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A Novel Deep Learning based Iterative Solver for Large Sparse 
Linear Equation Systems 

Thaha Muhammed 

 

Abstract 

 

 Sparse Matrix-Vector multiplication (SpMV) is one of the key operations in 
linear algebra that lies at the heart of diverse domains such as scientific computing, 
engineering, economic modeling, and information retrieval, to name a few. They 
play a significant role in solving linear system of equations using iterative methods. 
Sparse Kernels are computational operations on matrices whose entries are mostly 
zero so that computations with and storage of these zero elements may be eliminated. 
The emergence of parallel architectures, especially GPU, while offering higher 
computational performance, has led to the redesign of existing algorithms to suit the 
architecture. 
 
          The aim of this thesis is to design novel techniques that improve the 
performance of sparse Jacobi iterative linear solvers on Nvidia based GPUs. A 
detailed review of the relevant literature is carried out to identify the challenges and 
the research gaps. The review revealed that the matrix sparsity structures vary widely 
based on the application domains and this poses major challenges in obtaining 
consistent high performance from sparse iterative solvers on Nvidia Tesla K20 
GPUs. These challenges include coalesced memory access to the sparse matrix and 
vector and load balancing among threads and warps.  We have developed a deep 
learning tool that uses an extended set of features to dynamically address these 
challenges and invoke the most suitable storage format for the iterative solution of 
sparse linear equation systems. The iterative solver tool has been tested on matrices 
arising from real world problems. Compared to other leading works, our tool 
demonstrated 25% or higher performance on average in terms of the execution time 
and GFLOPS. 
 
       The contributions of this thesis include a state of the art survey on sparse storage 
schemes, a deep learning based novel methodology based on an extended set of 
sparse matrix features and a tool for the iterative solution of sparse linear equation 
systems.  
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Chapter 1

Introduction

Linear algebra is vital to many fields of science and engineering. Especially sparse linear

Algebra, which has been included by the Berkeley scientists in their set of motifs (the

seven dwarfs [3]). Among the sparse numerical techniques, iterative solution of linear

systems can be considered as of prime importance due to its application in various

important areas such as solving finite and finite differences of PDEs [4], High accu-

racy surface modelling [5], finding steady-state probability vector of Markov chains [6],

solving the time-fractional Schrödinger equation [7], web ranking [8, 9, 10], inventory

control and manufacturing systems [11], queuing systems [12, 13, 14, 15, 16, 17], fault

modelling, weather forecasting, stochastic automata networks [18, 19], communication

systems [20, 21], reliability analysis, wireless networks [22, 23, 24], sensor networks

[25], computational biology [26], computational physics, computational chemistry and

natural language modelling [27].

Sparse linear systems consist of sparse matrices with a huge number of rows and

column. The fraction of non-zero elements to the total elements is quite low. Since

the sparse matrices consist of only a few percentage of non-zero elements, they require

specialized storage schemes and algorithms so as to efficiently store, access, and compute

the sparse matrices. Sparse linear systems are generally of the form Ax=b, where A is

a sparse matrix and b is a dense vector and x is the solution of the system that needs

to be solved.

The system of Linear equations of the form Ax=b can be solved by direct methods

or iterative methods [28, 29, 30, 31, 32]. The direct methods are based on factorizations.

Gaussian elimination, LU factorization and QR [32] factorization are the important di-

rect techniques. When the matrix A is large, the computation becomes expensive due
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to fill-in phenomenon, which arises due to the spawning of new entries in the matrix A,

resulting from the factorization process of direct methods. Whereas iterative methods

do not alter the matrix A, they only use the matrix in the context of matrix-vector mul-

tiplication (MVP) [33, 34]. Iterative methods generate approximate solutions for linear

systems by successive approximations at each iteration [35, 6, 33]. They start out with

an approximate solution and iteratively modify the approximation until convergence.

However they do not guarantee a convergence, but they are faster than the direct meth-

ods. The iterative methods can be further classified into stationary iterative methods

or pure iterative (based on matrix splittings) [28, 29, 36, 37, 32] and non-stationary

iterative methods [38, 39, 32, 31]. Non-stationary iterative techniques include Krylov

subspace techniques such as Conjugate Gradient and Generalized Minimal Residual

(GMRES). The amount of literature on Iterative methods are huge [35, 31, 40, 32, 38].

A survey on the existing iterative solutions for linear systems can be found in [41].

Sparse Matrix-Vector multiplication (SpMV) is one of the key operations that play

a significant role in solving iterative linear systems. Iterative solvers such as Jacobi and

Gauss-Seidel mainly consist of multiple iterations of Sparse Matrix-Vector computa-

tions whereas a single iteration in Krylov solvers include several SpMV multiplications.

Sparse Matrix-Vector Multiplication (SpMV) is a Level-2 BLAS operation between a

sparse matrix and a dense vector and can be represented mathematically as y = A×x+b.

The performance improvement of single threaded applications has given way to

parallel computing to attain a higher throughput. The vanguard among the current

massively parallel chip-based architectures are the GPUs. The advent of GPUs as

a revolutionary technology providing massive parallelism and higher throughput has

resulted in the accelerated performance of scientific applications. A large number of

scientific applications has been parallelized to run on GPU for improved performance.

Moreover, the ubiquity of the technology enables researchers easy access to GPUs.

The key elements for running serial algorithms on GPU are the design, analysis, and

implementation of parallel algorithms that scale to hundreds of coupled cores. The

difficulty is in adapting the serial code to parallel architecture.

Nvidia introduced a parallel computing architecture called CUDA (Compute Unified

Device Architecture). It provides a parallel computing platform and API for developing

and running applications on the GPU. This approach is also known as GPGPU (General
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Purpose GPU) approach. In this method, the compute intensive parts of the application

are offloaded to the GPU whereas the sequential code is run on the GPU. The GPU acts

as a coprocessor to the CPU (host). An extended C/C++/Fortran is used to develop

applications in CUDA. The parallel compute intensive parts that will be run on the

GPU is written in special functions called kernels. A kernel is identified by providing

unique qualifiers, __global__ and __device before the method names. The kernels

to be executed are called from the CPU. From the hardware perspective, the central

processing unit in the GPU is called streaming multi-processor units (SMs). At a given

time an SM unit executes a warp of threads. A warp consists of a group of 32 parallel

threads. Each SM runs the threads using SIMT (Single Instruction Multiple threads).

A single instruction is carried out by all the threads in a single warp at the same time.

The threads are logically grouped into blocks that can be 1, 2, or, 3-dimensional thread

arrays. The blocks are further grouped into grids that can be 1, 2, or 3-dimensional

grids of blocks.

Sparse matrix-vector multiplication is heavily memory bound. Hence, we need to

focus on efficient and compact data structures and improving the bandwidth efficiency.

GPU is a throughput device. Utilizing the full potential of GPU requires exposing a

significant amount of fine-grained parallelism, Computations should be structured such

that there is sufficient regularity in the execution path and the memory access. Dense

matrices are limited due to the floating point throughput, whereas sparse matrices are

restricted primarily by the bandwidth due to irregular memory access.

1.1 Motivation and Problem Statement

Memory bound algorithms such as Sparse Iterative Solvers exhibit superior performance

on GPUs due to the high bandwidth memory hierarchy in cache based GPUs. PageRank

algorithm, HITS, and Random walk with a restart on GPUs have reported a perfor-

mance improvement of 18 to 32 times. [43] show that the GPU-accelerated LOBPCG

based on SpMM kernel is 3 to 5 times faster than multicore CPUs with the same power

draw, which further indicates that the energy efficiency of executing the SpMV kernel

on GPU is more than that of CPU [42, 43].

Implementation of parallel iterative solvers on GPU has numerous issues. Special-
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ized storage structures are used to improve the performance of sparse SpMV. These

structures have design issues for translating it to GPUs. The problems faced in imple-

menting parallel sparse iterative solvers and converting sparse structures to GPU is as

listed below:

1. Coalesced memory access to both the sparse matrix and the vector.

2. Load balance among threads and warps

3. Thread divergence among the threads.

4. Performance variance based on the structure of the sparse matrices

5. The amount of memory access required for computations.

Depending upon the sparsity of the structure the performance of the matrices vary

and issues such as load balancing among threads, and thread divergence are dependent

upon the sparsity structure of the matrices. The sparse storage schemes that satisfy

the above conditions does not necessarily satisfy these conditions for other matrices and

hence there is a performance deterioration.

The sparsity structure of the sparse matrices varies from matrix to matrix, and

application domain to domain. The performance of the SpMV kernel is dependent

upon the sparsity structure of the matrices. We can deduce that none of the sparse

representation schemes are perpetually superior rather the SpMV performance depends

upon the sparse representation and the choice of sparse representation is based on

the sparsity structure. The GPU architecture used for SpMV computations and the

thread-block-warp configuration of the SpMV kernel are two other factors that affect

the performance of SpMV kernel on GPUs.

1.2 Research Objectives and Contributions

The aim of this thesis is to design novel techniques that improve the performance of

sparse Jacobi iterative linear solvers on Nvidia based GPUs. The following work has

been carried out towards the stated aim.

1. A detailed review of the relevant literature is carried out to identify the challenges

and the research gaps.
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2. The review revealed that the matrix sparsity structures vary widely based on the

application domains and this poses major challenges in obtaining consistent high

performance from sparse iterative solvers on GPUs. These challenges include

coalesced memory access to the sparse matrix and vector and load balancing

among threads and warps.

3. We have developed a deep learning tool that uses an extended set of features to

dynamically address these challenges and invoke the most suitable storage format

for the iterative solution of sparse linear equation systems. For designing the deep

model, we have considered COO, CSR, HYB, ELL, and HYB SpMV kernels based

on CUDA architecture.

4. The iterative solver tool has been implemented on Nvidia Tesla K20 GPU and

tested on matrices arising from real-world problems. Compared to other leading

works, our tool demonstrated 25% or higher performance on average in terms of

the execution time and GFLOPS.

The contributions of this thesis include

• A state of the art survey on sparse storage schemes.

• A deep learning based novel methodology using an extended set of sparse matrix

features.

• A deep learning tool for the iterative solution of sparse linear equation systems.

1.3 Thesis Organization

The rest of the Thesis is organized as follows.

Chapter 2 presents the background material on the sparse matrix storage schemes

and iterative methods for the solution of linear equation systems. A basic background on

GPU and CUDA architectures is also provided. We discuss Deep Learning background

in this section.

Chapter 3 reviews the literature on iterative solvers and sparse storage schemes

on GPU. A discussion on the challenges in GPU implementation of sparse storage

5



scheme and the iterative solvers is provided. The gaps in the current literature has

been identified.

Chapter 4 discusses our proposed technique to improve the performance of Jacobi

algorithm. We discuss the algorithms of Deep network based models and Iterative

Jacobi solvers that we have proposed.

In Chapter 5, we analyze and compare the efficiency, accuarcy, and the performance

of our scheme as compared to other existing schemes.

Chapter 6 concludes the our thesis and provides more discussion on further research

areas.
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Chapter 2

Background

2.1 Numerical methods

The system of Linear equations of the form Ax=b can be solved by direct methods

or iterative methods [28, 29, 30, 31, 32]. The direct methods are based on factoriza-

tions. Gaussian elimination, LU factorization and QR [32] factorization are the major

direct methods. When the matrix A is large, the computation becomes expensive due

to fill-in phenomenon, which arises due to the spawning of new entries in the matrix A,

resulting from the factorization process of direct methods. Whereas iterative methods

do not alter the matrix A, they only use the matrix in the context of matrix-vector

multiplication (MVP) [33, 34]. Iterative methods generate approximate solutions for

linear systems by successive approximations at each iteration [35, 6, 33]. They start

out with an approximate solution and iteratively modify the approximation until con-

vergence. However, they do not guarantee a convergence, but they are faster than the

direct methods. The iterative methods can be further classified into stationary iterative

methods or pure iterative (based on matrix splittings) [28, 29, 36, 37, 32] and non-

stationary iterative methods [38, 39, 32, 31, 44]. Non-stationary iterative techniques

include Krylov subspace techniques such as Conjugate Gradient and Generalized Mini-

mal Residual (GMRES). The amount of literature on Iterative methods are enormous

[35, 31, 40, 32, 38, 44]. A survey on the existing iterative solutions for linear systems

can be found in [41].
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2.1.1 Basic methods

2.1.1.1 Jacobi Methods

Jacobi method is a stationary iterative method for solving linear systems of form Ax = b,

where A ∈ Rn×n , and x, b ∈ Rn. Generally, the stationary iterative methods can be

given by the expression

x(k+1) = P−1(P −A)x(k) + P−1b, (2.1)

Where P represents a preconditioner. The preconditioner is chosen such that it is

very close to the initial matrix A and still allow fast computations. The preconditioner

P , for Jacobi method, is the diagonal of the matrix A. Hence the (2) for Jacobi can be

rewritten as

x(k+1) = D−1(D −A)x(k) +D−1b (2.2)

where D ∈ {Aij |i = j}, implying that D is the Diagonal of the matrix A. We can

split A as A = D − (L + U), where L is the lower triangular matrix with elements

lij = −aij if i > j, lij = 0 if i ≤ j and U is the upper triangular matrix with entries

uij = −aij if j > i, uij = 0 if j ≤ i .

Hence, thek+1-th iteration in Jacobi method can also be expressed mathematically

as

x
(k+1)
i = a−1ii (bi −

∑
j 6=i

aijx
(k)
j ) (2.3)

for all i,0≤i≤ n. aijreprsents i -th row and j-th column of the matrix A. x(k+1)
i and

x
(k)
i reprsents the i-th element of the iteration vector for (k + 1)-th and k-th iterations

respectively.

The Jacobi method does not converge very easily for all system of linear equations.

The Jacobi method will only converge if every eigenvalue (λ) ofM = I−D−1A satisfies

the condition |λ(M)| < 1. If there is a convergence, then the rate of convergence is

determined by the magnitude of the eigenvalues ofM . The closer the eigenvalues are to

one the slower the convergence would be. In case the Jacobi does not converge, it can be

made to converge using the under-relaxation parameter in the Jacobi technique. More-
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over, the convergence can be accelerated with the help of the overrelaxation parameter.

This results in a technique called Jacobi overrelaxation method (JOR). Mathematically

we can express this as

x
(k+1)
i = ωa−1ii (bi −

n∑
j=1, j 6=i

aijx
(k)
j ) + (1− ω)x(k)i (2.4)

for all i,0≤i≤ n. ω is called the relaxation parameter and ω ∈ (0, 2).For any ω 6= 0

equation (5) is consistent. If ω > 1, the method becomes overrelaxation and when

0< ω < 1 it is called as under relaxation.

For the computation of the x(k + 1)-th iteration vector, Jacobi only uses x(k)− th

vector. Hence, Jacobi method requires storage only for the two iterative vectors along

with the matrix A and the diagonal elements A. Hence Jacobi and JOR methods are

inherently parallel.

2.1.1.2 Gauss-Seidel

Gauss-Seidel method is an improvement to the Jacobi method wherein in the(k+1)-th

iteration the available values of x(k+1)
i is used to update the solution. The precondi-

tioner chosen is the lower triangle of the matrix A including the diagonal and can be

represented as P = D − L, Hence Equation (2) can be written as

x(k+1) = (D − L)−1U x(k) + (D − L)−1b (2.5)

which represents the solution at k+1-th iteration using Gauss-Seidel method. It can

also be written as

x
(k+1)
i = a−1ii (bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j ) (2.6)

The two major advantages of Gauss-Seidel over Jacobi are that it converges faster

than Jacobi and that it requires only one iteration vector [6]. This reduces the storage

required by large systems. However, the major disadvantage of this technique is that

it is not inherently parallel due to the use of values from the current iterations. Even

then they have been used for the parallel solution of Markov chains [45, 46].

Analogous to Jacobi iterations we can introduce a relaxation parameter ω ∈ (0, 2)
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for Gauss-Seidel. The resulting technique is called Successive over-relaxation. Mathe-

matically this can be represented as

x
(k+1)
i = ωa−1ii (bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j ) + (1− ω)x(k)i (2.7)

2.1.2 Krylov methods

Zhong-Zhi Bai [47] discusses the motivations that lead to the use of Krylov Subspace

methods and provides an insight into various techniques that come under Krylov sub-

space for solving linear systems. The authors discuss the advantages and disadvantages

of direct techniques such as Gaussian Elimination, LU decomposition, QR decompo-

sition, and efficient modification of Graham’s determinant method. The author fur-

thermore discusses Grahm-Schmidt technique for finding the orthogonal vectors for QR

decomposition as it is an elementary ingredient in Krylov subspace techniques. The au-

thors further discuss the two class of iterative techniques, Krylov subspace techniques,

and over-relaxation techniques including Jacobi, and Gauss-Siedel. The Arnoldi pro-

cess for finding the orthogonal columns and GMRES technique are also discussed by the

author. The author also lists out the preconditioners that could be used in association

with the Krylov subspace.

j-th order Krylov Subspace consists of a linear combination of b, Ab, A2b, . . . , Aj−ib

and we denote it by K\. The linear subspace

K|(A, b) = span{b, Ab, Ab2, ...., Aj−1b} (2.8)

is called the j-th order Krylov subspace.K represents the Krylov matrix that consists

of the basis vectors from the Krylov subspace as its columns. The idea is to choose the

best possible linear combination xj from the Krylov subspace. Depending upon various

definition of “the best possible combination” we can have various techniques to get xj .

The major four approaches for selecting xj in K\ is listed below.

1. Conjugate gradients: The residual rj = b−Axj is orthogonal to Krylov subspaceK|

2. MINRES and GMRES: The residual rj has minimum norm for xj in K|.

3. Biconjugate Gradients: The residual rj is orthogonal to different space K|(AT ).
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4. SYMMLQ: The error ejhas a minimum norm.

Further detailed discussions on Krylov methods can be found in [48, 49].

2.1.3 Multigrid and Hybrid Techniques

Jacobi and Gauss-Seidel produce smooth errors which result in the convergence requiring

O(N2) iterations. The higher frequencies of the error are removed in the first few

iterations, and the lower frequencies take much time to be removed. This is quite

intolerable. Hence, general multi- grid techniques such as proposed by [50, 51] moves

the system to a coarser grid wherein we consider smooth frequencies become rough

frequencies. This leads to faster convergence. The coarser grid can be used to reduce

a large chunk of error. We alternate between fine and coarse to achieve a convergence

that is independent of the size of n and can be solved in fixed number of iterations.

Wen [52] propose a new accelerated two-level multigrid method for finding a solution

for solving Markov Chains. He applies a Quadratic extrapolation to modify the two

level multi-grid on the coarse level so that the system achieves faster convergence while

calculating the stationary probability distribution of Markov chains. Even though the

number of iterations is reduced the quadratic extrapolation increases the compute time

of the system quite heavily, since it consists of computations such as QR decomposition

(using Gram-Schmidt) and several other matrix operations.

Issues with fixed point techniques such as Jacobi, Gauss- Seidel, SOR, JOR as

compared to Krylov subspace methods such as conjugate gradient [53] and GMRES

(Generalized minimal residual methods) [54]:

• Large prefactors

• Poor scaling with system size

However, Jacobi is simple and inherently parallel. So researchers have tried to acceler-

ate Jacobi using various techniques such as Chebyshev acceleration [38] and scheduled

relaxation Jacobi [55]. However, [38] requires the extremal Eigenvalues of the Matrix

and [55] be only suitable for solving second-order finite difference second order finite

difference discrete elliptic equations. In this context, Pratapa et al. [56] proposed a new

technique called Alternating Anderson –Jacobi (AAJ) method to solve large sparse lin-

ear systems. It accelerates the classical Jacobi method by speeding up the convergence
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by employing extrapolation at periodic intervals inside the classical Jacobi technique.

The authors find that the proposed system scales well.

In general Anderson’s extrapolation [57] is used to accelerate the convergence in

nonlinear fixed point iterations. From the point of linear systems, it is similar to GMRES

[58, 59, 60]. The authors compare the performance of the proposed techniques against

the following techniques:

• Weighted Jacobi

• Anderson Jacobi

• Scheduled relaxation Jacobi

• GMRES (Based on Krylov subspace). Simple one without multigrid.

The following Problem model were considered by the authors:

• Laplace Equation

• Poisson and Helmholtz equation

• General Non-Symmetric matrices

This technique can be parallelized so as to decrease the computational time based

on Markov chain application. Unlike multigrid method we discussed earlier the time

overhead due to faster convergence theoretically seems to be lesser in the above method.

Touzene [61] propose a new parallel technique for solving Markov chain equations

called PBA (Parallel Block Aggregated) iterative method. This technique is a combi-

nation of both the iterative techniques as well as direct techniques for solving linear

systems. This technique is built on the aggregation of Markov chain states to blocks.

Each processor in the parallel system updates the probabilities of a block containing the

states to form a new aggregated Markov chain. The aggregated blocks are then solved

using LU Factorization. Then the processors update the vector π. Once each processor

has performed these, they exchange the sub-vectors to form a new updated vector π

and this continuous until convergence. The authors compare this technique with MBJ

(Modified Block Jacobi) and BV [62] schemes on a blade server and prove that it runs

faster and converges faster than block Jacobi techniques.
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Touzene [63] further proposes a new technique called a parallel sparse iterative

method (PPSIA) for solving large-scale Markov chains. This technique is based on

state isolation of Markov chain and aggregation schemes. Initially, the authors develop

an algorithm named SIA (Sparse Isolation Aggregation) which has Gauss-Seidel effect.

Since Gauss-Seidel is inherently not parallel, it is hard to parallelize this technique.

The authors hence propose a pipelined based parallel version of SIA called PPSIA. In

the SIA technique, the states are divided into two macrostates, Left (L) and Right

(R).Moreover, for the ith state, the (i + 1)-th state is isolated. This results in three

statesL, (i + 1), andR. Later aggregated system parameters are calculated, and the

aggregated system is solved. In the PPSIA the pipelining takes as follows:

• First iteration: one processor updates pi components using SIA algorithm and the

other processors use the conventional power method for the updates.

• Second iteration: First and second processor use SIA whereas the rest use the

power method.

• Iteration p: all p processors use SIA for their updates. The authors test this

technique using an MPI implementation and compare against GMRES.

2.2 CPU Sparse storage schemes

Several sparse storage schemes have been proposed by scholars to improve the perfor-

mance of sparse matrix computations. Many of them have been designed for matrices

with particular sparsity structure or from a given application domain. However, there

are a few basic storage formats that have always been used to store sparse matrices.

Most of the sparse matrices are stored using one of these formats. Optimized imple-

mentations of these basics sparse storage schemes for GPU based SpMV can be found

in cuSPARSE [174] and CUSP libraries [64]. Figure. 2.1 shows an example matrix A,

that we shall use to illustrate various sparse storage schemes.

2.2.1 Coordinate Storage (COO)

The coordinate (COO) [65] format is a simple sparse storage scheme. We use three ar-

rays: row, col, and val to store the row indices, column indices, and values, respectively,
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1 0 2 0 0 3

0 0 0 0 4 0

5 6 0 0 0 7

0 0 0 8 0 9

0 10 0 11 0 0



m

n

m

n

Figure 2.1: The dense reprsentation of matrix A

val 1 2 3 4 5 6 7 8 9 10 11

row 0 0 0 1 2 2 2 3 3 4 4

col 0 2 5 4 0 1 5 3 5 1 3

Figure 2.2: The COO representation of matrix A

of the nonzero matrix entries. All the three arrays have a dimension of nonzeroes. The

required storage is always proportional to the number of nonzeros. Both the row and

column indices are stored explicitly in COO. Figure 2.2 illustrates the COO represen-

tation of the example matrix A. Given an 8-byte floating point number representation

and a 4-byte integer representation the COO format requires 16×nnz bytes to store the

whole sparse matrix. Implementation of this storage format on GPU requires atomic

operations.

2.2.2 Compressed Sparse Row (CSR)

The compressed sparse row (CSR) format like the COO format, stores the column

indices and nonzero values in arrays named col and val explicitly. A third array of row

pointers,ptr, are used to find the rows. For an m × n matrix, ptr has length m + 1

and stores the offset into the i − th row inptr[i]. The last entry in ptr, which would

otherwise correspond to the (m+ 1)-st row, stores nnz, the number of nonzeros in the

matrix. Figure 11 illustrates the CSR representation of an example matrix. The row

pointers facilitate fast querying of matrix values and allow other quantities of interest,

such as the number of nonzeros in a particular row (ptr[i + 1] − ptr[i]), to be readily

computed. For these reasons, the compressed row format is commonly used for sparse

matrix computations (e.g., sparse matrix-matrix multiplication) in addition to sparse

matrix-vector multiplications. Generally, one thread is assigned per row for SpMV
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val 1 2 3 4 5 6 7 8 9 10 11

col 0 2 5 4 0 1 5 3 5 1 3

ptr 0 3 4 7 9 11

Figure 2.3: The CSR representation of matrix A

operation and this technique is known as CSR scalar. To improve the performance one

warp is assigned to a row and this technique is called CSR vector [177]. The CSR format

requires 12× nnz + 4× (m+ 1) bytes for storage.

2.2.3 ELLPACK (ELL)

ELLPACK [66] also known as ITPACK is a sparse matrix storage well suited for vector

architectures including GPUs. In this storage format, a sparse matrix A with dimensions

m × n is stored with the help of following data structures: (1) A 2-D float array,

named data, of size m × max, where max is the maximum nonzeroes per row, to

store the values. The rows that contain less than max nonzeroes are zero padded.

(2) Another 2-D integer array with dimension m × max, named indices, to store the

column indices. Again the rows are zero padded to a length of max. An example of a

4x4 matrix stored in ELLPACK format is illustrated in Fig. 2.4. We can observe that

the row indices are implicitly stored whereas column indices are explicitly stored. The

data are generally stored in column major format [67] that increases the performance

in a GPU due to coalesced global memory access. ELLPACK is an efficient sparse

matrix representation when maximum nnz per row does not vary considerably from

the average. The performance of ELLPACK also reduces when the percentage of zeroes

increases. The deterioration persists even after memory access for zero padded elements

are restricted through conditional divergence. They are generally suited for structured

matrices. The storage size of ELL format is 12 ×m ×max bytes, given that value is

stored as 8-byte floating point number and the indices as 4-byte integer.

2.2.4 Hybrid ELL/COO

The hybrid format was proposed by Bell and Garland to eliminate the issues with ELL

[67]. The major disadvantage of ELL was the performance degradation on varying
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A =


1 0
3 4
6 0
0 0
0 0

A =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 12


Figure 2.4: ELLPACK representation of matrix A

A =


1 0
3 4
6 0
0 0
0 0

B =


1 0 0 2 0
3 4 0 5 0
6 0 7 8 9
0 0 10 11 0
0 0 0 12


val =

[
12 8

]
col =

[
5 4 15

]
row =

[
1 13 6

]
Figure 2.5: HYB representation of matrix A

number of nnzs per row of the matrix. This storage scheme divides the matrix into two

parts, a dense part and a sparse part. In the dense part , we store the typical number of

nonzeroes per row in the ELL storage format and the rest of entries belonging to rows

with higher nnzs in the COO format. The size of the ELL matrix needs to be determined

normally from the input matrix. Generally, the ELL format is three times faster than

the COO technique for matrices with rows greater than 4000. Hence, we can add a

k − th column to the ELL part if at least one third part of the matrix rows contains k

non-zeroes. The remaining nnzs in the rows are stored using the COO format. Another

way to compute k is to use histogram of nnz per row as seen in CUSP implementation.

An example of HYB storage for a sparse matrix A is shown in Fig. 2.5. Hence, this

storage technique use two 2-D arrays of sizem×k for storing the ELLAPCK part, where

k is the number of selected columns, and three seperate arrays to store the COO part.

If the actual matrix is of size m× n then the value array of the COO part would have

a dimension of (n− k). Given that the value is stored as 8-byte floating point and the

indexas 4-byte integer, the storage space required for this scheme is 12(m×k)+16(n−k)

bytes.

2.2.5 Diagonal Storage (DIA)

Diagonal matrix is only useful for storing structured sparse matrices especially the ones

containing diagonal. It uses two arrays, a value array for storing the values and an

offset array that stores the offsets of the values from the main diagonal. The offset is
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Figure 2.6: Latency hiding in GPU and CPU [1]

calculated from the main diagonal. The main diagonal has offset zero. A positive offset

indicates super diagonals and a negative offset indicates sub diagonals. The size of

offset array would be equal to the number of non-zero diagonals of the matrix. Implicit

storage of row and column indices reduces memory footprint. the amount of data that

needs to be transferred reduces. Another major advantage is that DIA format provides

coalesced memory access to the sparse matrix A and the vectors x and y. The major

disadvantage is that it stores the zero values in the diagonals and all matrices cannot

be stored in this format.

2.3 GPU Architecture

GPUs are designed to produce a higher throughput unlike normal processors which

are latency oriented. The CPU architecture generally minimize latency within each

thread whereas the GPU hides latency with computation among the warps. This idea

is illustrated in Fig. 2.6. The major two components of a GPU are : Global memory

and SMs (Streaming multiprocessors).

The global memory is analogous to RAM in a CPU based system. It is a common

memory accessible by both CPU and GPU. The SMs are the actual computational units.

Each SM has its own control unit, registers, execution pipelines, and caches. There are

32 CUDA cores per SM. The Cuda cores have floating point unit and an integer units

that performs computations. It also consists of a logic unit, move-compare unit, and a

branch unit. The SMs have an L1 cache as well shared memory. L1 memory is hardware

managed whereas shared memory is user managed. The hardware architecture has been

illustrated in Fig. 2.7.

Logically, the threads are grouped into thread blocks, which can utmost be 3-

dimensional and the blocks are further grouped into grids as shown in Fig. 2.8. A
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Figure 2.7: Hardware Architecture of CUDA based GPU [1]

CUDA kernel is executed as a grid of blocks of threads.

The hardware can assign any number of blocks to any processor at any time. A

CUDA kernel can scale to any number of parallel processors. The blocks can execute

in any order and are independent of each other. The threads are actually executed by

the SM (Streaming multiprocessor), The SMs are similar to the cores in the normal

processors. Threads are assigned to the SM in block granularity meaning that if a

thread from a block is given to certain SM for execution, then the rest of the threads

in that block also will be executed by that SM. In current CUDA architecture, we can

assign 8 thread blocks to SM. This is a hardware restriction. A fermi SM can take 1536

threads per SMs. This can be either six blocks with 256 threads/block or 3 blocks with

512 threads per block. The SM is the one who maintains the thread and block Ids. SM

also manages and schedules the thread execution. Each block is executed as a 32-thread

Warps. Warps are the scheduling units in SM. Threads in a warp execute in SIMD. For

example, if we have 3 blocks that are assigned to the SM and each of this block has 256

threads, then each block is divided into 256/32= 8 warps and since there are 3 blocks,

we have a total of 8*3= 24 warps. All the threads in a warp are executed at the same

time on the SM. When one warp is waiting for data the other warp with the data can

execute on the SM. Switching between the warps does not inculcate any cost (it is zero

overhead) and hence warps are the scheduling units of SM. So what should be the block

dimension or the number of threads in the block for the best performance taking into

consideration that 1536 threads can be executed by the SM. Let us consider three cases

of block dimensions (1) 8x8, (2) 16x16, (3) 32x32.

In 8x8, we have 64 threads per block and considering that SM can have 1536 thread

we have 24 blocks, but SM takes only 8 blocks. hence, if we use 8x8 we can only
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Figure 2.8: Grouping of threads in CUDA based GPU. [1]

have 512 threads at a given time in SM. For 16x16, we have 256 threads per block

and considering 1536 threads supported by SM we can have 6 blocks which are at its

maximum capacity of 1536 threads. In 32x32, we have 1024 threads per block and only

one block will fit and hence only 1024 threads will fit into the SM, Hence, it will not

achieve full potential. We can conclude that 256 threads per block run the maximum

threads parallel in a Single SM.

Different GPU architectures exists due to multiple vendors such as Nvidia and AMD.

For example, currently a warp in an Nvidia GPU currently consists of 32 threads whereas

in an AMD GPU the wavefronts (warps) consists of 64 threads. Nvidia GPUs are

the most used device and the first to introduce Compute Unified Device Architecture.

Hence, following discussions will be based on Nvidia GPUs.

2.4 Machine Learning

The concept of machine learning was defined as Tom Mitchell [68] as follows:

A computer program is said to learn from experience E with respect to some task T

and some performance measure P, if its performance on T, as measured by P improves

with experience E.

The learning process can be divided broadly into three 1) Supervised Learning,

2) Semi-supervised learning, and 3) Unsupervised Learning. Following sections give a

detailed discussion on the three types of learning.

We shall establish a few notations that shall be used throughout our discussions. An

input variable (input features) matrix is denoted by X and the output vector containing

the target variables is denoted by Y . The pair (x(i), y(i)) is a single training example.
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The index i indicate that it is the i-th data sample, where iε{1, 2, ...,m}, where m is the

total number of features for training (the number of training examples). In supervised

learning, we learn a function h : X → Y such that h(x) is a good predictor for the value

of y. The function h is called the hypothesis function. When the target value y that

we predict is continuous, then we term it as a regression problem. Else if the target y

takes a limited range of discrete values we term it as a classification problem.

2.4.1 Linear Regression

We need to define a function y = h(x), such that y(i) ≈ h(xi) for each training example.

A major step in supervised Learning is representing the hypothesis function h(x). For

general linear regression problem we can define the function as hw(x) =
∑m

j=0wjxj =

W Tx. The function hw(x) represents a family of functions represented by various pa-

rameter values of w. The function hw(x(i)) has to be as close as possible to y(i) and can

be achieved by finding appropriate values for the weights w. We need to find values for

w that minimises the difference between hw(x(i)) and y(i) or mathemathically we need

to find w such that it minimizes the function J(W ).

J(W ) = L(W ) =
1

2

m∑
i=1

(hw(x
(i))− y(i))2 = 1

2

m∑
i=1

(wTx(i) − y(i))2 (2.9)

This function is called the Loss function or the Cost function or the objective func-

tion. With appropriate values of w we can reduce the loss between hw(x(i)) and y(i). It

represents the error in the prediction y(i) for a particular w.

Finding w is an optimization problem and one of the ways to solve this problem is

using Gradient Descent. The gradient descent algorithm starts with an initial value of

the weights w and iteratively updates the weight until it reaches the optimal value. The

update is performed as in Equation 2.10:

wj = wj − α×
∂

∂wj
J(W ) (2.10)

The updates are for each j = 0, ...,m is performed simultaneously. α is called the

learning rate. The partial derivative of our Loss function J(W ) (Gradient) can be

derived as ∂
∂wj

J(W ) = (hw(x)− y).xj

Hence, Equation 2.10 can be rewritten as
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wj = wj + α× (hw(x)− y).xj (2.11)

This equation is also called as LMS update rule or Widrw-Hoff rule. For using all

the input parameters on gradient descent we rewrite the above equations as

Repeat until convergence {

wj := wj + α×
∑m

i=1(hw(x
(i))− y(i)).x(i)j (∀j simultaneously)

}

The other way to solve for w is by using normal equations which does not require

an iterative treatment. The normal equation is given by XTXW = XT y. Hence,W =

(XTX)−1XT y. The above equations are derived based on matrix derivatives.

2.4.2 Logistic regression

Logistic regression is a classification problem and hence only have a limited number of

discrete outputs. The target output y(i) in logistic regression is called labels. In logistic

regression y(i)ε{0, 1}. In this technique we consider our y(i) to be the probability that

it is x(i). Hence the hypothesis function needs to be redefined as follows,

P (y = 1|x) = hw(x) =
1

1 + exp(W TX)
= σ(W TX) (2.12)

The function σ(W TX) is called the sigmoid function or the logistic function. It

confines the values to between [0, 1] for any given input.

Hence the cost function for logistic regression can be written as

J(W ) = −
∑

i
(y(i)log(hw(x

(i))) + (1−y(i))log(1−hw(x(i))))

We solve for w as before using Batch gradient descent, stochastic gradient or by

using normal Equations.

After finding the weights a threshold value can be used with hw(x) to determine

wether output is 0 or 1.

y(i) =


1 hw(x) > 0.5

0 hw(x) < 0.5

(2.13)
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2.4.3 Multinomial Logistic regression (Softmax regression)

Softmax Regression problem is a logistic regression problem with multiple output targets

y, so y(i) ∈1, 2, 3, 4, . . . k. k is the total number of classes. The response variable is still

discrete but can take k different values. In this case the hypothesis should calculate the

probability of y being k given when input is x. Mathematically we need an estimation

of P (y = k|x) for all k∈1, 2, 3, . . . , k. Hence the hypothesis will be a K-dimensional

vector as in the following Equation.

hw(x) =



P (y = 1|x;w)

P (y = 2|x;w)

.....

P (y = k|x;w)


=

1∑k
j=1 exp(w

(j)Tx)



exp(w(1)Tx)

exp(w(2)Tx)

exp(w(3)Tx)

exp(w(4)Tx)


(2.14)

It is convenient to represent w(k) as an m× k matrix where w(1), w(2), . . . , w(k) are

the columns of the matrix.

The cost function is given by

J(W ) = −

[
m∑
i=1

y(i)log(hw(x
(i))) + (1−y(i))log(1−hw(x(i)))

]
(2.15)

= −

[
m∑
i=1

1∑
k=0

1{y(i) = k}logP (y(i) = k}x(i);w)

]
(2.16)

In Equation 2.16 1{.} indicates an indicator function. If the statement inside the

curly brace is true then it outputs 1 else it outputs 0.

1(x) =


1 if x is true

0 otherwise

and

P (y(i) = k|x(i);w) = exp(w(k)Tx(i))∑k
j=1 exp(w

(j)Tx(i))
(2.17)

the gradient can be given by
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∇w(k)J(W ) = −
m∑
i=1

[
x(i)

(
1{y(i) = k} − P (y(i) = k}x(i);w)

)]
(2.18)

With the gradient and the cost function W can be solved using gradient decent or

other techniques.

2.4.4 Deep Networks

Due to the advancement of research in machine learning, there is a lot of overlap be-

tween Artificial Intelligence and machine learning. In most scenarios, the term can be

used interchangeably while discussing Deep Learning. Deep learning can be classified

as a part of machine learning wherein the data is abstracted with the help of multiple

processing layers of hierarchy. In these layers, the data is transformed using various

models and functions. Deep learning automatically learns features across the abstrac-

tions. This allows complex functions to map the input to the output directly from

data, without depending entirely on features developed by humans [69]. The term,

deep learning indicates large, deep neural networks. The significant difference between

the neural networks in the 1980s and the current deep learning is that the data used

for training has increased and the computers have increased the processing capabilities

[70]. Moreover, the weights for the network are chosen cleverly than before. The old

linear and non-linear algorithms didn’t fare well when the size of the data increased.

For higher data input the performance saturated as shown in Figure 2.9 [2].

When the hypothesis function hW (x) needs to be a non-linear, complex function to

fit the data, we use Neural networks. Neural networks are based on the functioning

of biological neurons in a human body. Neurons are the building blocks of a neu-

ral network. We shall not discuss the biological aspects of neural network so as not

to confuse the readers. Basically a neuron is a computational unit that takes mul-

tiple input x1, x2, x3, ..., xn, the bias terms (the intercept terms, +1, generally), and

outputshW,b(x) = f(W Tx) = f(
∑n

i=1Wixi + b), where f is called the activation func-

tion. Various functions are used as activation functions. The sigmoid function is the

most common activation function. The other functions used are tanh, ReLU, Leaky

ReLU, and Maxout.
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Figure 2.9: Performance comparison with data size for learning algorithms [2]

2.4.5 Deep network architectures

A neural network is created by putting together the neurons as an acyclic graph. This

would mean that the output of a neuron is fed as input to other neurons. Fig illustrates

a simple neural network.

A deep network is created by putting together the neurons as an acyclic graph. This

would mean that the output of a neuron is fed as input to other neurons. Figure. 2.10

illustrates a simple deep neural network.

The circles in the image represent the neurons as well as the input to the neurons.

The first layer is the Input layer, and the last layer is the output layer. All the layers

in-between input and output is called the hidden layers. A deep network will have more

than two hidden layers [69]. Each hidden layer may consist of a large variable number

of neurons.

The circles in the image represent the neurons as well as the input to the neurons.

The blue circle indicates the input to neurons. The circles with the +1 term are called

the bias term or the intercept term. The leftmost layer is always the input layer, and

the rightmost layer is the output layer. The output layer has been shown as a red circle

in the Figure. The layers between the input layer and the output layer are called the

hidden layers. In the illustration, we have one input layer (in blue), one hidden layer(in

green), and one output layer (in red). We can see that the input layer has three neurons.

24



...

...

...
...

...

I1

I2

I3

In

H1

Hn1

H1

Hn2

O1

On3

Input
layer

Hidden
layer 1

Hidden
layer m

Output
layer

. . .

Figure 2.10: A Simple Deep Network

+1 +1

x1

x2

x3

a1
(2)

a2
(2)

a 3
(2)

hw,b(x)

Layer 1 Layer 2

Layer 3
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Hence we say it has three input units. The hidden layer has three units, and the output

layer has one unit. Some of the conventions we use for our discussion has been listed

below:

• nl denotes the number of layers in our NN. In our example above nl = 3

• The layers are labeled from L1 (the input layer) to Lnl
(the output layer)

• The weights are represented by the letter W and the bias with b. W (l)
ij is used

to denote the weight associated with the connection between the j-th unit in

layer l and i-th unit in the layer l + 1. Hence in our example W (1) ∈ R3×3 and

W (2) ∈ R1x3. b(l)i denotes the bias associated with the i-th unit in layer l + 1.

• sl is the number of nodes in layer l, without the bias nodes.

• a
(l)
i denotes the activation of unit i in layer l. For l = 1, we assume that a(l)i = xi.

That is for the first layer we consider the first layer as the activation.

With these notations in place we can now define our hypothesis hW,b(x) that would

produce a real number. The computation of hypothesis for our example is as follows

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 ) (2.19)

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2 ) (2.20)

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3 ) (2.21)

hW,b(x) = a
(3)
1 = f(W

(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 + b

(2)
1 ) (2.22)

If we denote the total weighted sum of inputs to unit i in layer l, including the bias

term as z(l)i =
∑n

j=1W
(l)
ij xj + b

(l)
i . Hence we can write a(l)i = f(z

(l)
i ). Extending the

activation function f(.) to apply to vectors in an element wise fashion would result in

a more compact representation as:

z(2) =W (1)x+ b(1) (2.23)

a(2) = f(z(2)) (2.24)

z(3) =W (2)a(2) + b(2) (2.25)

hW,b(x) = a(3) = f(z(3)) (2.26)
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We can generalize this and compute the activation for a given layer l + 1 using the

activations of the layer l as follows:

z(l+1) =W (l)a(l) + b(l) (2.27)

a(l+1) = f(z(l+1)) (2.28)

This process is called the forward propagation. We can have multiple input, hidden,

and output layers. We start the computation of the activation from the first layer and

use this further to calculate the activations of the next layer using forward propagation.

Such neural networks are called feed-forward Neural network. Larger networks will

always work better than smaller networks, but their higher model capacity must be

appropriately addressed with stronger regularization (such as higher weight decay), or

they might overfit.

2.4.6 Back propagation Algorithm

Given a training set of m training examples, {(x(1), y(1)), . . . , (x(m), y(m))}, we initially

define the cost function with respect to a single sample (x, y) as :

J(W, b;x, y) =
1

2
‖hW,b(x)− y‖2 . (2.29)

The above cost function is also known as squared-error cost function. The total Loss

function for all m examples are calculated as

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(2.30)

=

[
1

m

m∑
i=1

(
1

2

∥∥∥hW,b(x(i))− y(i)∥∥∥2)
]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(
W

(l)
ji

)2
(2.31)

The above equation consists of two terms, the first term is an average sum of squares

error term. The second term is the weight decay term also called as regularization

term that prevents overfitting by decreasing the weights. We observe that the bias

term b
(l)
i has not been regularized. λ is called the weight decay parameter. The above

cost function is generally used for regression as well as classification. The cost function
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that we have used above is also called the Quadratic Loss, mean squared, maximum

likelihood and Sum squared error or Cost. The gradient of the above cost function with

respect to the output can be expressed as ∇aJMST = (anl− y(i)). There are other Loss

functions that can be used. We list some of the major loss functions that could be used

with a neural network in Subsection 2.4.8. Once we find the weights we can use a test

set to predict the output values of new data.

2.4.7 Activation Functions

2.4.7.1 Sigmoid

The sigmoid function can be mathematically written as σ(x) = 1/(1 + e−x). It takes

a real-valued number and squashes the number between the range [0,1] as shown in

Fig. 2.12. Hence the output from the sigmoid function is generally considered as the

probability, P (yi = 1 | xi;w), the probability that the output is true given the input xi

for the weights w. It can be seen from the figure that, large negative numbers become

(approximates to) zero, and large positive numbers become 1. The sigmoid function

has two major drawbacks [CS231].

1. Sigmoid saturation and death of gradients: When the output from sigmoid sat-

urates at 0 or 1, the gradients at these regions becomes zero. During the back

propagation phase, we compute the product of the local gradient and the gradient

of the current neurons output. Precaution should be taken that the initial weights

of the neurons should not be greater as higher initial weights saturate the neurons

and the network will not learn.

2. Non-zero centered outputs from sigmoid: If the output from the following layers

in the neural network is non- zero centered then later during gradient descent

then the data input to neurons are positive, then during backpropagation, the

gradients on weight w will all be positive or all negative. This issue is less severe

than the saturation issue since the final update of weights still can have variable

signs when the gradients are added across a batch.
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Figure 2.12: Sigmoid function

2.4.7.2 Tanh

The tanh is mathematically given by tanh(z) = ez−e−z

ez+e−z = 2σ(2z)− 1. Where σ() is the

sigmoid function. The tanh function produces the output between the range [-1,1] as

shown in the Fig. 2.13

2.4.7.3 ReLU

Recent researches [71, 72] point to the use of rectified linear units for better performance

for deep neural networks. The ReLU is not bounded nor is it continuously differentiable.

The gradient of the ReL function doesn’t vanish as we increase x. In fact, for max

function, the gradient is defined as f(x) =


1 x > 0

0 otherwise

. It can also be represented

as f(x) = max(0, x). Figure. 2.14 represents the ReLU function.

The major advantages of ReLU are as follows

1. No gradient vanishing problem like sigmoid and tanh. It does not saturate and

hence Accelerates the convergence of gradient decent compared to sigmoid and

tanh functions.

2. ReLU doesn’t have expensive operations. It consists of simple thresholds that is

easy to implement.

3. Induces sparsity in the hidden Units.
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Figure 2.15: Leaky ReLU function

But a disadvantage of ReLU is that it can easily die during the training phase. A large

gradient flowing through a neuron might result in the updating of weights in such a way

that the threshold is never reached and it never gets activated. This kills of the neurons

since all the gradient flow through it will be zero. However, this can be controlled by

appropriately setting the learning rate. Higher learning rates may result in larger deaths

in the network.

2.4.7.4 Leaky reLUs

Leaky ReLUs were proposed to rectify the dying issue of the ReLU [73]. Instead the

function outputting zero when x<0, the leaky ReLU has a small negative slope (α =

0.01). Hence Leaky ReLUs can be represented by f(x) = 1x < 0(αx) + 1x >= 0(x),

where α is a small constant. Which is the same as f(x) =


x if x > 0

ax otherwise
. The

negative slope can also be made into an input parameter for each neuron as in [74].

Such activation functions are called PReLU. However, the stability of this function

needs to be further analyzed and studied. Leaky ReLUs are plotted in Fig. 2.15.

Another variant of leaky ReLU is called the randomized ReLU [75]. In Randomized

ReLU, the slopes of negative parts are randomized in a given range in the training, and

then fixed in the testing.
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2.4.7.5 Maxout

It generalizes the Leaky ReLU and ReLU. It was introduced in [76]It computes the

function max(wT1 x+ b1, w
T
2 x+ b2). ReLU and Leaky ReLU are special cases of maxout.

The only drawback is that it introduces a large number of parameters for each neuron

leading to a high number of parameters.

2.4.8 Loss Functions

Cross-entropy cost They are also known as Bernoulli negative log-likelihood and

Binary Cross-Entropy −
∑
j
[y

(i)
j ln anlj +(1−y(i)j ) ln (1−anlj )] The gradient of this

cost function with respect to the output of a neural network and some sample i

is: ∇aJCE(W, b, x(i), y(i)) = (anl−yi)
(anl+1)(anl)

Exponentional cost This requires choosing some parameter β that you think will give

you the behavior you want. Typically you’ll just need to play with this until things

work good. It is represented as JEXP (W, b, x(i), y(i)) = β exp( 1β
∑
j
(anlj − y

(i)
j )2)

where exp(x) is simply shorthand for ex. The gradient of this cost function with

respect to the output of a neural network and some sample i is: ∇aJ = 2
β (a

nl −

y(i))JEXP (W, b, x
(i), y(i)).I could rewrite out JEXP , but that seems redundant.

Point is the gradient computes a vector and then multiplies it by JEXP .

Hellinger distance This distance is represented as 1√
2

∑
j
(
√
anlj −

√
y
(i)
j )2. This needs

to have positive values, and ideally values between 0 and 1. The same is true for

the following divergences. The gradient of this cost function with respect to the

output of a neural network and some sample i is: ∇aJ =
√
anl−
√
y(i)√

2
√
anl

Kullback–Leibler divergence This technique known as Information Divergence, In-

formation Gain, Relative entropy, KLIC, or KL Divergence. Kullback–Leibler di-

vergence is typically denoted DKL(P‖Q) =
∑

i P (i) ln
P (i)
Q(i) , where DKL(P‖Q) is a

measure of the information lost when Q is used to approximate P . Thus we want

to set P = y(i) and Q = anl, because we want to measure how much information

is lost when we use a(i)j to approximate y(i)j . This gives us JKL(W, b, x(i), y(i)) =∑
j
y
(i)
j log

y
(i)
j

anl
j

. The other divergences here use this same idea of setting P = y(i)

and Q = a(nl). The gradient of this cost function with respect to the output of a

neural network and some sample i is: ∇aJ = y(i)

anl
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Generalized Kullback–Leibler divergence is given by JGKL(W, b, x(i), y(i)) =
∑
j
y
(i)
j log

y
(i)
j

anl
j

−∑
j
(y

(i)
j ) +

∑
j
(anlj ). The gradient of this cost function with respect to the output

of a neural network and some sample i is: ∇aJ = y(i)+anl

anl

Itakura–Saito distance TheLoss is given b
∑

j

(
y
(i)
j

anl
j

− log
y
(i)
j

anl
j

− 1

)
. The gradient of

this cost function with respect to the output of a neural network and some sample

i is:

∇aJ =
y(i)+(anl)

2

(anl)
2 ,Where

((
anl
)2)

j
= anlj · anlj . In other words,

(
anl
)2 is simply equal

to squaring each element of anl.

Next we identify the parameters W and b that minimizes the cost function J(W, b).

Initially to train the neural we need to initialize the weights and bias. We don’t initialize

it to zero unlike linear regression or classification to avoid the problem of symmetric

ways. Rather we initialize W (l)
ij to a random value in the range [−ε, ε] or according to

Normal(0, ε2) distribution to break the symmetry. ε can be a small value like 0.01.

Moreover the cost function J(W, b) that we defined is a non-convex function that might

lead to local optima. We can use any optimization algorithm to solve for W and b. We

shall discuss Batch Gradient descent and we shall list out the rest of techniques that

can be used to solve for W and b, while using back propagation. In the gradient descent

algorithm we update the values of of the parameter W and b iteratively. Each iteration

can be represented mathematically as

W
(l)
ij =W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b) (2.32)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b) (2.33)

Here α is the learning rate. Next we shall use the back propagation algorithm that

effectively finds the partial derivatives required in the above equation. The derivative

of the the overall Cost function J(W, b) can be computed as

∂

∂W
(l)
ij

J(W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i))

]
+ λW

(l)
ij (2.34)

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)) (2.35)
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Where ∂

∂W
(l)
ij

J(W, b;x, y) and ∂

∂b
(l)
i

J(W, b;x, y) are partial derivatives with respect to

single example (x, y). We can see from the equation that once we calculate ∂

∂W
(l)
ij

J(W, b;x, y)

and ∂

∂b
(l)
i

J(W, b;x, y) we easily calculate the derivative of the total cost. The deriva-

tive with respect to the bias term does not include the regularization term. When we

feed input(x, y) at input layer, each layer after that computes the activations until the

hypothesis is calculated in the final layer. This is called the forward pass. Now we

compute the error δ(l)i , for each node i in layer l . This would tell us the role of each

node in introducing errors in outputs.

The Back-propagation algorithm can then be written as following:

1. Initially we perform a forward pass that computes the activations for the layers

L2, L3, ....., Lnl.

2. For each ouput unit i in layer assign,

δ
(nl)
i =

∂

∂z
(nl)
i

1

2
‖y − hW,b(x)‖2 = −(yi − a

(nl)
i ) · f ′(z(nl)

i ) (2.36)

In the vector notation this can also be rewritten as

δ(nl) = −(y − a(nl)) • f ′(z(nl)) (2.37)

3. For l = nl − 1, nl − 2, nl − 3, . . ., 2

(a) For each node i in layer l set,

δ
(l)
i =

sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

 f ′(z
(l)
i ) (2.38)

or in the vectorized form we have

δ(l) =
(
(W (l))T δ(l+1)

)
• f ′(z(l)) (2.39)

4. Next we compute the required partial derivatives as

∇W (l)J(W, b;x, y) = δ(l+1)(a(l))T , (2.40)

∇b(l)J(W, b;x, y) = δ(l+1). (2.41)
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The vectorized equations would be

∇W (l)J(W, b;x, y) = δ(l+1)(a(l))T , (2.42)

∇b(l)J(W, b;x, y) = δ(l+1). (2.43)

In the above equations • denotes the hadamard product which is the element wise

product operator. For example if A = (aij) ∈ Rm×nandB = (bij) ∈ Rn×p then

A•B = aij .bij . Moreover in the above equations we have extended the definition of f(.)

and f ′() to mean element wise application to vectors. That is f ′([z1, z2, z3]) = [f ′(z1), f
′(z2), f

′(z3)].

Here f(.) is the activation function.

2.4.9 Optimization functions

We list out techniques that can be used for parameter upgradation (W and b) that can

be used in place of gradient descent. A detailed analysis of these techniques can be

found in [75, 77]

• Stohastic Gradient Descent: [78, 79]

– Vanilla Update

– Momentum update

– Nesterov Momentum

• Quasi-Newton methods [80]

– BFGS [81]

– L-BFGS [81]

• Adam (Adaptive Moment estimation) [82]

• Conjugate Gradient [83]

• Genetic Algorithm

• Twiddle (A realy simple but cool algorithm)

• Simulated Annealing.
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Chapter 3

Literature Review

3.1 CPU Sparse Storage Schemes

3.1.1 Serial Schemes

Abdali and Wiset [84] performs quantitative analysis on the suitability of the usage of

the quadtrees for the representation of both sparse and dense matrices as compared

to the linear storage. They use the REDUCE [85] implementation of Quadtrees as

well as linear representation of matrices. They perform arithmetic operations such as

addition and subtraction as well as inversion of matrices using matrices stored linearly

and in Quadtrees. They use dense, triangular, tridiagonal and diagonal matrices (both

symbolic and numerical). They conclude that Quadtrees are suitable for sparse matrices

and provide speedups in matrix operations and inversion. The authors do not analyze

the space occupied these storage schemes. The authors conclude by saying that it is

an efficient parallel structure and there is a need for optimal algorithms for Quadtree

operations.

Dvorsky and Kratky propose [86] a Multi-dimensional sparse storage based on R-

trees and BUB trees [87]. In this approach, space for storing the indexes are higher than

CSR but have an a better access rate than them. A detailed comparison nor analysis

is provided by the authors.

Balk et al. [88] propose a sparse matrix storage scheme using balanced binary search

tree such as AVL Red-Black tree. Since these data structures have an access time

of O(ln(n)), the authors consider it better than normal matrix representation. The

authors compare the time taken for this scheme against traditional hash map memory
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allocation. The authors do not provide any details about the actual implementation

of the scheme nor about the algorithm used for the multiplication. Moreover, they do

not discuss the suitability of this scheme for parallel architectures.They also do not

provide a comparison with other traditional sparse matrix storage such as COO and

CSR schemes.

Abu Hanif and Azharul Hasan [89] propose an n- dimensional sparse array storage

scheme called generalized Row/Column storage (GCRS/GCCS). Traditional storage

schemes such as CSR and COO requires (n+1) arrays to store an n-dimensional array.

When the number of the dimensions increases these data structures becomes unusable

due to the increase in sparsity. Moreover, time and space complexity increases. The

proposed scheme maps a multidimensional array with dimensions greater than two to

a 2-D array using a mapping algorithm written by the authors. The total possible

permutations of generating a mapped 2-D structure are n(n!). The authors fit in odd

indices along the row and even indices along the column. Using the above rule they

develop a mapping algorithm for array indices. This enables higher sequential access

of the memory compared to traditional n-dimensional CSR/CCS. The resultant 2-D

structure is stored like CSR/CCS technique which would imply that an n-dimensional

sparse array can be stored using just three vectors. If we consider a normal multidi-

mensional array of size n, then we can transform it into two dimensions by convert-

ing pn/2q dimensions along the row and the other n/2 dimensions along the column.

Since the multidimensional arrays are stored in a linear fashion in the memory it is

easy to map the array indices to the memory address. For example, If we consider a

for-dimensional array A[l1][l2][l3][l4] then a tuple of indices < x1, x2, x3, x4 > can be

mapped as f(x1, x2, x3, x4) = x1l2l3l4 + x2l3l4 + x3l4 + x4. In the proposed algorithm

the new dimensions l′1 consists of contribution from l1 and l3 and l′2 consists of contri-

bution from l2 and l4. This is tested on normal Xeon CPU. The proposed technique has

a better time and space complexity compared to CRS/CCS for n-dimensional arrays.

Simecek et al. [90] propose a minimal Quadtree format (MQT) for compressed

sparse matrix storage. Quadtree based SpMV has not been explored. Rather the scheme

has been proposed as an alternative to text-based storage on disk for the compressed

sparse matrix. The authors create a sparse storage scheme based on Advanced Quadtree

structure proposed earlier by the authors [91]. The major addition of this storage format
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is ease in adding and deleting values in the matrix and improves the memory utilization.

The maximum size of the minimal quadtree for a sparse matrix of size N and with nnz

non-zeroes is given as

4.nnz(
1

3
+ log4(N

2/nnz)) (3.1)

The worst time complexity for the conversion from CSR to MQT is given by

Θ(nnz(1 +
N√
nnz

)× log2nnz.per.row) (3.2)

Yuan et al. [92] propose two improved storage formats for sparse matrices based on

DIA format. The proposed scheme is a combination of DIA and CSR techniques. The

main objective of this scheme is to improve the DIA scheme for matrices that have less

number of dense diagonals. The first proposed algorithm is called DDD-Naïve which

omits the index array in the CSR and stores in the DIA format the diagonals. The

second proposed technique called DDD-Split splits the sparse matrix, as well as the

result vector into row blocks and the identical contiguous values in the diagonals, are

compressed and each row can be further split into sub-block rows. This scheme has not

been implemented on GPU. Both the schemes were implemented sequentially by the

authors on the CPU.

Langr et al. [93] propose an Adaptive Hierarchical blocking format for the storage

of sparse matrices. In HSF’s (Hierarchical Storage Formats) the matrix is divided into

blocks and these blocks can be stored as a two level hierarchical data structure. The

first level, level-0, is used to store the nnz blocks, which are stored as sub-matrices of

the original sparse matrix and level-1 consists of a block matrix that stores pointers

to the blocks in the first level. Some of the storage formats that fall under HSF are

BCRS [35, 94], BCSR [95], HiSM [94, 96], COOCOO [97], SBSRS [98], SPBCRSX [99],

CSRCOO [97], CSB [100], etc. All these techniques named above produces variable

performance in time and space depending upon the structure of the input matrix. For

a single matrix use of different schemes to store different blocks results in an increase

in performance. In the proposed technique for each block an efficient storage scheme is

selected out of CSR, COO, dense and Bitmap and for the block matrix COO format is

used. This produces a storage format that has lower space complexity than using CSR,

COO, Dense, or Bitmap scheme individually. This storage scheme has not been tested
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using parallel SpMV based kernels or any other parallel architectures.

Vuduc [101] proposes a sparse storage scheme based on Diagonal storage format

called the Row Segmented Diagonal storage format. In this format, the input matrix is

divided into row slices such that each slice consists of diagonal elements more than one

or equal to the number of rows in a slice. The total number of slices can be denoted by

s. This storage scheme consists of an integer array, slice_ptr, which stores the starting

index of each slice, and an integer array num_diag, of size, s that stores the number

of diagonals in each segment, an integer array, src_ind, to store the starting column

indices of the diagonals and a float array data that stores the nnz values in the matrix.

Another parameter u, which represents the unrolling depth that is used while storing

nnz in the data array. The first u values are initially stored from the first diagonal and

the first u nnzs from the second diagonal and so on. Then the next u elements from

the first diagonal are stored and the next u from second diagonal and so on until the

final nnzs are stored.

Willcock and Lumsdaine [102] propose an improvement to the sparse matrix SpMV

by proposing new sparse storage formats that are based on lossless compression. The

first of such technique is called the Delta Coded Sparse Row (DCSR) that is based

on byte-oriented delta encoding. This technique six commands to encode the matrix

and each of the command code takes a parameter. The compressed matrix then can

be represented as a list of <command, parameter> pairs. Three such pairs encoded

into 32-byte word. A decompression algorithm is applied before SpMV operations.

The second proposed scheme is called the Row Pattern CSR which provides a better

compression, compression time, and performance as compared to DCSR. In this scheme,

the delta values between the consecutive nnzs are grouped into intervals. The intervals

are further grouped into multiple intervals in a group which are called patterns. These

patterns are stored in the compressed matrix along with delta values for decompression.

Vuduc and Moon [103] extend the classical BCSR to store sparse matrices with

unaligned multiple structures. They term this new format as UBCSR (unaligned block

compressed sparse row). In this format the matrix is split as the sum of sub-matrices

and each sub-matrix is stored using the UBCSR format. Initially variable block row

format (VBR) [104, 105] is used to partition the matrix into rows of blocks. This is

done to reveal the sub-structure of the matrix. The major difference between BCSR
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and UBCSR is that UBCSR relaxes row and column alignment. The blocks in UBCSR

can have variable size. To handle this it uses one extra pointer array to point to the

start of each block as compared to the traditional BCSR format for sparse matrices.

This scheme was not designed for heterogeneous multiprocessor computing.

3.1.2 Parallel Schemes

Zhang et al. [106] Proposes a sparse matrix storage method based on Quadtrees and

cache memory for the purpose of matrix-vector multiplication. The two features that

the authors optimize in this scheme are:

• Data locality (for the multiplication)

• Parallel performance

In this technique, the authors’ recursively subdivide the sparse matrix into smaller sub-

regions using quadtrees so that the sub-regions can be stored in the cache to improve

the data locality. The conversion complexity to COEQT from general methods such as

COO, CSR can be generalized as O(2n log2n+ nθ). We can see that the complexity of

this conversion is higher than the complexity of matrix-vector multiplication for which

it was proposed. We can also observe that the conversion cost is dependent on the size

of the matrix. The authors further propose a Matrix-Vector multiplication based on

this storage. It was also run in a distributed system consisting of 1140 blade nodes each

having 32 GB memory. The authors conclude that the CEQT achieves 1.5 times the

speed up for Matrix-vector multiplication as compared with CSR. The authors do not

mention or perform any analysis on the memory consumed by CEQT.

Guo and Gropp [107, 108] propose a sparse storage for SpMV on IBM POWER

architecture. The IBM POWER architecture consists of a special hardware component

stream called the pre-fetch data stream that would increase the memory bandwidth

significantly. The authors have developed a new sparse storage that efficiently use this

data stream. Hence, the data is called as Stream-CSR (S-CSR). The proposed scheme is

based on CSR. The main idea behind this format is to allow multiple groups to prefetch

independent data streams without overlap so that the prefetch can be increased to

accelerate the performance. This format is dependent upon the number of streams in

the architecture.
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3.2 FPGA schemes

Smailbegovic et al. [99] proposes a sparse matrix storage format called extended Sparse

Block Compressed Row Storage (SBCRSx). The format is based on Block Row Com-

pressed Format [109]. The format is designed keeping in mind the developments in

FPGAs. The technique provides additional details about the sparse matrices to the

hardware to assist efficient implementation of operations on the matrices. The main

idea of this scheme is that the value and the indices should be accessed consequently

unlike most current storage techniques in which the indices and values are stored sep-

arately. Hence, the authors propose that the values and the indices be stored in a list.

The elements in the same row will have their individual lists linked to each other. This

results in the creation of chunks or short vectors with known lower and upper bound

addresses. The number of chunks that can fit on the chip at any given time cannot

be fixed due to the differences in the length of different chunks. Hence, the authors

augment an extra bit to each list to indicate whether there are extra elements following

it in a given row. This bit is called chaining bit. A chain bit of 0 indicates that no ele-

ments are there in the row after the current element. The authors provide an algorithm

to convert a normal dense sparse matrix to this new storage. They don’t provide any

qualitative or quantitative analysis on the effectiveness of this scheme.

3.3 MIC schemes

Lu and Vinter [110] propose a storage format for Sparse matrices from the point of

view of matrix-Vector multiplication called as CSR5. The 5 in the name indicates that

there are five arrays stored unlike the three in the classical CSR technique. The main

objective of proposing this technique was to improve the performance of Matrix-Vector

multiplication. The designed data storage scheme is insensitive to the sparsity of the

data structure provides similar performances for sparse as well as dense matrices. It

has a lesser conversion cost when converting from existing techniques such as COO and

CSR. This technique uses a combination of row block method [111] and segmented sum

method [112]. This technique provides proper load balancing and reduces overhead due

to memory access and synchronization. They do not provide any discussion or analysis

on the space occupied by this storage scheme. They show that this scheme accelerates
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the matrix-vector on various platforms such as on GPUs and CPUs as compared to

CSR, ACSR, ESB, and pOSKI.

Kreutzer [113] proposes a unified sparse matrix storage for all modern processors

with wide SIMD units. They propose a storage format that would provide efficient

performance in all processors such as Intel multicore processors, Intel MICs, and CUDA

architectures. The proposed format is based on the sliced ELL combined with SIMD

vectorization and is called the SELL-C-σ. The C (chunk) indicates the width of the

SIMD registers in the x86 architectures and on CUDA architecture it is the number of

threads per warp. σ is called the sorting scope that is the number of rows that will

be sorted to reduce the overhead and increase the performance. The rows within a

chunk are stored column wise and the chunks are stored one after another. The rows in

chunks are padded to that of the largest row similar to Sliced ELL. To avoid this head

selective sorting is applied using σ parameter. But this does affect the performance

of the iterative solvers. The CUDA based implementation has not been discussed in

detail. Only the results are shown. Whereas, the parallel implementation discussed is

mainly that of OpenMP.

Liu et al. [114] propose an efficient sparse matrix-vector multiplication on Intel

Xeon Phi (MIC) coprocessor by developing a new sparse storage format called ELLPAK

Sparse Block (ESB). The proposed new format is an extension of ELLPACK format that

overcomes the issues faced when running CSR based SpMV on Xeon Phi coprocessor. In

addition to the regular ELLPACK format, column blocking is used to improve locality

of memory access. Moreover, in each of the column, a finite window sort is applied

to improve the Single Instruction Multiple Data efficiency. To reduce the bandwidth,

the authors encode the indices of the non-zeroes into a bit array. The use of bit arrray

degrades the performance for some matrix. The performance is still dependent upon

the structure of the matrix.

3.4 GPU Sparse Storage Schemes

In this section we shall discuss the state-of-art Sparse matrix storage schemes desinged

for SpMV on GPUs.

ELL-R was introduced in [115] to improve the performance of the ELL storage
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A =


1 2 0 3
0 4 5 0
6 0 7 0
0 2 8 9



data =


1 2 3 ∗
4 5 ∗ ∗
6 7 ∗ ∗
2 8 9 ∗

 indices =


0 1 3 ∗
1 2 ∗ ∗
0 1 ∗ ∗
1 2 3 ∗

 rl =
[
3 2 2 3

]

Figure 3.1: ELL-R representation of matrix A

format on GPUS. Similar to the ELL format it has float MxK array to store the values

and an integer M ×K array to store the column indices. In addition, it has an integer

array,rl[], of size M to store the length of each row. This additional data structure

helps in the reducing the performance degradation due to thread divergence caused by

non-zero entries in the ELL storage format. The row length information enables the

skipping of non-zero values without performance degradation. The total number of

rows (N) has to be a divisor of the block size for coalesced global memory access. Hence

extra rows with zero values are padded are achieve coalesced memory access. There

is no thread divergence within a warp of threads which improves the performance. If

the new row size after padding is N ′, then the total number of bytes required to store

ELL-R format for double- precision valued matrices is: 2NK ∗ 8bytes+N ′ ∗ 4bytes. An

example of this storage format for a 4x4 sparse matrix is illustrated in Fig.3.1.

JAD format [116, 117] can be considered as an optimization of ELL format on

GPUs. Initial preprocessing is required to store a sparse matrix in JAD format. The

sparse array A is sorted initially based on nnz per row in the descending order. After

sorting, the zeroes are removed from the array and the non-zero elements are shifted left.

The columns of the newly form structure are called the Jagged diagonals. Four arrays

are used to store a matrix in JAD format: (1) A float array, data, stores the non-zero

elements in column-major, (2) An integer array indices is used to store the corresponding

column indices of data, (3) an integer array, ia is used to store the starting indices of

each jagged diagonal and, (4) an integer array perm, to store the row permutations.

JAD provides better performance in SpMV kernel than ELL, but the occupancy in JAD

is lesser than ELL. An example of JAD storage format is illustrated in Fig.3.2.

ELLR-T is based on GPU kernel modification of ELLR [118, 115]. In ELLR format,
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A =


1 2 0 3
0 4 5 0
0 0 7 0
1 2 8 9



data =


1 2 8 9
1 2 3 ∗
4 5 ∗ ∗
7 ∗ ∗ ∗

 indices =


0 1 2 3
0 1 3 ∗
1 2 ∗ ∗
2 ∗ ∗ ∗


ia = 0 4 7 9 perm =

[
3 0 1 2

]
Figure 3.2: JAD representation of matrix A

each row is handled by a thread during SpMV, whereas in ELLR-T, T number of threads

operate on the row at the same time. Here T can be 1, 2, 4, 8, 16, or 32. To achieve

this, preprocessing is performed on ELL-R format, which includes permuting the non-

zero values and their column indices and adding zero padding so that each row is a

multiple of 16. This ensures coalesced global memory access. The addressing scheme

in ELLR-T and sliced ELLR are quite different even though in both schemes multiple

threads operate per row. To calculate the value of x[i], thei − th row is split into T

parts and T threads compute prl[i]/Tq iterations of the inner loop of SpMV. The partial

computation performed by each thread is stored in the shared memory. Reduction in

shared memory is performed compute the final x[i].

Monakov et al. [119] proposed Sliced ELLPACK to reduce the redundancies in the

ELL format. The input matrix A is partitioned into S slices with each slice consisting

of a fixed number of adjacent rows. Each slice in this format is stored separately in

ELL format. The slicing reduces the difference between the shortest and longest row

resulting in a reduction of redundancy in zero padding. One CUDA thread block can

be assigned to each slice for CUDA implementation.

Lu and Vinter [110] propose a storage format for Sparse matrices from the point of

view of matrix-Vector multiplication called as CSR5. The 5 in the name indicates that

there are five arrays stored unlike the three in the classical CSR technique. The main

objective of proposing this technique was to improve the performance of Matrix-Vector

multiplication. The designed data storage scheme is insensitive to the sparsity of the

data structure provides similar performances for sparse as well as dense matrices. It

has a lesser conversion cost when converting from existing techniques such as COO and
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CSR. This technique uses a combination of row block method [111] and segmented sum

method [112]. This technique provides proper load balancing and reduces overhead due

to memory access and synchronization. They do not provide any discussion or analysis

on the space occupied by this storage scheme. They show that this scheme accelerates

the matrix-vector on various platforms such as on GPUs and CPUs as compared to

CSR, ACSR, ESB, and pOSKI.

A modification of existing HYB format from the CUSP library [64], for storing

sparse matrices, named HYBIV (The HYB with Indexed Valued format) is proposed by

Bylina et al [120]. The major change they try to inculcate in the algorithm is the sparse

access of the slow GPU and put a transition matrix as large as possible in the GPU

memory. The conventional HYB format is a combination of both the COO technique

and ELLPACK technique [121]. Hence, it consists of 5 arrays to store the matrix (3

from COO and 2 from ELLPACK). In this format, we store all the unique elements

in the transition matrix in GPU read memory as a new vector, data. The row and

columns indices are stored in separate arrays, like the HYB and COO. A memory and

time comparison was performed against ELL and CSR. It was found that the memory

required for larger matrices are reduced by half for HYBIV as compared to HYB. They

store Markov chain transition matrix and perform SpMVM with a vector.

Neelima and Raghavendra [122] propose a sparse matrix representation scheme

aimed at improving the performance of sparse matrices on GPU named Column only

SPaRse Format (CSPR). In total, this scheme uses two data structures, one for storing

data and the other for storing indices of data. The authors use a single data structure

to embed both the row and column information. The row and column indices are com-

bined and represented as a single value as in Row-major representation of the matrix.

The major advantage of this technique is the use of one data structure for sparse ma-

trix access but the disadvantage is that the decoding of the data structure into row and

column takes extra computation and time. Rather than using a CUDA thread for a

single row the authors use a thread each for each element in the matrix so as to increase

the continuous memory access. The authors don’t use texture memory. CSPR is only

applicable for unstructured matrices which don’t have uniform row lengths. This stor-

age technique only seems to perform well when the matrix has a large number of rows

with less non-zero elements per row and in the absence of dense row at the center of
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the matrix. If these conditions are satisfied then this storage scheme provides a better

performance, CPU to GPU memory transfer speed, and throughput compared to COO

scheme. Again the authors don’t discuss the memory comparison with other techniques.

Wijs and Bosnacki [123] propose three schemes to store Markov chain transitional

matrices aimed at GPU. They also discuss SpMV multiplication algorithms for these

schemes. To access continuous memory in the GPU, they propose enumerating the non-

zero elements of the sparse matrix using breadth-first search. They assign indices to the

non-zero elements of the matrix using a heuristics based on BFS. In one of the scheme,

they use a single thread for a single row whereas in the second scheme they use two

threads parallel for a single row. The authors plot various transition matrices generated

using PRISM [124] and come to a conclusion that the values are mostly diagonally

located. The authors modify existing MSR storage scheme so that it supports continual

memory access. In CUDA architecture, the threads that are in the same warp access

continuous memory. Hence, the authors propose modifying MSR such that it is possible.

The threads in warps are explicitly partitioned to enable this. The matrix is segmented

into various partitions such that each segment consists of rows equal to warp size. This

is implemented by adding an extra data structure that stores the start of the segment.

This technique is called as full Warp technique. The other technique proposed by the

authors implement half warp in which two threads are executed for a row in parallel.

The authors provide a comparison with COO in terms of performance and memory.

The memory-boundness is a major issue in the development of GPU-based parallel

sparse linear solvers. Many authors have proposed a number compression schemes for

compressing the sparse matrices but these schemes are not quite feasible due to the

serial nature of most of the compression and decompression algorithms. Hence Tang

et al. [125] propose a family of bit representation-optimized (BRO) sparse storage

scheme for sparse matrices representation on GPUs. The proposed formats are BRO-

CSR, BRO-ELL, and BRO-HYB. They improve the SPMV on GPUS by reducing the

memory traffic by compressing the index data. They further propose two other BRO

Hybrid scheme that has significant performance improvement. The authors use lossless

compression to reduce the amount of storage required by the matrices and hence reduce

the memory bandwidth. These proposed techniques have been tailored especially for

performance in GPUs. The main idea of this technique is to compress the indices. There
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is a hefty redundancy in the indices which is reduced by the authors by representing

the indices using just enough number of bits. One of the goals of the BRO scheme

is that the decompression on the GPU matches the Warp execution model in GPU.

Initially, the matrix rows are grouped together such that each group has a fixed number

of rows omega, which is set as same as the warp size of the GPU. For each warp block,

the authors apply delta encoding to column indices of each row. Delta encoding is

a compression scheme normally used for signal compression. Next we determine the

minimum number of bits required to represent each column that is encoded by delta

encoding and store in an array named “bitalloc”. The delta values of each warp block

are packed together using the bit allocation information. For any given warp block

the number of bits required to store the indices is the same. The compressed indices

for each row are then multiplexed with the symbol length. The symbol length is a

thread’s data access granularity during the decompression phase. This multiplexing

is to enable coalesced memory access. The compressed indices are then stored in an

array named compstr. In addition, to compstr and bitalloc we have three more vectors

namely val, cptr, and bptr to store the non-zero elements, to provide an index to

cptr and bptr respectively. The authors apply this scheme to existing sparse storage

techniques to derive the BRO version of each of these schemes. The authors test these

proposed schemes against conventional CSR, HYB, and ELLPACK using Matrix-vector

multiplication. Further they test the proposd storage with parallel Conjugate Gradient

solver. They achived a speedup of 1.4x to 2.2x using an Nvida Tesla K20.

Koza et al. [126] discusses some of the major sparse matrix structures and their

implementation in GPU, they discuss sparse structures such as COO, CRS, ELL, and

HYB.

Dziekonski et al. [127] propose a new sparse matrix storage called Sliced ELLR-

T. The storage scheme was designed specifically to solve complex-valued sparse linear

equations in computational electromagnetics. The proposed technique is based on Sliced

ELL and ELLR-T storage schemes. In this technique, the matrix A is divided into slices

with S row per slice as in ELL-R. Moreover, multiple numbers of threads (T= 1, 2, 4,

8, 16, 32) operate on a single row. This format provides higher performance due to

coalesced memory access, multiple threads per row and use of shared memory. This

technique uses less memory for storage since each slice in the matrix is stored in the
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ELLR-T format. The amount of space required by this scheme is less than ELL-R and

ELLR-T but more than CSR. The bigger the matrix the better the performance of the

system. The authors also try out the new concurrent feature of the Fermi GPUs which

produced higher performance.

Yan et al. [128] propose a new storage form based on the HYB format, to utilize the

higher bandwidth of the GPUs. For some matrices, the authors note that the number

of non-zeroes in the COO part of HYB is higher than that in the ELLPACK part of

the HYB. Hence, they propose a new storage scheme called HYB-R (HYB-recursive)

which recursively partitions the matrix into COO and ELLAPCK. This results in higher

number of non-zeroes in ELLPACK part of the HYB-R format than HYB format.

Initially, we create two parts as before, the COO part and the ELLPACK part. Then

non-zeroes are recursively added to the ELL part. Each new recursion is stored as a

new ELL part. Therefore, the ELL part consists of smaller ELL parts and the rest

will be stored in the COO part. The sparse matrix is sorted initially according to the

number of non-zeroes before the recursive addition to ELL part. Hence, the structure

of the data storage would look like

Each of this format is executed with different kernels. Since HYB format has a

good performance on the GPU increasing the nnz in the ELL part of HYB increases

the performance. The authors obtain a speedup of 10% on average. The biggest matrix

that uses had a size of one million.

Dang and Schmidt et al. [129] proposes a sliced COO algorithm that gives a higher

performance than the COO kernel for SPMV as in [67] and CUSP library. In this

technique, in addition to the three array containing the value, column indices and row

pointer we have an extra that contains pointers to the slices. Initially, the matrix is

sorted based on the row weights. The values are then stored in column major format

that ensures that the elements in the same columns are contagiously located. Storing

the columns indices in the increasing order increases the regular access to the input

vector that would increase the performance. But this results in an inability to use

parallel reduction as the rows are accessed randomly. Hence, the authors sort the local

non-zero elements inside each row and the slicing is done using consecutive rows. The

kernel designed by the authors for SPMV utilize one CUDA block for each slice. Thus,

the blockId is the same as the slice index. An atomic add operation is used to add the

48



results in shared memory. Atomicadd synchronizes the access if more than one thread

is accessing the shared memory in parallel. Reducing the size of slices results in two

elements having same row indices to be processed resulting in serialization. To avoid

this, multiple lanes are provided in the shared memory. The authors also propose a

faster heuristic based partitioning algorithm for the matrix A into SCOO format. For

most of the tests, HYB showed a good performance, for two of the test matrices the

performance of HYB was better than SCOO. The space occupied by SCOO is less than

HYB and COO but more than CSR.

Maggioni and Berger-Wolf [130] propose an architectural optimization based on a

heuristics, capable of reducing the cache memory access within a warp, to improve the

performance of SpMV kernels. They also propose am an improvement to sliced ELL,

based on warp granularity and reordering. The proposed technique aims to improve the

coalesced memory access and reduce the cache requests, by changing the order in which

the threads compute the non-zeroes in the array. The sliced ELL originally proposed

by Monakov et al. [119] assumes that each slice S, will be assigned to a CUDA block of

threads for execution. i.e., they do not make a distinction between the block-size and the

slice size. The slice size which is equal to the warp size produces the best performance.

In such cases, assigning a slice to a CUDA block results in one SM having 8 blocks with

each block having 32 (warp size) number of threads, a total of 256 threads. But an SM is

capable of executing 1536 threads in an SM. This a gross underutilization of resources.

To rectify this issue the block size and the warp size is decoupled from each other. The

block size is set to 256 and the slice size is set equal to warp size. This leads to storing

the warps offsets and the maximum row size of a slice in addition to the two arrays for

value and the columns as stored in ELL format. The warp offset is stored in an integer

array of size S, where S is the number of slices and the maximum row size of a slice

is also stored in an integer array of size S. This results achieving a better occupancy

and data-structure efficiency. The execution of a memory instruction (warp level) is

converted into an L1 cache line requests in order to satisfy the request of each thread

in a Fermi based architecture. The order of the non-zeroes in the ELL format affects

the amount of L1 cache transactions during SpMV. The cache transaction minimization

problem is the minimization of the function z(S) =
∑k−1

j=0 | ∩
w−1
i=0 Si.j |, where z(S) is the

sum of cache line intersections along the vertical direction in the scheduling table S.
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Using greedy approach the authors find an S that minimizes z(S). The time complexity

of the proposed heuristics is O(k2n).

Yin et al. [131] provides an optimization for CSR based storage format on GPUS.

The CSR scalar kernel provides poor performance due to non-coalesced memory access

and the CSR kernel doesn’t properly utilize the resources when the number of nnz per

row is less than 16 or is not a multiple of 16. In this technique, the sparse matrix

A is divided into fragments. Each of these fragments is a multiple of threads in the

thread block and are assigned to a single block for SpMV calculation. The partial sum

of each fragment is stored in shared memory and later through reduction is written

to the main memory. The authors add an extra int2 array named Bound of size S,

where S is the number of fragments of A (which is equal to number of thread blocks),

Bound[i] represents the block Id and Bound[i].x represents the row number of the first

element in the block and Bound[i].y represents the row number of the last element in

the fragment/block. Two kernels are used for SpMV calculations. The initial kernel

calculates the partial results and the second kernel writes the final result.

Bisection ELLPACK [132] can constructed from a sparse matrix A as follows:

1. Split the matrix into slices of size warp size (32 threads). If the total number of

rows in the matrix is not a multiple of 32, then zero padding is applied to ensure

it.

2. The rows inside each strip is sorted within the slices in descending order according

to the size of rows.

3. The nnz elements are shifted to the left as in JAD and ELL.

4. The columns inside the slices are divided into (log2 warpsize+1), i.e.,6 groups.

5. Each of these groups are stored in the ELL format.

Four arrays are used to represent a sparse matrix in BiELL format. A float array data

is used to store the data and an integer array indices is used to store the corresponding

columns of the array. Another integer array ia is used to store pointers to the index

of the first element of each group in each slice beginning in the data array. The array

ia has a length of bn/warpsizec ∗ (log2warpsize + 1) + 1. Moreover, an integer array

perm is used to store the row permutation index. The bisection of the slices into group
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improves the load-balancing and thus optimize the performance of SpMV. Similarly, the

authors propose the bisection of the JAD format. BiELL SpMV Kernel Implementation

is as follows: One warp is assigned to one slice of BiELL. Initially, each row of a group

will be assigned a thread from the warp. These threads iterate over the other groups in

the same slice in each iteration. Once it completes it is reassigned to the other slices.

Each thread computes the partial result and stores in the shared memory. The final

result is obtained with the help of reduction.

Xu et al. [114] propose a cache blocking method for optimizing sparse matrix-vector

multiplication on GPUs. Initially, the sparse matrix is partitioned into multiple sub-

blocks and each sub-block is stored in CSR format. This storage scheme uses four arrays

to store the sparse matrix. A float array, data, of size nnz, is used to store the non-zero

values, an integer array col, that stores the column index of the corresponding non-zero

values, an integer array, block_ptr, that points to the start of each block row, and an

integer array, row_ptr, that points to the start of each row in a sub-block. When the

column size of a sub-block is small then it can be reused in the GPU cache. One row of

blocks is considered as a CUDA block and threads are assigned per row in this row of

sub-matrix blocks. If the columns of the block are quite large then it cannot be wholly

cached and hence there is a degradation in the performance.

Zardoshti et al. [133] an auto-tuning framework for SpMV kernels on GPU which

selects the best possible matrix format for the input matrix keeping in mind the ar-

chitecture of GPUs. The selection of a fixed format for all matrices leads to inefficient

performance. They study the effects of various GPU parameters on the performance

of Sparse-vector multiplication. The studied parameters are the number of threads per

block, number of registers, and memory hierarchy configurations. These parameters are

analyzed for various input matrices to determine the best suitable format for that ma-

trix. The proposed framework is a run -time adaptive system that chooses the optimal

storage and SpMV kernel. During the initial training phase, an input matrix is divided

into five parts and ten percentage of each sub-part is stored using all possible input

storage format, and associated SpMV operation is performed. The one that provides

the best performance is selected to store the entire matrix. The authors experiment and

determine the best suitable matrix storage format for a number of well-known matrices.

Ashari et al. [111] discusses a new optimization of SpMV for the CSR storage tech-
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nique that reduces, both space and time overhead. This new technique is named as

Adaptive Compressed Sparse Row (ACSR). This technique takes into consideration,

issues such as thread divergence. It also reduces extra computations as compared to

ELLPACK and other storage formats that require padding. The synchronization over-

head imposed by reduction operations are also reduced as compared to COO. The rows

of the sparse matrix are moved into bins depending on the number of nonzeroes per

row. The rows with nearly equal nnz per row are binned together. For example, the

rows with one or two non-zeroes are stored in Bin-1, the rows with 3 or 4 nnzs are

stored in Bin-2, etc. Each Bin is assigned a specific kernel for their execution. Each

kernel will be configured to efficiently execute SpMV on those bins. For the bins that

contain large number rows with nnzs, a master kernel is invoked. The master kernel

doesn’t perform any computation but in a nested dynamic fashion, it invokes kernels

for each row in the bin. This dynamic kernel invocation is available in all Nvidia GPUs

with a compute capability higher than 3.5. The bins are used to configure the number

of threads per row in a kernel. A reduction operation is required to compile the partial

results calculated by different threads in a row for different kernels. But this is quite

fast as it is based on intra-warp and not inter-warp synchronization.

Koza et al. [134] propose a new sparse storage scheme called compressed multi-row

sparse format (CMRS). In this technique, the matrix is divided into multiple strips

with each strip containing a constant amount of rows. It consists of four arrays and an

integer parameter. A float array data is used to store the non-zero values, an integer

array index is used to store the column indices of the corresponding non-zero values

in data, an integer array strp_ptr that is similar to row_ptr in CSR but rather stores

the index of the starting element in each strip, and an integer array row_in_strip,

of size nnz, holds the row index of each non-zero element in data within each strip.

The parameter height indicates the number of rows in a strip. The conversion between

CSR and the proposed format is trivial. CSMR can be considered as an extension of

the CSR format. This format dynamically assigns thread per row and each strip is

executed by an SIMD unit. They also implement a number of optimizations such as use

of texture memory for input matrix, enlarging the shared memory by sacrificing the L1

cache, reordering the CMRS array by sorting indices array by strip indices and then by

column indices within the same strip, and accessing the non-aligned portion of the and
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later the aligned portion.

Feng et al. [135] propose a new storage format called Segmented Interleave combi-

nation (SIC) which is based on CSR storage format. Similar to CSR the SIC format

also has the same three arrays for storing the sparse matrices, namely data, indices and

row_ptr to store the non-zero value, column index nd row pointers respectively. The

major idea in this storage format is to combine certain CSR rows to achieve the new

SIC row. For a sparse matrix of size N, c contiguous rows are selected to be combined

to form the new SIC row. This will largely reduce the uncoalesced global memory ac-

cess. Unlike CSR, only one warp and one global memory access are required to perform

on multiplication and addition. Moreover, it is highly suitable for parallel reduction

operation. The SIC matrix is sorted according to the row length and converted into

segments and each segments can also be stored as SIC and different GPU kernel can be

launched for each segment. Each warp will be processing c rows. This technique hence

reduces the thread divergence. The number of rows executed by a warp is fixed in this

format unlike [134] which dynamically decides the rows.

Guo and Wand [136]propose an auto-tuning framework that can analyze an input

matrix and automatically select parameters for CUDA kernel for SpMV to optimize

the performance on specific GPUs. The authors investigate the effect of a number of

threads, block size and warp size on the performance of SpMV kernel. The best thread

size as been deduced between [Max threads/2, Max threads], where Max threads are the

total number of maximum threads supported by the GPU. The block size selection is

made depending upon the model of GPU and the warp size is selected as 16 threads per

warp. The matrix is read in and converted to CSR format and the framework analyzes

and deduces the best possible parameters and execute the kernel with these parameters.

Yan et al. [137] introduces block COO algorithms named Blocked compressed COO

(BCCOO) and Block compressed COO plus (BCCOO+). BCCOO format is an exten-

sion of BCOO format. In BCOO format, the matrix is divided into blocks and each

non-zero block is stored consecutively. This results in a block having the same row and

column index. This reduces the amount of space required to store the column and row

indices. Similar to COO format, it stores the non-zero value, the column index and

the row index in three arrays respectively. The BCCOO format introduces a new array

called Bit_flag which is used to compress the row indices. The Bit_flag array is created
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by performing a difference operation on the row index array. A bit value of 1 indicates

that it is the last element in the array whereas a bit value of 0 indicates that there are

more elements in the row. This eliminates the requirement of condition check during the

reduction when the partial sums of dot products are gathered. In BCCOO+ format, the

sparse matrix is initially sliced vertically and the slices are aligned in top-down order.

BCCOO is then applied on this newly obtained sliced matrix excluding the column in-

dex array. The column index array is generated based on the original unmodified array.

The segmented scan is used by the SpMV kernel developed by the authors to get the

partial results. The partial results are then added in the global memory.

Monakov and Avetisyan [138] study blocked storage of sparse matrices for sparse

matrix-vector multiplication. The first technique is a combination of BCSR (Block

CSR) and BCOO (Block COO) and the second technique is a combination of the initially

proposed Block format and ELL scheme. In the initial block based format, the sparse

matrix is divided into strips with each strip containing S number of consecutive rows.

Within each slice (strip) the blocks are formed and are stored in BCOO format. The

authors store the block column index and offset from top row strip in one word. For

each strip, the index of the first block in the strip is stored. Each of this strip is assigned

a thread block. The threads in a CUDA block is logically sub dived among the blocks

in each strip and each thread execute. After the execution of all the blocks, the threads

synchronize to calculate the final result. Since the blocked format requires storing zero

elements, which results in degradation of performance. In order to diminish this, they

propose the use of Block technique along with the ELL format. To reduce the overhead

in ELL caused by extra zeroes the authors use a simple matrix reordering scheme to

reorder rows with similar nnz into a single strip and they allow the number of nnz

elements per row to vary between strips.

Greathouse and Daga [139] proposes a new CSR based storage format performing

SpMV on AMD based processors. The proposed algorithm is named as CSR-Stream.

Since the majority of the storage format use CSR format, they develop a storage format

with low transformation overhead and no extra storage. The number of non-zero values

that will be processed by the wavefronts (warps) is fixed and the values are streamed

into local scratchpad memory. The efficiency of this technique reduces when the number

of non-zeroes per row increases. Moreover, it becomes ineffective if the size of non-zero
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per row is more than the scratchpad memory size. To overcome this they dynamically

determine whether a set of rows will be executed BY SCSR or traditional CSR. A

combination of these techniques is named CSR-Adaptive.

Wieczorek et al. [140] propose a compact storage scheme for transitional matrices

of Markov models. Due to the presence of high redundancy in the transition matrices,

the authors propose a compression scheme to store the matrices. When the column

indices are encoded differentially with respect to the row index it can be observed that

many of the rows are same which leads to storing the rows in a dictionary of unique

differentially encoded rows. Moreover, it was observed that the index sequence has

fractal-like similarities. The authors propose a Meta run length encoding algorithm to

store these sequences. Decompression is performed symbol by symbol depending upon

the required values for operation. They solve for the transient state vectors of Markov

chains using Uniformization algorithm on GPU.

Feng et al. [141] propose a new storage format called the Segmented Hybrid ELL +

Compressed Sparse Row (SHEC) to improve the throughput and memory footprint on

Nvidia GPUs. The proposed storage format provides coalesced memory access, manages

the overhead for each element in the matrix and balances the load among the threads.

Interleaved combination is used by the authors to provide coalesced memory access

reduce the load overhead. Initially, all the nnz values are removed from the sparse

matrix and are shifted to the left resembling the ELL format. Next, c number of rows

are selected and combined by interleaved combination to form a new SHEC row. Each

of these original c rows can be considered as to be stored in ELL format with values and

column indices arrays. When these c original rows are combined together to form the

SHEC row, an extra row pointer is required to point to the first non-zero in each new

row. So it is identical to the CSR technique with a value, indices and a row_pointer

array. If the matrix size is not divisible by c then the matrix is zero-padded to achieve

this. The value of c will be a power of 2 but will not exceed 32. c cannot be more than

32 since a warp cannot handle more than 32 threads. If c is 1 then it becomes the CSR

format and if c is 32 it becomes ELL format. The authors reorder and segment the

matrix to reduce the overhead and to balance the load on the threads. An interleaved

combination of variable nnz per row results in wastage of storage space and can create

load imbalance. Hence to avoid this the row11s are sorted using the quick sort algorithm
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but this introduces but this might still result in load imbalance. To avoid this the sorted

rows are segmented into a maximum of 6 segments. The first segment contains rows

with size not less than 32, the next segment with nnz per row between 32 and 16, the

next between 16 and 8 and the last segment contains nnz per row less than zero. The

GPU kernel for the SpMV operation using this kernel is similar to the CSR format.

One warp is assigned to the c rows or one SHEC row. A parallel reduction is required

to write the result from the shared memory to the global memory.

New sparse matrix storage formats introduce the problem of converting the matrix

from existing format to the new proposed format and generally this results in an over-

head and in several cases it undermines the reported performance. Since a large number

of the matrices are stored in CSR format Liu and Vinter [142] propose a new SpMV

algorithm based on the CSR storage format using speculative segmented sums. In this

technique the authors, initially, perform a segmented sum operation on the GPU to

generate possibly correct results and later the partial sums are rearranged on the CPU

to obtain the correct result vector. The authors consider three parameters to improve

the performance of segmented sum: reduction of the overhead due to the global memory

access by generating the segment descriptor during run-time, Processing of empty rows

without any pre or post processing, and using heterogeneous processors (CPU+GPU)

for the processing. The proposed algorithm mainly consists of two steps: the specu-

lative segment execution stage on the GPU and the prediction checking stage on the

CPU. In the first stage, the algorithm runs on GPU and performs speculative SpMV

to produce conceivably incorrect results of the vector y. Incorrectness does not denote

numerical incorrectness rather it signifies the error in the layout of elements in the result

vector y. Row pointer, tile offset, and the boundary of the tiles are stored in separate

arrays. An array named segment_descriptor is used to indicate whether the rows are

completely empty or not, a synchronizer array is used to synchronize the elements, and

a dirty counter array is used to signify the correctness of the generated results in the

first phase. In the second phase, the prediction check phase, the dirty bit is verified. If

the value is one then the results from the initial phase are assumed to be true else the

position of the tiles are corrected in the result vector. Segmented sum techniques on

GPUs have been also covered in [143, 112, 144].

A blocked row-column (BRC) storage format that utilizes two dimensional blocking
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for the storage of sparse matrices [145]. This technique reduces thread divergence and

improves load balancing. Thread divergence is achieved by sorting and reordering the

rows and combining them into various groups. Load balancing is accomplished by

partitioning the rows into a number of blocks with each block containing a constant

number of nnz’s. The row sparse matrices are permutated like JDS and is combined

with the ELL storage mechanism. All the rows are not padded as in the ELL format.

Instead, the rows are grouped into blocks and then for each block we pad the rows. This

reduces the amount of padding required. Moreover, the sparse matrix is again blocked

along the column dimension. Therefore, the matrix is initially scanned row-wise and

then column-wise to create blocks. This results in the scheme being adaptive to the

structural characteristics of the matrix. CUDA implementation of BRC uses multiple

threads per row and an atomicAdd() operation to sum the results.

Maggioni and Berger-Wolf [146] propose a storage scheme based on ELL called

Adaptive ELL that distributes variable threads to the rows depending upon the com-

putational load which results in balanced warps for SpMV in GPUs. They propose a

novel heuristic for assigning workload to threads. Adaptive ELL adapts itself to the

structure of the input matrix and is based on the ELL format. It is based on adaptive

warp balancing that balances the warps. The proposed data structure is similar to the

sliced-ELL. This scheme like Sliced ELL consists of slices that are stored in the ELL

format. Therefore, it will have an array for storing value and a second array to store

the column indices. In addition to that, it requires an offset array of size equal to

the number of working warps, to store the starting location of each ELL substructure.

Moreover, another array of the same size is required to store the keep track of each

local workload. Another array of the same size is required to store the reduction map

that will decide the threads that write to the result vector, which would result in coa-

lesced memory access. Finally to keep track of the row offset we require another array

of the same size. An atomic operation is performed to sum up the final result. The

authors also discuss a heuristic for proper load assignment to the warps along with a

loop unrolling heuristics.

Maggioni and Berger-Wolf [147] extend their work, Adaptive ELL, by adding com-

pression of indices using delta encoding and warp granularity to increase the perfor-

mance SpMV on GPUs. This modified scheme is named as Compressed Adaptive ELL
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(CoAdELL). Differential encoding is used between contagious nzz values so that the col-

umn width can be represented with less number of bits. The major difference between

AdEll and CoAdell is the compression of column indices. Instead of directly storing the

column indices, delta indices are stored after differential encoding.

Choi et al. [148] implements the blocked version of CSR algorithm (BCSR) on

GPU. Furthermore, they also propose a second sparse storage structure, which is the

blocked version of ELL called the blocked ELLPACK (BELLPACK). A matrix of size

m×n in CSR is converted into BCSR by partitioning the matrix into sub-blocks of size

(m/r)×(n/c) sub-blocks of size r×c. The nnz values are stored block wise contiguously

in a float data array. The block column are stored in an integer index array and the

starting index to each block is stored in the bptr array. For creating the BELLPACK

format initially the matrix is converted into sub-blocks similar to the BCSR. Then

the block rows are sorted depending upon the number of blocks per row. After which

the matrix is subdivided into matrices and each of these matrices are stored in the

ELLPACK format.

Ekambaram and Montagne [149] proposes a new sparse storage scheme inspired by

JDS (JAD) format called Transposed Jagged Diagonal. A major advantage of this

format is that the permutation array in JAD is not required. In this format, the initial

sparse matrix is shifted up instead up of shifting left by removing the nnz’s. Then

each row elements are sorted internally inside the row in the descending order and it

is shifted left. The nnzs in the resulting array is stored in a float array , data, row by

row. Each of these rows is called the transposed jagged diagonal. Another integer array

called row_ptr stores the indices to the start of each nnz row in the original matrix.

The pointers to the starting of each transposed jagged diagonal are stored in an integer

array called start_pos. Each transposed jagged diagonal is separated with the help of

a semi-colon in the data array. There are four load operation and one write operation

which is similiar to that of the JAD format. The amount of storage taken by TJAD

format is given by (Nnnz ∗ 1) ∗ 8 +Ntjd ∗ 4 bytes. Where, Nnnz gives the total number

non-zeroes in the matrix and Ntjd is the number of transposed jagged diagonals.

Kreutzer [113] proposes a unified sparse matrix storage for all modern processors

with wide SIMD units. They propose a storage format that would provide efficient

performance in all processors such as Intel multicore processors, Intel MICs, and CUDA
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architectures. The proposed format is based on the sliced ELL combined with SIMD

vectorization and is called the SELL-C-σ. The C (chunk) indicates the width of the

SIMD registers in the x86 architectures and on CUDA architecture it is the number of

threads per warp. σ is called the sorting scope that is the number of rows that will

be sorted to reduce the overhead and increase the performance. The rows within a

chunk are stored column wise and the chunks are stored one after another. The rows in

chunks are padded to that of the largest row similar to Sliced ELL. To avoid this head

selective sorting is applied using σ parameter. But this does affect the performance

of the iterative solvers. The CUDA based implementation has not been discussed in

detail. Only the results are shown. Whereas, the parallel implementation discussed is

mainly that of OpenMP.

Oberhuber et al. [150] propose a new storage format based on CSR and Sliced

ELLPACK called the Row grouped CSR (RgCSR). This method has been proposed to

rectify the un-coalesced memory access in GPU’s. The proposed technique stores the

elements in each row in a coalesced manner. Initially, the matrix is divided into groups

of a certain number of rows. For each group the nnz values are stored as follows:

1. First, the first element from the first row is stored followed by the first element

in the second row and so on until the first element in the nth row. Here n is the

number of rows in a group.

2. Then the second element of the first row is stored followed by the second element

of the second row and so on until the second element of the nth row

3. The above process continues until we store the nth element in the nth group

If the number of elements in the rows of a group is not equal, they are padded with

zeroes. Therefore, the data array that stores the nnzs will contain extra padded zeroes.

Similarly, the index array that stores the column indices of the nnzs will also have

extra zeroes corresponding to the padded zeroes. The other major differences from the

CSR is the storage of the length of each row in a new integer array, rowLength and a

groupPointer array that points to the first indices of the group instead of the row_ptr

in the CSR format. This technique reduces the thread divergence inside a CUDA kernel

due to the use of row length array. Each of the group is assigned to a CUDA block and
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each row is accessed by a thread. It doesn’t perform well for all matrices due to the

complicated structure of the nnzs in the sparse matrices.

Yang et al. [151] propose an improvement to the CSR format called Improved CSR

aimed at SpMV on CUDA-based GPUs. The authors solve the issue of serialization,

in the CSR storage, caused by uneven nnz elements in a row by padding the rows with

zeroes which result in aligned access to the global memory. However, the discussed

technique increases the space complexity and the cause the threads iterate over extra

elements that degrade the performance.

As seen before one of the major issues with the ELLPACK-R format is the pres-

ence of non-variable nnzs in a row which reduces the performance of SpMV on CUDA

based GPUs. Whereas, in the JAD format, the disadvantage is the non-coalesced mem-

ory access. Cao et al. [152] proposes a new hybrid model which is a combination of

ELLPACK-R and JAD named ELLPACK-RP. The storage format can be constructed

from ELLPACK-R format by permuting the rows in descending order. A permutation

of the row length array of ELLPACK-R is also required. A separate array is used for

the storage of the permutations. The implementation of the authors uses a thread per

two rows.

Heller and Oberhuber [153] extend the work on RgCSR [150] to develop a new sparse

storage format called the Adaptive RgCSR. The main disadvantage of the RgCSR was

that the threads per row were fixed (It was using a single thread per row) which resulted

in the serialization of the computation due to variable elements in rows. Like the

RgCSR, the rows are divided into groups and each group has the following information

associated with it: the first row of the segment, the total number of rows, the first

element in the group and the size of the group, which indicates the number of elements

in the group. In this technique, each group is assigned a CUDA block and four threads

(Multiple threads) are assigned to each row. The partial sum is calculated and the final

sum is obtained with the help of reduction.

Abu-Sufah and Abdel Karim [154] introduce an improvement to the Transpose

Jagged Diagonal Storage (TJDS) by the usage of blocking technique, which is called

Blocked Transpose Jagged Diagonal Storage (BTJDS). This storage scheme is very sim-

ilar to the TJDS except that the matrix is divided into blocks, and each block is stored

in the TJDS format. The arrays required for the storage of this scheme similar to that of
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TJDS except an integer array that stores the starting index to each block. The authors

assign a fixed number of warps to a single block. Each column in a matrix is assigned a

thread, and they iterate until all columns are traversed. Therefore, one thread computes

the partial sum of a row from the actual matrix. These partial sums are combined in

the global memory. The variable number of nnzs affect the performance of this storage

format in SpMV because it causes a load imbalance among the warps. This technique

does not achieve a good memory bandwidth utilization as compared to that of other

techniques such as HYB and ELL.

Kreutzer et al. [155] propose a sparse matrix storage scheme to reduce the space

overhead of extra padded zeroes in the ELL format and improve the performance of

SpMV on GPUs. The suggested format is similar to ELLPACK and JDS. This format

is quite similar to the already proposed sliced ELLAPACK. In this format, the sparse

matrix is shift left after removing the nnzs as in ELL format. Moreover, then the rows

are sorted based on the descending order of nnzs per row. The sorted rows are then

sorted into blocks, and each of these blocks is assigned a CUDA block so that the

load is balanced among the warps. The major disadvantage of this technique is that

the multiplication is performed by permutation, which destroys the dense blocks and

diagonal elements. Therefore, cache reuse is prevented which degrades the performance.

The authors also test this format by performing SpMV on a cluster of GPUs using

Asynchronous communication.

3.5 Iterative Solvers on GPUs

An image reconstruction process can be reduced into a set of sparse linear equations.

Florian and Koch [156] has solved equations thus generated using Krylov based Conju-

gate gradient (CG) algorithm on a CUDA based GPU. By default, they use the CSR

storage format to store the sparse matrices. They form a many experiments by varying

the storage structure of sparse matrix A to other existing formats such as HYB and

ELL. Moreover, they use the shared memory of the GPU to have a coalesced access

to the memory. They also try a variation of the algorithm that uses back projection

but reached a conclusion that it is hard to implement on the current GPU architecture.

They find that a configuration that consists of a good sparse structure in addition to
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the use of the shared local memory of the GPU produces the best result. They also try

to run them on FPGAs and Cell broadband engines but reject them due to unpromising

results.

Khodja et al. [157] implement the generalized minimal residual iterative method

(GMRES) on a cluster of GPUs utilizing communication reduction techniques for solv-

ing large-scale sparse linear systems and compare it to a corresponding CPU- cluster

implementation. One of the major issue with implementations on GPU clusters is the

data communication between the GPUs. It would consist of transferring information

from one GPU to the CPU, sending of MPI communication between the CPU and the

GPUs, and transferring the data to the second GPU. To reduce this communication

issue, the authors propose a new compressed format for sparse vectors. The authors

note that there is no need to transmit the whole vector x to all nodes, and only the

required parts of the vector are needed to be passed, and they propose the compressing

technique based on this objective. The authors use the hypergraph partitioning on the

sparse matrix to partition the matrix to run on the various GPU nodes. Hypergraph

partitioning is an NP-complete problem, but various heuristic techniques exist such as

Zoltan. The authors conclude that the performance on the GPU cluster is much better

than the GPU cluster.

Chou and Liao [158] proposes a new hybrid algorithm to solve Markov chains, and

the proposed algorithm is a combination of Jacobi and Gauss-Seidel iterative methods.

The authors use CUDA and MPI to implement it on a GPU cluster and a CPU cluster.

They solve for a Markov chain with 1000 states. The proposed algorithm is discussed

below:

The vector x can be portioned into subsets that are meaningful. Correspondingly,

we can partition the matrix QT and we can solve the equations using these partitions.

We can divide e the matrix QT into partitions of size K2 where each partition has the

size (n/k)∗(n/k) and the vector x can be subdivided into k sub-vectors each of sizen/k.

We know that the Jacobi can be represented by the equation as given in

x
(k+1)
i = Hi × x(k)i (3.3)
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where H = D−1(L + U) as discussed before in previous sections. Equation 3.5 is

inherently parallel and be solved by a processor or a GPU block.

Moreover, each GPU block or a processor can solve then/k elements of x(k+1)
i using

gauss seidel as follows:

x
(k+1)
i,j = Hi,1×x(k+1)

i,1 + ...+Hi,j−1×x(k+1)
i,j−1 +Hi,j+1×x(k)i,j−1+ ....+Hi,n/k×x

(k)
i,n/k (3.4)

X
(n+1)
i,j represents the j-th element of i-th solution vector that is obtained at the

(k+1)-th iteration by the i-th processor or GPU block. The authors does not do any

analysis on the speed of the convergence.

High accuracy surface modeling (HASM) has been developed to assess the anthropic

impact on the environment and for catchment hydrologic modeling. HASM consists of

a large number of sparse linear equation systems that needs to be solved. Yan et al.

[159] propose the parallelization of the preconditioned conjugate gradient based on the

Krylov subspace for solving linear equations related to HASM on GPU based on CUDA.

More techniques based on GPU based conjugate gradient (CG) and Bi-conjugate

algorithm can be found in [160, 161, 162, 163]. Solution of GMRES can be found in

[164, 165, 157, 166, 116, 167]. A GPU solution of Jacobi and Gauss-Seidel can be found

at [168]. Iterative methods that use GPU clusters can be found in [157, 169, 170].

Bosnacki et al. [171] propose a modification of the Jacobi algorithm for calculat-

ing the steady state probability vector for Markov chains using backward segmented

scan. Backward segmented scan computes the sum of all the indicated elements in the

array in parallel. Once the products of the matrices are calculated the row sums are

computed, using backward segmented scan in which all the elements in a segment are

added, and later written to the start of each segment. The segmented scan algorithm is

provided in the CUDA Data Parallel Primitives Library (CUDPP) [172]. The technical

implementation details of the segmented scan on GPUs can be found further in [143].

Ahamed and Magoules [173] conducts analysis on the performance of various it-

erative methods, mainly the Krylov methods, using various well-known data formats

and data structures for sparse matrices on GPUs. They develop a library that pro-

vides Krylov iterative solutions, named Alinea which would be an enhancement on
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existing libraries such as Cusp [64] and cuSPARE [174]. The tested Krylov methods

are Stabilized BiConjugate Gradient (BiCGStab), Stabilized BiConjugate Gradient L

(BiCGStabl), Generalized Conjugate Residual (P-GCR), BiConjugate Gradient Con-

jugate Residual (P-BiCGCR), and Transpose-free Quasi-Minimal Residual (P-tfQMR)

for the unstructured matrices. Conjugate Gradient (CG) is used to find solutions for

equations with symmetric matrices. CSR, COO, ELL, and HYB are the storage matri-

ces that are utilized by the authors to test these iterative solutions and compare with

the implementations in both the Cusp and CUSPARSE library.

Cormie-Bowins [175] implements a parallel version of both Jacobi iterative method

and biconjugate gradient stabilized (BiCGStab) [176] using Nvidia GPUs for computing

the reachability probability in Markov chains. The parallel implementation of Jacobi

is quite straight forward with a single GPU kernel for an iteration, but the BiCGStab

implementation consists seven different kernels as there are multiple matrix-vector mul-

tiplications. Implemented techniques are used in solving probability matrices randomly

as well as generated with a probabilistic model generator. The general conclusion is

that for sparse matrices, the higher the sparsity, the better the performance of Jacobi

method. For, small sparse matrices, the serial BiCGStab produced a better performance

than parallel implementation.

Wang et al. [167] solve a system of linear equations using Parallelized GMRES

on a Tesla GPU. The major contribution of Wang et al. is the parallelization of the

ILU (Incomplete LU) preconditioner. They parallelize a block version of ILU called as

block-ILU [44]. The matrix A is subdivided into blocks, and ILU is applied to each block

separately. The rest of the GMRES is parallelized and run on GPU. Implementation

details about parallel GMRES are by parallelization of matrix-vector multiplication as

discussed by Garland in [177]. Block-ILU increases the time for convergence as compared

to normal ILU. The above technique was tested on a Tesla T10P GPU using oil field

data provided by ConcoPhilips. The largest sample to be run was of size 1,122,000 and

took 22 seconds to run it as compared to the serial version that took 436 seconds which

implies a speedup of approximately 20x.

64



3.6 Challenges in GPU Implementation of Sparse Solvers

Iterative solvers mainly consist of multiple numbers of sparse matrix-vector computa-

tions. Implementation of SpMV on GPU has many issues, which are discussed in this

section. Specialized storage structures are used to improve the performance of sparse

SpMV. These structures have design issues for translating it to GPUs. In this section,

we shall see the problems faced in implementing parallel sparse iterative solvers and

translating sparse structures to GPU.

1. Coalesced Memory Access to both the sparse matrix A and the vector y. Con-

secutive threads should access the consecutive memory location. The access to

scattered locations results in memory divergence, which results in a single memory

access per thread. The global memory consists of sequences of 128-byte segments.

At a time, 16 threads (half -warp) access the memory. The number of mem-

ory transaction for a half-warp depends upon the number of memory segments

touched by the address of the half-warp [67]. If the half-warp touches a single

128-byte segment, we call the memory access coalesced. Therefore, the threads

with adjacent indices should access contiguous memory words. Non-contiguous

access increases the memory transaction, therefore reducing the bandwidth and

hence the performance.

2. Load balance among array threads and warps. The threads and warps should

have the same load. In instances where a single thread is used for calculating the

product of a row with variable nnzs, this results in the warp having threads that

would finish executing at different instances of time. Hence, all the threads in the

warp will take time equal to the longest row. Hence, load balancing among the

threads and warps are necessary to increase the performance of SpMV.

3. Avoiding thread divergence. Even though each thread in a warp is allowed to have

its execution path, this reduces the performance of SpMV. The threads of a warp

should follow the same execution path for a majority of computation.

4. The Performance of SpMV and storage schemes for sparse matrices based on

the number of nnzs per row. There is a variation of nnzs per row among the

sparse matrices. It is observed from the literature that the most of the scheme
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do not cater to both these natures of matrices. Some matrix storage format and

associated SpMV produces an excellent performance for structured matrices while

the others produce the same for unstructured matrices. The variation of sparsity

in the matrices determines the suitability of sparse storages and SpMV schemes.

5. Pre-processing Involved to store a sparse matrix in a specific scheme and Con-

version cost: A large number of sparse storage formats involve pre-processing.

Care should be taken that this pre-processing should not be expensive. Expen-

sive pre-processing negates the speedup achieved during the SpMV operations. In

some scenarios, the preprocessing takes a larger amount of time than SpMV. Such

pre-processing has to be avoided. The cost of converting from a standard sparse

storage to the new sparse should also not be expensive.

6. Byte/ float ratio: The GPU based sparse iterative solutions are memory bound

than computationally bound. Some bytes that not to be fetched for a single

floating point operation are higher and is represented by Byte/float ratio. There

are two ways to increase the performance of the sparse SpMV. The first is to

reduce the computations or time for computations. The second technique is to

reduce the memory bandwidth which would mean to lessen the amount of bytes

required or should be transferred to perform sparse SpMV.

7. Irregular Algorithms or algorithms that use structures such as lists, trees, linked

lists does not have a good SpMV that has high throughput and less memory

bandwidth.

Additional complications arise because the sparsity pattern of the matrix, i.e., the po-

sition of the non-zero entries, can have considerable impact on spMVM performance

due to indirect access to the right hand side (RHS) vector; this makes it difficult to

understand or even predict performance via simplistic bandwidth-based modeling. And

finally, the sparse matrix storage format has a considerable performance impact and the

optimal choice is known to be very sensitive to the underlying hardware.

The threads in a warp need to access contiguous locations of the global memory

to avoid memory divergence. The access to non-contiguous memory locations by the

threads in a warp requires on memory access per thread, whereas if the memory lo-

cations accessed by the threads are sufficiently close enough, the memory access can
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be coalesced to improve the efficiency of the memory access. Theoretically, the global

memory consists of segments of 128 bytes sequentially arranged [67]. A half-warp (16

threads) is allowed to access the main memory at a time. The number of memory seg-

ments touched by the addresses used by the threads provides the number of memory

transactions for the half-warp. If the half-warp touches exactly one segment, then the

memory is said to coalesce fully, and if any of the threads touch other segments then

we call it uncoalesced access. Uncoalesced memory access decreases the bandwidth

efficiency and is reduces the performance of memory-bound kernels [67].

3.7 Gaps in Literature.

TJDS is only suitable for matrices that have power law characteristics. The technique

requires column-based ordering. The pre-processing phase involved would be expensive.

The technique does not always guarantee the blocks to have the same nnzs per block, this

would result in improper load balancing. Moreover, this storage scheme and associated

SpMV is not a suitable general technique.

ESB (ELLPACK Sparse Block) performs a lot of redundant computations. The

technique has overheads in the form of sorting within each column partition, memory

overhead and a load of permuting the row over column partition.

Block ELLPACK and BCSR techniques are not suitable for matrices that follow

power-law due to higher memory overhead. It gives a good performance for matrices

that has a dense block substructure. However, the auto-tuned BELLPACK and BCSR

performs poorly for unstructured matrices. BCRS and Bellpack consist of additional

padded zeroes per sub-block that do not contain adequate nnzs. The pre-processing

involved in creating the proposed storage schemes are complex. BCSR requires more

access to the global memory that decreases the performance.

ICRS has poor load balancing among the threads and the warps as the rows are

treated non-preferentially for matrices with variable nnzs. The performance of this

scheme for matrices with variable row distribution is poor. The performance of the

scheme is reduced as compared to CSR-vector for variable rows. Moreover, the execution

unit is underutilized. HYB-R Moving larger amount of data into the ELLPACK kernels

results in the technique to have the same deficiencies as that of ELLPACK technique.
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The only advantage is that the overhead caused by the COO part is reduced. Another

major disadvantage is the usage of multiple kernels that would result in higher overhead.

The scheme does not reduce redundant data transfers and extra padded zeroes. The

technique also requires costly pre-processing. Moreover, the conversion from standard

formats to the proposed technique is expensive.

The BRO-formats reduces the memory bandwidth by lossless compression. Reduces

the bytes that are transferred for the access of the matrices. Higher compressible matri-

ces produce better performance. For a good performance the matrices should be highly

compressible, large coverage factor, and a large number of rows in the matrix. Higher

variance in the row distribution results in a poor performance by the scheme. The

technique focuses on improving the performance by reducing the memory bandwidth.

Hence it does not provide warp granularity or coalesced memory access.

Sliced COO contains pre-sorting which would increase the overhead. Assigning one

thread block per slice results in thread divergence. For larger matrices the technique

uses up more memory. The technique does not guarantee a coalesced memory access.

BiELL and BiJAD are designed for sparse matrices with no specific structure. Good

load balancing among the warps and the threads. BiJAD reduces the padded zeroes as

compared to BiELL but the memory access pattern in BiJAD does not coalesce. Both

the scheme produces a good performance for matrices with a large number of nnzs and

when the standard deviation is high. However, the generator matrices of Markov chains

have a small number of nnzs with a large number of rows. The performance of the

technique deteriorates when the standard deviation decreases. Moreover, the technique

requires higher pre-processing. BiJAD also performs poorly for SpMV with structured

matrices.

Sliced Ellapck doesn’t have good load balancing. Requires extra padding. Will

result in thread divergence.

BRC reduces the thread divergence by reordering and grouping the rows of the input

matrices with the almost same amount of nnzs to the same warp. A warp will then

execute an nnz with the same nnzs per row. BRC lacks generality and performs well for

certain matrices with specific characteristics. The technique provides poor performance

for matrices that are highly sparse (average nnz=4), where most rows have nnz=2 and

nnz=3. Some of the matrices that show poor performance are EPI, ECO, CIR, and
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Web. BRC can be used as a substitute for COO but not fro ELL. If the original matrix

doesn’t have a block sub-structure it is a time-consuming process to convert to the new

format.

ACSR is suitable for graph mining applications. Does not contain high pre-processing

since preprocessing is not suitable for graph mining applications. Not much suited for

general matrices. The technique is slower than HYB when using matrices such as Wik

and EUZ. The ACSR storage format is slower when the average nnz per row and the

standard deviation is lower. All the matrices do not use the dynamic parallelism which

results in poor performance. Irregular matrices with a small number of long rows also

show bad performance.

BCCOO and BCCOO+ techniques are only good for matrices that show dense sub-

block structure. The overhead in generating the format from the standard format is

higher. The above technique with the associated SpMV only works on the Nvidia GPUs

using CUDA. It doesn’t work on AMD GPUs because the non-portable communication

causes a deadlock in AMD GPUs. All the block based sparse storage format such as

BCOOCO, BCOOCOO+, BRC, and CSB relies on the sparsity structure. Therefore,

they are highly application dependent.

CMSR is dependent upon the hardware for the performance. Due to the limited

amount of shared memory per multiprocessor, it is not feasible for all the matrices. For

better performance, the matrix has to be large enough. This technique provides poor

performance when the matrices have empty rows.

SIC technique requires the reordering of rows and segmentation to reduce the imbal-

ance among the warps. The technique does not perform well when the interleaved rows

are greater than eight which is due to insufficient parallelism as the rows of the SIC for-

mat only occupies 125 warps. The matrix webbase does not work well this format due

to an uncoalesced memory access to the vector x and due to less locality in reference

to the vector which results in higher level of the cache miss. Speculative segmented

sum All the matrices yet still do not perform well. In some cases, HYB has a better

performance than the speculative segmented sum.

This technique is used to store Markov chain generator matrices. However, the

technique is inefficient due to non-coalesced memory access and the time is taken to

decompress the different rows take different time which results in serialization. The
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number of idle threads due to this is high. Hence, the technique does not provide a

good load balancing nor a solution for thread divergence.

SHEC has a pre-processing that takes time, and the high amount of padding is

required. There is a reduction in performance due to cache miss to vector y that

reduces the performance. Moreover, the access to the vector y is non-coalesced.

When the total number of iterations are less (When the rows are few) the CSR-5

does not provide a good performance as compared to techniques based on CSR.
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Chapter 4

Proposed Technique

Memory bound algorithms such as Sparse Iterative Solvers exhibit superior performance

on GPUs due to the high bandwidth memory hierarchy in cache based GPUs [35,36].

PageRank algorithm, HITS, and Random walk with a restart on GPUs have reported

a performance improvement of 18 to 32 times. [42] show that the GPU-accelerated

LOBPCG based on SpMM kernel is 3 to 5 times faster than multicore CPUs with the

same power draw, which further indicates that the energy efficiency of executing the

SpMV kernel on GPU is more than that of CPU [42, 43].

The sparsity structure of the sparse matrices varies from matrix to matrix, and

application domain to domain. Figure. 4.1(b), (c), (d), (e) shows the structure of four

sparse matrices from the University of Florida Sparse Matrix collection. Figure. 4.1(a)

illustrates the performance of SpMV kernel under five different sparse storage formats,

i.e. COO, CSR,ELL.HYB, DIA, for these four matrices. Figure. 4.1 indicates that

the performance of the SpMV kernel is dependent upon the sparsity structure of the

matrices. We can deduce that none of the sparse representation schemes are perpetually

superior rather the SpMV performance depends upon the sparse representation and the

choice of sparse representation is based on the sparsity structure. The GPU architecture

used for SpMV computations and the thread-block-warp configuration of the SpMV

kernel are two other factors that affect the performance of SpMV kernel on GPUs.

Hence we propose an Adaptive Deep Learning model based iterative solver that gives

the best performance by adapting the best storage scheme possibble for a given sparse

matrix. Deep Networks are much more attractive when the problem has non-linear

nature as compared to shallow networks. A shallow network should have more number
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of connections to get the same level of performance as Deep networks . More number

of connections imply higher number of floating point computations that increases the

cost of operations as compared to similar Deep Networks. The functions that can be

compactly represented by an architecture of depth k requires an exponential number of

computational elements to be represented by a depth k − 1 architecture.

Practically Kernel methods are expensive as the number of support vectors grow the

training set also increase and hence for larger datasets it takes large amount of time.

Whereas in Deep Neural networks the time is independent of the training set, rather it

depends on the number of connections between the neurons.

Hence, we propose a dynamic sparse representation framework for linear solvers that

adapts the sparse storage representation based on the sparsity structure of the matrix.

The framework relies on creating a model using Deep-Learning that maximizes the

performance of sparse Jacobi iterative solver by using the best sparse representation.

We have designed a deep architecture that has six layers, which consists of an input

layer, four hidden layers, and output layer. The input layer has 14 neurons correspond-

ing to the number of input features. The second layer has 100 neurons, the third layer

has 50 neurons, the fourth layer has 25 neurons, the fifth layer consists of 10 neurons

and the last layer or the output layer has five neurons (corresponding to the number

of classification classes). All four layers use ReLU as the activation function. The cost

function of the deep network is minimized using Adams optimizer [178]. These con-

figurations provide us with best possible accuracy for the deep network. We tried out

various network configurations to achieve the best performance in terms of accuracy

of the model. The selected parameters provided the best results in our experiments.

The major advantage of the deep network over shallow techniques such as SVM and

decision trees is that the deeper layers of the network automatically find new features

which cannot be obtained using the shallow networks and this leads to higher accuracy

in classifying the data. Another main benefit of a neural network is that it requires very

less pre-processing of the input features as the features are learned in the network. The

shallow techniques such as are excellent at memorization, but not so good at general-

ization. So, if we train the network with every possible input value, a shallow network

shall memorize the input-output pairs without regarding the entire scenario. A large

number of layers enable feature learning at distinct levels of abstractions. The ability to
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learn intermediate features between a given input and the final high-level classification

makes Deep learning a better alternative for generalization.

4.0.1 Dataset Formation

We require a dataset for training our predictive model. Hence, we created a dataset uti-

lizing the University of Florida Sparse Matrix repository [179]. We analyzed a large

number of matrices from various application domains and selected matrices spread

across the domains. We applied the following criteria while selecting the matrices for

the dataset.

1. The matrices are not complex matrices, i.e. They are Real matrices.

2. The matrix can be square or rectangular.

3. The matrix can be symmetric or non-symmetric.

4. The sparse matrix fits in the global memory of GPU, such that the total occupied

space by the sparse matrix is less than or equal to 80% of the total memory. The

size of the sparse matrix in this regard is calculated as 16 × nnz bytes, which is

the size of the matrix in COO format. The global memory of the GPU used has

been provided in Table. 4.4.

5. The total number of rows in the sparse matrix should assure minimum warp-

level concurrency, which implies that the minimum number of rows in the matrix

should be equal to warp-level concurrency. Warp concurrency is the ratio of the

total threads across all the multiprocessors to warp size, i.e.warp concurrency =

(Threads per SM ∗SM)/warpsize. Table. Y provides the hardware configuration

of the GPU used in our experiments.

To determine the class/label of the dataset, we ran SpMV kernels using all the five

storage formats (COO, CSR, DIA, ELL, and HYB) for each matrix. The storage format

that recorded the best performance in terms of GFLOP/s was selected as the best

storage format for a given matrix.

We analyze the observed performance of each sparse representation for all the matri-

ces in our dataset. The performance of the SpMV kernel was measured using GFLOP/s.
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Table 4.1: Distribution of class on dataset for SpMV kernel on Tesla K20c

COO CSR DIA ELL HYB

1% 57% 6.25% 22.25% 13.5%

All reported performance measurements only include the kernel execution time and do

not include the data transfer time between the CPU and GPU.

Table. 4.1 provides the distribution of classes in our dataset. It shows the percentage

of matrices that performed the best for a given sparse matrix representation out of 1056

matrices in our dataset.

We can observe that the CSR format has a higher share as compared to other stor-

age formats. The COO format performs the worst, and only 1% of matrices recorded

the best timings with COO. The ELL and HYB performed moderately well. The dis-

tribution of the classes on the dataset does not provide us with the complete picture,

rather the performance difference between the each sparse format provides more insight

into the performance aspects of these storage formats. Table. 5.3 provides the average

slowdown of the sparse representations while using a single sparse storage format as

compared to the utilization of the best possible representation of the sparse matrices

for all 1035 matrices in our dataset. For example 1.5x for CSR implies a loss of 33%

when using the CSR format for representing the dataset entirely as opposed to using

the best representation for each matrix in the dataset. We can observe that the csr

performs the best, but ELL and HYB are quite close behind. There is only a difference

of 5% between ELL and CSR. The difference between ELL and HYB is quite narrow.

DIA has higher loss of performance as compared to COO due to its inability to store all

matrices. The inability of a sparse representation scheme to store a matrix was recorded

as 100% loss.

4.0.2 Feature Selection

In the Introduction to this chapter we discussed how sparsity structure affects the

performance of SpMV kernels. Hence, we need to gather relevant information about

the sparsity structure of the given matrix. Therefore, we compute various features of

the matrices. After many experiments and analysis, we selected the significant features

that perceive the structure of the given input matrix efficiently. Table. 4.2 shows the
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Figure 4.2: The correlation matrix for our selected features

final feature set that was chosen.

All of our features are simple to calculate.m, n, nnz, density, mean, and variance

all have a time complexity of O(1). m, n, and nnz are usually stored in the input

sparse matrix file. The mean non-zeroes per row (mean) is easily calculated from m,

n, and nnz. Standard Deviation (sd) has a complexity of O(2n). Variance can be

calculated with a complexity of O(1) once we have mean and sd. For finding the

maximum number non-zero elements in a row (max − nnz), we need to traverse each

row once. The average distance between the first and the last non-zero value per row

(distavg) can be calculated at the same time as max − nnz. clusteravg calculates

the average number of consecutive non-zero elements per row. ndiag is the number

of diagonals in the matrix and diagfill is the product of the number of diagonals to

the size of diagonals. ndiag and diagfill was added to improve the conversion rate of

nonconvertible matrices to DIA sparse storage. The feature fill is used to determine

whether a matrix can be feasibly stored using the ELL storage format.

4.0.3 Feature Distribution Analysis

Figure. 4.2 shows the correlation matrix for the selected feature set that was indicated

in the Table. 4.2. The lower triangle of the matrix illustrates the feature distribution of
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Table 4.2: Features Extracted From Sparse Matrices

Feature Description Time complexity

m The number of rows O(1)

n The number of columns O(1)

nnz The total number of non-zero
elements

O(1)

density The density is defined as
nnz/(m ∗ n)

O(1)

mean Mean non-zero elements per
row

O(1)

sd Standard deviation of
non-zero elements per row

O(2m)

var Variance of non-zero elements
per row

O(1)

max− nnz The maximum number of
non-zero elements in a row

O(m)

maxavg The difference between the
maximum number of non-zero
elements per row and average
non-zero elements per row

O(m)

distavg The mean of the distance
between first and last
non-zero elements in each row

O(m)

clusteravg The mean of the number of
distinct consecutive non-zero
elements per row

O(nnz)

ndiag The number of diagonals in a
matrix with non-zero
elements

O(nnz)

diagfill The diagonal fill-in ratio. It
is calculated as
(ndiag ×m)/nnz

O(1)

fill The fill-in ratio for matrices
calculated as
(m×max− nnz)/nnz.

O(1)
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Table 4.3: Summary of our feature set

Min Max Average

m 838 8.34M 138k

n 292 8.34M 142k

nnz 1074 229M 194k

density 9e-07 0.12 3.9e-03

mean 0.59 424 27.13

sd 0.00 3594 40.3

var 0 12M 29669

max-avg 0 2.3M 9067

clusters 0 126.64 6.585

distavg 0 4M 34724

ndiags 1 10M 79643

fill-in 1 259k 972

max_nnz 1 2M 9094

diagfill 1 978k 9236

a given feature with every other feature. We can observe that the correlation between

the features is quite low. There are only four features that have a correlation above 0.5

with respect to nnz. These are n, m, distavg, and mean. These correlations are due to

the linear nature of this features, i.e. when m and n increases nnz also increase. n and m

show a higher correlation as we have a large number of square matrices in our dataset.

Moreover, if we observe the correlation between density and other features we can

observe that these are highly uncorrelated which implies that each feature contributes

distinct information. The distavg has a higher correlation with the other features,

and we observed we could achieve a higher performance even without distavg, but the

inclusion of distavg increases the performance of the classifier. We can see that the rest

of the features are clearly uncorrelated or correlated by minuscule degree.

Table. 4.3 gives a quantitative summary of the features of the matrices in our

dataset.
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Figure 4.3: Projection of points in various 2-D planes

4.0.4 SpMV Performance Analysis on feature set

We use the selected sparsity features to observe and explain the performance of SpMV

kernels on GPU. Due to the curse of dimensionality [Domingos] it is hard to depict,

analyze, and organize high dimensional data (14 dimensions in our case). However, we

show selected 2-D planes in Figure. 4.3 where various features from our feature set are

projected. The projected points are coloured according to the sparse representations

that reported the best performance (GFLOP/s).

In the max-avg vs ndiags plane, we can observe that the DIA class dominates the
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lower left corner whereas the CSR class is in the middle. This clearly indicates that

higher number of diagonal does not mean DIA would perform best.

Algorithm 1 The Training Phase of Deep Networks
Input: nfeat

Output: {W1....WL} ∈ R2, {b1..., bL ∈ R}

1: function Training(nfeat)

2: Initialisation : W ∈ [−1, 1], b← 1, a(1) ← nfeat

3: while cost > minimumcost do

4: for l = 1 to Total number of Layers L do

5: a(l+1) ← ReLU(W (l)al + b(l))

6: end for

7: For the output layer l find the derivative of the Loss function as

8: δ(nl) ← −(y − a(nl)) •ReLU ′(z(nl)) . ReLU applied Elementwise and •

indicates elementwise Hadamard product

9: for l = L− 1 to Layer 2 do . Compute hidden layer Cost derivative

10: δ(l) ←W (l)δ(l+1) •ReLU ′(z(l))

11: end for

12: Compute the partial derivative for each layer l as:

13: ∇W (l) ← δ(l+1)(a(l))T

14: For each Layer l Update the weights using ADAM optimization

15: Compute the new Cost

16: end while

17: end function

In the max-nnz vs. nnz plane, the HYB format dominates the areas with both

higher nnz and max-nnz. The ELL and DIA format cannot be seen after a threshold

max-nnz. Due to higher values of max-nnz, matrices fail to convert to both DIA and

ELL from the COO format in which the matrices are stored. Whereas, the CSR class

performs best when the max-nnz is neither too low or nor too high. ELL, CSR, DIA

classes performs well for all nnz values too whereas most of HYB class is at higher nnz.
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Algorithm 2 Adaptive Deep Learning Jacobi
Input: A, b

Output: x

1: function Main(A,b)

2: feat← ExtractFeatures(A)

3: nfeat← log10(feat)

4: if Model not trained then

5: W, b← Training(nfeat)

6: end if

7: sparseFormat← DeepModel(nfeat)

8: x← Jacobi(A, b, sparseFormat)

9: end function

Algorithm 3 The Deep Network predictive model
Input: nfeat, W, b

Output: sparseFormat

1: function DeepModel(nfeat)

2: Initialisation : a(1) ← nfeat

3: for l = 1 to Total number of Layers L do

4: a(l+1) ← ReLU(W (l)al + b(l))

5: end for

6: return a(L)

7: end function

The CSR class dominates the area of moderate sd and a low number of rows. The

HYB class has a better performance when the number of rows is larger and at higher

standard deviation than CSR. The ELL class provides the best performance for all row

sizes but only at lower sd of non-zero values.

In the max-avg vs. max-nnz plane, we can see a clear distinction between CSR, HYB,

and DIA. The CSR exhibits the best performance when the max-avg and max_nnz

neither too low nor too high.
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Algorithm 4 Dynamic Sparse format Jacobi Solver
Input: A, b, x, x1, sparseFormat

Output: x

1: function Jacobi(A, b, x, x1, sparseFormat)

2: Initialisation : error ← 1.0, ε← 10−6, k ← 0

3: Initialisation : x← (1/size(A)), x1← 0

4: switch sparseFormat do

5: case 0:

6: Initialize and move A, b, and x to gpu

7: JacobiCoo <<< gs, bs >>> (A, b, x, x1)

8: case 1

9: Convert A to CSR

10: Initialize and move A, b, and x to gpu

11: JacobiCsr <<< gs, bs >>> (A, b, x, x1)

12: case 2

13: Convert A to HYB

14: Initialize and move A, b, and x to gpu

15: JacobiHyb <<< gs, bs >>> (A, b, x, x1)

16: case 3

17: Convert A to ELL

18: Initialize and move A, b, and x to gpu

19: JacobiEll <<< gs, bs >>> (A, b, x, x1)

20: case 4

21: Convert A to DIA

22: Initialize and move A, b, and x to gpu

23: JacobiDia <<< gs, bs >>> (A, b, x, x1)

24: return a(L)

25: end function

Again, here we can observe that both DIA and ELL performs best for smaller nnz-

max. max-avg do not quite affect the performance of DIA and ELL. Whereas, Majority

of HYB class has good performance at higher max-avg and max-nnz.
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In the plane mean-var, we observe that CSR dominates the area where the mean is

high, and var is in the lower range. This implies that for matrices that have the best

performance in CSR format, we have properly balanced thread distribution in GPU.

Max-nnz vs. density plane indicates that HYB format performs well for matrices

that are large but has high sparsity. Large matrices with low density excel in perfor-

mance using the HYB format. CSR performs better for denser matrices, and that has

lower max-nnz than the HYB format. The DIA format is adversely affected by max-nnz.

Table 4.4: GPU Configurations

GPU Model Tesla K20c

Chip GK110

Compute Capability 3.5

Number of SMs. 13

Number of cores 2496

ALUs per SM 192

Warp size 32

Threads per CTA 1024

Threads per SM 2048

Shared memory per CTA (KB) 48

L2 cache (KB) 1536

Global memory (GB) 5

Memory bandwidth (GB/s) 208

Matrices that exhibit a lower number of diagonals and lower variance can be classified

as DIA as seen in max-avg vs. variance plane. The HYB class has a higher number of

diagonals with nnz along with higher variance. Whereas, ELL has a large number of

diagonals and low variance.

Fill-in and max-avg are linearly related. HYB class is dominant in areas with higher

max-avg and fill-in. DIA is dominant at low fill-in and low max-avg. CSR performs

best when max-avg is not too high and fill- in is not too low.

In the max-avg vs. dist-avg plane, HYB follows the general trend in having the best

performance for larger max-avg and dist-avg. DIA and ELL perform best when the

max-avg is lower than CSR. ELL performs better than DIA when dist-avg is greater.

In max-avg vs. diag-fiill we can observe that the DIA performs best when the diag-
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fill is low and max-avg is low. ELL, on the other hand, performs best when diag-fill

is higher than DIA but with almost the same max-avg threshold. Whereas, the HYB

performs better at higher diag-fill and higher max-avg.

On further analysis, we observed that the class that dominates a given area has

higher performance gain as compared to other storage formats in the same region. In

the areas where a single class does not dominate, we find the performance difference

between the classes is quite low. Another major observation is that for all matrices

which were possible to convert to ELL format the performance difference between HYB

is quite low. These observations lead us to an assumption that the feature set selected

can be effectively used for predicting as decision boundaries can be easily placed in

areas where there are performance differences. In later sections, we prove that our

results validate this assumption.
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Chapter 5

Analysis and Evaluation of

proposed technique

5.1 Quantitative Analysis of Deep Model

In this section, we shall evaluate the performance of our deep learning based classifica-

tion model. The results reported are average from the 10-fold cross-validation performed

using the model. To understand the performance of the model we calculate the accu-

racy of the classifier as in 5.1. Accuracy is defined as the ratio of sparse representations

identified correctly by the model to the total number of matrices in the testing set.

CountAccurate represents the count of matrices that has been correctly identified. We

also compute the average performance loss of the Deep model compared to the best

sparse representation (LCB) as in 5.2. The LCB value indicates how close to the best

possible representation is our deep model regarding the performance. The lower the

LCB, the better the model performs. Since the CSR format has higher cardinality in

our dataset and as HYB is considered as an excellent storage for sparse SpMV kernels

[67], we compute the gain obtained our deep model as compared to using a single sparse

representation (CSR or HYB) as illustrated in 5.3 and 5.4. To further illustrate the

performance gain we show the gain obtained by our deep model as compared the worst

performing sparse storage for each matrix 5.5. The higher the gain, the higher the

performance of our scheme.

Accuracy =
CountAccurate

|Test|
× 100 (5.1)
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Table 5.1: Evaluation of Classifier

Accuracy LCB GCSR GHYB GELLGDIAGWorst

81.59% 4.4 % 154.5% 822.25% ∞ ∞ 1123.69%

LCB =
1

|Test|
∑
i∈Test

((besti − deepi)/besti)× 100 (5.2)

GCSR =
1

|Test|
∑
i∈Test

((deepi − csri)/csri)× 100 (5.3)

GHY B =
1

|Test|
∑
i∈Test

((deepi − hybi)/hybi)× 100 (5.4)

GWorst =
1

|Test|
∑
i∈Test

((deepi − worsti)/worsti)× 100 (5.5)

Table. 5.1 illustrates the evaluated metrics for our deep model. We achieve an

accuracy of 81.59% predicting the best sparse representation based on the sparsity

structure. We achieve an LCB of 4.4%, which indicates that we have reached 95.6% of

the maximal possible performance. On further analysis, we note that our deep model

does not classify a matrix as DIA or ELL if it is not possible to convert to it. We note

that misclassifications happen when the performance of the matrix is very close to the

best performing matrix. For many matrices, the performance difference between HYB

and ELL is less than one GFLOP/s. This happens for the smaller matrices that can

be easily converted to ELL. Compared with the use of a single format, particularly the

CSR format, our model has a gain of 154.5% gain. This indicates 2.5x speedup for

our model as compared to the single use of CSR throughout. Similarly, as compared

to solely using HYB format our model has a speedup of 9.2x. A comparison with the

worst storage schemes further demonstrates that the dynamic selection of sparse storage

format improves the performance. Table 5.5 gives the performance of the deep model

when using a simpler set of features. We can observe that even with the help of simple

feature set we can achieve a performance greater than the ones provided using any single

format for SpMV. The extra features improve the accuracy and performance and can

be utilized depending on the scenario.
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Table 5.2: Count of matrices with Loss > 5x and >2x

COO CSR DIA ELL HYB ADL

>5x 650 27 553 219 502 8
>2x 937 157 722 389 679 25

Table 5.3: Average slow down of sparse representations vs Deep learning model

COO CSR DIA ELL HYB ADL

3.86x 1.4x 6.15x 1.63x 1.67x 1.06x

Since we have a large dataset the average performance loss conceals the magnitude of

performance loss observed for each matrix. Hence, we shall analyze the storage schemes

based on the extent of slowdown. Table. 5.2 represents the total number of matrices that

has more than 5x slowdown and 2x slowdown. We can clearly see that the number of

matrices with more than 2x slowdown is quite high for all sparse representation schemes.

We can clearly observe that our Deep model scheme improves the total performance of

the sparse SpMV on GPUs. These results clearly dispels the idea that a single storage

format can be used for SpMV kernel on GPUs. Rather it provides further motivation

to design a storage scheme that dynamically selects the best representation of a given

matrix to achieve reliable performance. We can also observe in Table. 5.3 that the total

improvement comapred to the Ideal scenario is quite high using our technique.

Figure. 5.1a illustrates the total overall performance in GFLOPS as well as based on

execution time achieved using our Adaptive Deep Learning based model as compared

to the use of a single storage scheme. We can observe that we achieve a gain of 26.4%

GFLOP/s improvement as compared to the next best scheme CSR. The DIA format

due to its inability convert is the scheme that provides the least performance. The

HYB format does not perform well for smaller matrices and since we have large number

of smaller matrices the performance of HYB is smaller than expected. This behavior

of HYB can be further illustrated using Table. 5.1b which shows the time taken for

execution. We see that our proposed model executes 38.8% faster than the HYB scheme.

We can observe that the HYB format has the second best execution time rather than

CSR, whereas CSR had a better GFLOPS than HYB. This is because as the size of

the matrices increase, the CSR performs deteriorates steeply and HYBs performance

increase steeply and vice versa for smaller matrices CSR performs much better than

87



2309.25

6339.33

1449.08

5471.87 5336.21

8607.16

0

2500

5000

7500

COO CSR  DIA ELL HYB ALD 

G
FL

O
P/

s

COO 
CSR  

DIA 
ELL 

HYB 
ALD 

(a) Total GFLOP/s acheived for SpMV kernel

1375.48

1168.11

1787.42

1235.02

744.88

456.18

0

500

1000

1500

COO CSR  DIA ELL HYB ALD 

E
xe

cu
tio

n 
T

im
e 

(m
s)

COO 
CSR  

DIA 
ELL 

HYB 
ALD 

(b) Total execution time for SpMV kernel

Figure 5.1: GFLOPS and Execution Time comparison of various Sparse matrix storage
schemes
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Table 5.4: Count of the best performing hundred largest and hundred smallest matrices
in Dataset.

COO CSR DIA ELL HYB ADL

Largest 100 0 25 5 29 41 98
Smallest 100 0 76 9 14 1 97

than the HYB scheme. The difference in the ratio of number of non-zeroes to the

execution time is very large for CSR, for the biggest matrices as shown in Figure. 5.2a

and Figure. 5.2b. As the size increases the performance of HYB increases and CSR

decreases but the difference between the nnz to execution time ratio for CSR and HYB is

very small. This results in HYB having a better execution time but still lower GFLOP/s

than CSR. We can conclude that CSR is better suited for smaller matrices and HYB

for larger matrices.

We can observe that that top half of the larger matrices all performs best with

HYB, whereas CSR can be seen performing only for matrices with the smaller size.

Another observation to be made is that the DIA representation gives the highest overall

GFLOP/s for many of the matrices for which it is suitable. The performance gain for a

matrix that has the best storage in DIA is higher than CSR or HYB by a huge factor.

Hence the DIA matrix also plays a major role in achieving the overall best performance.

The ELL format largely produces the best performances for mid-sized matrices in our

dataset. We further provide the statistics for the hundred largest and smallest matrices

to understand the relationship between size and performance. Table. 5.4 shows the

number of matrices that performed the best for each sparse representation among the

hundred biggest and hundred smallest matrices from our dataset. We see that our

technique outperforms all other storage formats.

Figure. 5.3a and 5.3b compares our Adaptive Deep model storage scheme against

the five stoarge schemes COO, CSR, DIA, ELL, and HYB for all matrices from our

dataset based on the domain. On an average we can observe that our scheme has an

improvement of 200 GFLOP/s as compared to other schemes. Application Domains

such as 2D/3D, CFD, Structure, Circuit, Least Square, Linear programming has more

than 200 GFLOP/s as compared to other schemes. Our Scheme has a slight slow down

three application domains, Graphics, Statistics and unweighted graphs. But the average

slowdown in these three application domain does not exceed 4 GFLOP/s. Moreover, we
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Figure 5.2: Anomalies
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Figure 5.3: GFLOPS for various selected application domains
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Figure 5.4: Execution time for various selected application domains
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only consider three matrices for computations from the graphics/vision domain. Figure.

5.4a and 5.4b shows the run time in millisecond for sparse SpMV kernel using the five

discussed formats as compared to our scheme. It can be observed that for every single

application domain our scheme produces the lowest amount of time for execution.

Figure. 5.5a shows the plot of the GFLOPS/s performance against the total number

of non-zeroes for the HYB and CSR schemes. We can observe that the CSR scheme has

a higher GFLOP/s initially for the smaller matrices and as the matrix size increases

the performance also increase until a threshold where it saturates. After which it shows

a slow descend in performance. The rate at which the performance deteriorates is

quite small as compared to the initial rate of increase in performance. But the HYB

scheme, initially lower than CSR scheme catches up with the CSR scheme and the rate

of performance increase after the threshold size is quite large. We can see the difference

in execution time and the difference in the GFLOPS between the CSR format and the

HYB format in Figure. 5.5b.

We can observe that the difference between the two curves before the size threshold

is quite low and the difference after the threshold is quite high. This is a reason why the

CSR format has a greater execution time but a slightly higher GFLOP/s than the HYB

format. Figure. 5.5c further illustrates the time taken against the non-zero values in

the matrices. We can see that for a very few matrices the total execution time is quite

high for the CSR format as compared to the HYB format. For the biggest hundred

matrices the HYB format reports a total performance of 1925 GFLOP/s whereas CSR

only produces 1323 GFLOP/s, whereas for the smaller matrices the CSR outperforms

the HYB format.

Figure. 5.6 illustrates the density plot of the GFLOP/s against the size of matrices

in terms if the size of the matrices. The size of the matrices where calculated as the

coo storage size, 16nnz bytes. In this plot the we can see the concentration of various

sparse storage format depending upon the size and performance in GFLOP/s. We can

clearly observe that for higher matrices HYB gives the higher GFLOP/s. However, the

highest overall GFLOP/s is provided by the DIA storage format. The CSR format give

excellent performance for small to medium sized matrices. The ELL format provides

similar performace to that of HYB, but both ELL and DIA is not suitable for all the

matrices since it becomes quite difficult to store it. Hence HYB provides a better
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Figure 5.5: Anomalies Explaination
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Figure 5.6: Density plot of GFLOPS/s against the size of matrices

solution in such cases.

Figure. 5.7a shows the overall gain and loss of performance while using our ADL

based model for all the 1056 matrices we used, sorted based on the twenty six application

domains of the matrices. We can observe that our finding of 96% gain is corroborated

by the figure. The positive y- axis indicates the gain and the negative y-axis indicates

the loss. The width of the application domain indicates the number of matrices in that

domain. Figure. 5.7b further shows the gain obtained by our ADL scheme sorted by

the amount of gain. This image clearly illustrates the gain of our scheme. Figure. 5.8

shows the performance improvement that is achieved as the dimensions of the matrix

increases.We extrapolate the results to show that even for higher matrices our Adaptive

Deep Model attains a higher GFLOPs. We can clearly see that we can run higher

matrices and get better performance. We can also use higher end GPUs like K-80

with larger amount of memory to improve the performance of SpMV in linear Iterative

solvers.

Next, we test our Adaptive Deep Learning based Jacobi solver on some of the real

matrices obtained from various application domains. We have selected eight matrices.

Our Deep Learning-based model correctly identified seven of the eight matrices. The
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Figure 5.7: Total Gain and Loss incurred by our proposed Adaptive Deep Learning
based stoarge technique.
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Figure 5.8: Extrapolation of the GFLOP/s performance with size of matrices
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Figure 5.10: Extrapolating the GFLOP/s performance for jacobi as size increases

matrix F1 which performed well with CSR is classified as HYB. However, the difference

in execution time is trivial. Figure. 5.12 gives the execution time for all the tested

matrices. We can clearly observe from the results that our proposed technique clearly

improves the performance of linear solvers as compared to using a single sparse storage

scheme.

Figure. 5.9 shows the total GFLOP/s obtained using each of the seven matrix. Our

format clearly provides the best performance. We can clearly see that our scheme is

better than the HYB scheme, which is the second best scheme by 20% . We can also ob-

serve that the HYB scheme performs better than the CSR scheme. The DIA GFLOP/s

reported is the GFLOP/s obtained from a single matrix, particularly, atmospheric mod-

eling matrix. Figure. 5.10 illustrates the performance our model as compared to other

models for various matrix dimensions. It can be clearly observed in the figure that our

scheme’s performance increases as the dimensions of the matrices increases. Moreover,

we extrapolate the performance over the dimensions to indicate that even when the

matrix size increases further our scheme has the better predicted performance.

Figure. 5.11 and Figure. 5.12 shows the GFLOP/s and the execution time for the

seven selected matrices. We can observe that for all the matrices except the F1 matrix

our scheme was able to execute with the best possible performance. In case of F1 matrix

the difference between the selected HYB and the ideal CSR is very narrow. Hence does
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Figure 5.11: GFLOP/s obtained for Jacobi on selected matrices
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Figure 5.12: Jacobi timings for selected matrices

not affect the performance.

5.2 Comparison with state-of-art

Sedaghati et al. [180] has presented decision tree based classifier for the selection of

the best sparse storage for a SpMV kernel. They have proposed the use of two set of

features. A set of features that consists of simple features particularly, nnz, density,

and mean. The second feature set consists of complex features that have a higher

computational complexity which leads to higher overhead. Benatia et al. [181] uses

multi-class SVM to perform the prediction.

We implement both models and compare with our DL based model. Decision Tree

models were implemented using the Weka software libraries. We used two implementa-
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tions of Decision Tree, SimpleCart and BFTree, which were used in [180]. For both the

Decision tree-based models, we set the parameters to the default values, minNum=2

and numFold=5. Multiclass SVM model was implemented using the libSVM package.

We used the RBF (Gaussian Radial Basis Function) as the kernel. The two parameters

c and gamma were selected using the cross-validation technique provided in the package.

Table 5.5: Comparison of Deep technique Accuracy with shallow techniques Accuracy

Features Deep SVM
Decision Tree

Simple Cart BFTree

3 10.1 10.626 10.2797 11.90

8 5.46 5.97 6.842 7.27

14 4.74 5.0 5.1082 5.876

Table 5.6: Comparison of Deep technique LCB with shallow techniques LCB

Features Deep SVM
Decision Tree

Simple Cart BFTree

3 73.08 70.171 69.50 67.90

8 79.15 78.011 76.28 75.53

14 81 77.911 77.17 77.27

Table. 5.5 and 5.6 provides a comparison of our deep model with the above two

schemes. We provide comparison using three feature sets, each consisting of three,

eight, and 14 features respectively. In all the three cases, we can see that our model

provides a better accuracy than the multiclass SVM or the Decision Tree-based models.

Decision Tree based classifier using Simplecart performed better than BFTree for

all set of features. The addition of extra features has improved all the models by de-

creasing the LUB. The decline in performance for smaller feature sets is mainly due to

the misprediction of the model about nonconvertible matrix formats. When a matrix

that cannot be converted to DIA or ELL is predicted as either of these two, the perfor-

mance of the model decreases. However, it can be observed that even when we use just

three features, our Deep Learning-based model has a better accuracy and performance

speedup. When we used feature, set 3, out of all 1056 matrices only two matrices were

classified as DIA or ELL when the conversion was not possible. Overall our Adaptive
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Deep Learning model surpass other techniques based on improving the performance of

Sparse SpMV.
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Chapter 6

Conclusion

Sparse Matrix-Vector multiplication (SpMV) is one of the key operations in linear alge-

bra that lies at the heart of scientific computing and engineering. They play a significant

role in solving linear system of equations using iterative methods. Sparse Kernels are

level-2 BLAS operations on matrices whose entries are mostly zero so that computations

with and storage of these zero elements may be eliminated. The emergence of parallel

architectures, especially GPU, while offering higher computational performance, has led

to the redesign of existing algorithms to suit the architecture.

In this thesis we designed novel techniques that improve the performance of sparse

Jacobi iterative linear solvers on Nvidia based GPUs. A detailed review of the relevant

literature was carried out to identify the challenges and the research gaps. The review

revealed that the matrix sparsity structures vary widely based on the application do-

mains and this poses major challenges in obtaining consistent high performance from

sparse iterative solvers on GPUs. These challenges included coalesced memory access

to the sparse matrix and vector and load balancing among threads and warps. We

developed a deep learning tool that uses an extended set of features to dynamically

address these challenges and invokes the most suitable storage format for the iterative

solution of sparse linear equation systems. The iterative solver tool was implemented

on Nvidia Tesla K20 GPU and was tested on matrices arising from real-world problems.

Compared to other leading works, our tool demonstrated 25% or higher performance

on average in terms of the execution time and GFLOPS.

Our approach is not limited by any GPU language nor restricted by a specific GPU

architecture. It can be extended to any model of GPUs.
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In our future work, we plan to implement the deep model with raw matrices sans

features. We also plan to extend the tool to handle multiple GPUs.
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