11% less than FCM.
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c- The DeGiCA enhances packet delivery ratio, it delivers more packets by about
40% than K-mean and by about 70% than FCM. The high enhancment in
packet delivery ratio is duo to that DeGiCA is built especially for WSNs
environment involving data stream packets that guarentees data packet delivery
through this media, while both compatetiors are applyied in WSNs and could
stream datastreams

3- By increasing number on nodes n = 100 to n = 200 and using the optimum
values of grid size when g = 140 and threshold o = 4, a sensed area equivalent
to (1000 x 1000) m2existing between coordinators (0,0) to (1000, 1000), it is
found that the developed DeGiCA has the ability to be scalable in terms of network
lifetime, energy consumption and packet delivery ratio. Simulation results prove
that the performance of DeGiCA outperforms K-Means in terms of network

lifetime by 16%, energy consumption by 18% and packet delivery ratio by 16%.

DeGiCA also outperforms FCM in terms of network lifetime by 16%, energy

consumption by 12% and packet delivery ratio by 22%.

5.2.2 Application Areas of DeGiCA

The combination of density and grid in streaming WSN algorithms is rare and
developing a density grid-based algorithm (i.e. DeGiCA) in this field is a good
initiative. Since the obtained experimental results proved DeGiCA efficiency, it can
be applied in real life applications. Several application areas could apply DeGiCA to
achieve better results in extending network lifetime, reducing energy consumption thus

less node batteries damage, and better data packet delivery ratio. Applying DeGiCA
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requires hardware issues that was missed in this research (i.e. sensors and different

requirement) to create a network. The following are some examples of real-world

application areas in WSNs that can apply DeGiCA:

1

DeGiCA can be applied during environmental monitoring such as smart
buildings, or harsh environments as forests.

DeGiCA can be used in health monitoring, where patients can be equipped with
small sensors to monitor their health or behavior such as monitoring patient’s
heart beating, breathing, etc.

DeGiCA can be used in physical uses like tracking a specific object
movements, information or even a device. Such as tracking moon light or
weather humidity.

DeGiCA may be used for discovering data patterns in a sensor network for a
certain application, where it can be used for data pattern extracting.

DeGiCA could be used in monitoring road traffics, where it has the ability to
read high speed data streams when an event of several devices occur, it may

record speeds, number of devices, etc.

5.3 Thesis Future Work

As future work, some suggestions can extend this work such as:

1- Applying hard clustering on the developed DeGiCA rather than the fuzzy soft

clustering. Form the simulation results obtained at the final comparisons, it is found

that K-means algorithm could provide better results than FCM algorithm in terms

of network lifetime and packet delivery ratio.
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Deeply applying scalability on the developed DeGiCA by configuring, testing, and
modifying the algorithm to get better results. Especially when applying it on heavy,
high dense and large scale WSNs.

Node mobility and BS mobility are considered to be an important point of study
and a hot research area to be applied on the DeGiCA.

Provide a mathematical model to describe propagation model, traffic model,
energy model and optimize formation of clusters. Willing to implement a more
intelligent DeGiCA.

Complexity analysis of developed algorithm to show it is applicable to resource
constraint WSNs by specifying MAC clocks and evaluating end to end delay.
Considering transmission range and synchronization between nodes.

Considering changing BS location and duty cycle variation of nodes.
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APPENDIX A

A.1 Overview on K-means and Fuzzy C-means (FCM)

This section provides a brief overview on two main clustering algorithms that are used

in this research as DeGiCA competitors, the K-Means and FCM.

A.1.1 K-means Clustering Algorithm

The simplest algorithm that solve a well-known clustering problem is called the K-
means clustering algorithm. K-means has an efficient CH selection method to
maximize energy efficiency of a WSN. K-means is based on finding a CH that
minimizes the sum of Euclidean distances between CH and nodes [38, 48]. It reduces
communication overhead, energy consumption and extends network lifetime. It is used
to partition a sensed area into K clusters. The procedure follows a simple way to
classify a given dataset through a certain number of clusters fixed a priori [48]. In K-
means, there is a distance threshold called R for calculating distance between CH and
BS. If their distance is less than R, they use a single-hop transmission, otherwise, they
use a multiple-hops transmission [46]. There is also an energy threshold called E for
all CHs. If CH energy is less than E, then CH broadcasts a quit message to all nodes
inside the cluster. Hence, other nodes which have higher residual energy are elected to
become CHs [46]. Nodes near boundary region in K-means are affected since, the
degree of belongingness is described in terms of either zero or one. For this reason, K-
means clustering is called hard clustering. Edge nodes may have the same degree of

belongingness to more than one clusters. In K-means, there is an optimal cluster

116



formation. Nodes are assigned to a cluster based on the degree of belongingness when
network area deployment. Degree of belongingness needs to be computed in each
round for every node inside a cluster [49]. Obviously, the major limitation of K-means

clustering algorithm is predetermining parameter k [39].

A.1.2 Fuzzy Clustering-Means Algorithm (FCM)

Fuzzy C-Means algorithm (FCM) is considered to be good solutions to improve
network lifetime. FCM was developed by Dunn and later improved by Bezdek [39,
45]. It is used in cluster analysis, image processing, pattern recognition, and so on. In
WSNSs, FCM assigns each node to a cluster with a degree of membership [45]. As
mentioned previously in K-means, data is divided into distinct clusters, where each
node belongs to exactly one cluster, this is called hard clustering. In fuzzy clustering,
nodes are allowed to belong to several clusters at the same time. It is done with
different degrees of membership. In many cases, fuzzy clustering is more natural than
hard clustering. In soft clustering, nodes on boundaries between several clusters are
not forced to fully belong to one cluster, but rather assigned to a membership degrees
between 0 and 1 that indicates partial membership [38, 39, 48] . Figure A.1, shows

types of clustering based on nodes membership degree.

Types of Hard [ | Data is divided into distinct clusters, where each node belongs to
clustering clustering exactly one cluster. For example, K-means-based algorithms
based on

network Soft | [ Nodes are allowed to belong to several clusters at the same time.
topology clustering For example, C-Means-based algorithms

Figure A.1 Types of Clustering Based on Network Topology
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In real applications, there is no sharp boundary between neighboring clusters. This
makes soft fuzzy clustering the most suitable algorithm for data streams. The most
common fuzzy clustering algorithm is FCM, a fuzzification of K-means [39]. In FCM,
the degree of belongingness is given within the range between [0, 1]. Each sensor
nodes computes its degree of belongingness in terms of Euclidean distance [39, 49].
The Euclidean distance is used to compute distance between sensor nodes and CH as

shown in equation (2.1).

The symbol || |” denotes the Euclidean distance, it defines distance between two
points p(p1, p2, -, Pm) and q(q1, g2, ---, @m)- p @nd p are two points in Euclidean m-

space, then the distance d from p to g, or from q to p is given by

d(p,q) = d(g.p) = (@1 — P1)? + (@2 — P2)? + - + (Gm — Pm)? (2.1)

Generally, FCM algorithms have a function called objective function. It is used to
shorten the distance between sensor nodes to CH [49]. Specifically, FCM is an iterative
clustering method [39] that generates an optimal c partition by minimizing weighted

within group sum of squared error objective function Jg¢,, as shown in equation (2.2).

Jrem = 2i=1 Zfﬂ(uij)m d*(x;, v)), (2.2)

Where X = {x;,x, ... xy} € R is a dataset, n is number of dataset, 2 <c¢ < N is

number of clusters, u;; is degree of membership of x; in the it" cluster, m is the
weighting exponent on each fuzzy membership, v; is center of cluster, dz(xi, vj) isa

distance measure between x; and v;. This is shown in equation (2.3)

R P BT 2.3)

n
J L= Uij
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giving, Figure A.2 provides the traditional FCM pseudo code [39].

Algorithm of the Traditional FCM

Inputs: {cy,¢cy,C5 ... Cc} {u, uy, usz ... u;}
Outputs:  u;,i=123,...C Uy, i=123,..C, j=1,23,...n
Initialize: ¢€,0, A

ijo

1. For,1=1,2,3,... Repeat

2. Compute cluster centers (prototypes):
ey .

3. v = Zé‘?iT)i)e; 1<i<c

4. Compute distances

5. diia=w—v) AW —v),1<c<C 1<i<n

6. Update the partition matrix:

7. Forl<i<nm

8. Ifd,u>0forallc=1,2,...C

9. 1

Vic = 2

ZJC'=1(dciA /dch )(9_1)

10. Else

11. v, =0ifd,;>0and v, €[0,1]1 X5 v, =1

12, until v -v8 ™V <

Figure A.2 Pseudo Code of the Traditional FCM [39]

Similar to K-means algorithm, a main drawback of FCM is the predetermination of
clusters number within the data space [39]. Moreover, computing the distance between
each sensor nodes to other CHs causing time-consuming, thus effecting the execution
time and efficiency of clustering process [49]. Figure A.3 presents the traditional FCM

flowchart [45].
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Start

Initialize FCM

¢ Determine number of clusters.
+  Randomly initialize cluster centers.

e t=1

N|

v
Form clusters: assign each sensor node to the
nearest cluster.

Move centers: move each center to the mean
value of its clusters sensor nodes location

Stop

Figure A.3 Traditional (Standard) FCM Flowchart [45]

A.2 Overview of FCM-Based Clustering Algorithms

data streams packets

This section provides some FCM-based clustering algorihms in WSNa that streams

A.2.1 Subtractive Fuzzy Cluster Means (SUBFCM)

In some applications where number of clusters in a dataset must be previously known,
FCM algorithm cannot be used directly. In WSN clustering, number of clusters has to
be determined from the datasets. Hence, the subtractive clustering and FCM

algorithms are combined to generate an algorithm that determines number of clusters.
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This combination is called Subtractive Fuzzy Cluster Means (SUBFCM). The purpose
of using SUBFCM in distributed clustering of WSN data stream, is to reduce the total
data transmission [41]. The subtractive clustering is an extension of a method called
mountain clustering method proposed by R.Yager [40]. SUBFCM goes through the

following steps:

1- Selecting nodes with highest potential to be the first cluster center.

2- Removing all nodes near the first cluster center (as determined by radii), in order
to determine the next cluster and its center location.

3- Repeating until all nodes is within radii of a cluster center. After that, number of

clusters centers is taken [40].

A.2.2 Fuzzy C-Mean Clustering of Particle Swarm Optimization (CAFCPSO)

A clustering algorithm based on FCM of Particle Swarm Optimization (CAFCPSO)
has been proposed. The CAFCPSO is a combination between the particle swarm

optimization algorithm and the Fuzzy C-Means clustering algorithm [50].
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Appendix B

This section presents the simulation experimental graphs mentioned in chapter 4.
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