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IMPROVED FEATURE EXTRACTION ALGORITHM FOR BRAIN 

COMPUTER INTERFACE 

 

Abstract 

 

 Brain-computer interfaces (BCIs) provide a direct communication between the brain 

activities and the computer. BCIs are based on detecting and classifying specific activities 

patterns among brain signals that are associated with specific task or event. However, brain 

activity patterns are considered as dynamic stochastic processes due both to biological and 

to technical factors. Therefore, the time course of the generated electroencephalography 

(EEG) signal should be taken into account during the feature extraction stage. To use this 

temporal information, three main approaches have been proposed, concatenation of features 

from different time segments, combination of classifications at different time segments, and 

dynamic classification. Dynamic classification consists in extracting features from several 

time segments to build a temporal sequence of feature vectors that can be classified using a 

dynamic classifier. 

 

In this research work, we propose an improved feature extraction algorithm using 

Kalman filtering technique. The EEG signal is firstly modeled by a harmonic sum of 

sinusoidal signals. Then the weights are estimated using a Kalman filter. 
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Chapter 1 

 

Introduction 

 

1.1 An Overview of Brain Computer Interface 

The goal of a direct brain–computer interface (BCI) is to allow an individual with 

severe motor disabilities to have effective control over devices such as computers, speech 

synthesizers, assistive appliances and neural prostheses [1]. Such an interface would 

increase an individual’s independence, leading to an improved quality of life and reduced 

social costs [1]. A BCI system detects the presence of specific patterns in a person’s ongoing 

brain activity that relates to the person’s intention to initiate control [2]. The BCI system 

translates these patterns into meaningful control commands. The BCI system has steps or 

components to interpret signal, which are signal acquisition, feature extraction, feature 

selection, classification, application and feedback. Feature extraction as the basis of mental 

pattern is the main content [3].Figure 1.1 shows the stages of a typical BCI system. We give 

now a short brief for each step and they will be covered in detail in Chapter 2. 

- Signal acquisition: In this step the brain activities is recorded. The brain activities can 

be measured in an invasive or non-invasive manner (see types of BCIs next section). 

Brain activity can be recorded as Electroencephalographic signal (EEG), functional 

Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET) or 
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through other methods. In this thesis, we use scalp EEG measured with an electrode 

cap. It is the most common acquisition methods. After the acquisition of the signals, the 

signals are sampled and digitized [4]. 

- Signal preprocessing: Raw EEG data are very noisy signal. The goal of this step is to 

increase the Signal-to-Noise Ratio (SNR). Preprocessing can include re-referencing, 

artifact rejection and band-pass filtering [5]. 

- Feature Extraction: We want to extract the features of the signal. These should contain 

the proper information of the signal. A common procedure during feature extraction is 

spatial filtering. Feature Extraction reduces the dimensionality of the problem. The main 

goal of this thesis to improve features extraction method. To select the most appropriate 

classifier for a given BCI system, it is necessary to simply understand what features are 

used, what their properties are and how they are used. The design of a BCI system, 

some crucial properties of these features must be taken into accounts: noise and outliers, 

high dimensionality, time information, non-stationary, small training sets [6]. 

- Classification: Based on the features a decision regarding the intention of the user has 

to be made in the final classification step. The classifier will translate the feature vector 

into a simple command [7]. 

- Applications and feedback: Based on the classification outcome we can now give an 

instruction to an external device as shown in Figure 1.1. 
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Figure 1.1. General signal processing flowchart of a brain–computer 

interface [4]. 

 

1.2 Types of Brain Computer Interface 

There are three types of Brain Computer Interface (BCIs) as shown in Figure 1.2. BCI 

depends on many factors such as the acquisition method, how the subjects are trained, how 

the signal is processed or based on the output. 

 

1. Invasive BCIs: The electrodes are placed directly in the grey matter. These BCIs are 

thought to record the most pure signals, since they are directly connected to single 

neurons. The direct connection ensures that there will be no attenuation nor spreading of 

the signal. Indeed, in practice some good results have been obtained concerning vision 
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repair. However, in case an invasive BCI is applied, there is a high risk of creating scar 

tissue around the electrodes that might lead to malfunction. Because of the invasive 

procedure and the need for a personalized system, the overall cost will be much higher 

than the cost of a non-invasive BCI [8]. 

 

2. Partially Invasive BCIs: The electrodes are still placed under the skull. Instead of 

placing them inside the grey matter, they are now placed at the surface of the grey [8]. 

 

3. Non-Invasive BCIs: The interfaces used nowadays are in most cases non-invasive 

methods. These use an electrode cap placed over the head to record the brain potentials. 

This reduces the risk of medical problems significantly. The high temporal resolution is 

preserved, making real time applications possible. On the contrary, the spatial resolution 

of non-invasive BCIs is quite low. This is because the signals now first have to pass the 

low conductive skull before being measured. The system however is wearable and not 

too expensive with no medical risks. One of the main disadvantages is the extensive 

training often necessary before the user can use the interface optimally. Even after 

training, accuracy might still leave much to be desired. In this thesis, we will only 

address non-invasive BCIs based on scalp EEG [9]. 
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Figure 1.2. Types of detect the brain's electrical activity: EEG, ECoG, and 

intracranial recordings [2]. 

 

1.3 Motivation and Problem Statement 

Brain-computer interfaces (BCIs) provide a direct communication between the brain 

activities and the computer [2]. BCIs are based on detecting and classifying specific 

activities patterns among brain signals that are associated with specific task or event [10]. 

However, brain activity patterns are considered as dynamic stochastic processes due both to 

biological and to technical factors [11]. Therefore, the time course of the generated 

electroencephalography (EEG) signal should be taken into account during the feature 

extraction stage. To use this temporal information, three main approaches have been 

proposed, concatenation of features from different time segments [12], combination of 

classifications at different time segments [7], and dynamic classification [2]. Dynamic 
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classification consists in extracting features from several time segments to build a temporal 

sequence of feature vectors that can be classified using a dynamic classifier. 

In this research work, we propose an improved feature extraction algorithm using 

Kalman filtering technique. The EEG signal is firstly modeled by a harmonic sum of 

sinusoidal signals. Then the weights are estimated using a Kalman filter 

 

1.4 Research Objectives 

The main objective of this work is to improve feature extraction algorithm using 

Kalman filtering technique. The proposed algorithm will be implemented on binary steady-

state visual evoked potentials (SSVEP) BCI system. Thus the research objectives are: 

1. Understanding in detail the feature extraction algorithms of EEG signals. 

2. Developing an improved feature extraction algorithm. 

3. Implementing a prototype as a proofing of the concept. 

4. Compare the performance of a BCI-based system proposed feature extraction 

algorithm using Kalman filter technique with other algorithm Fast Fourier Transform 

(FTT). 

 

1.5 Thesis Organization 

The rest of this thesis is organized in five chapters as follows. Chapter 2 will be an 

introduction to Brain Computer Interface. This will include in detail feature extraction 

algorithm BCIs. Chapter 3 will be dedicated to Kalman filter technique in estimating the 

state of a noisy system. 
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Chapter 4 describes how to employ the Kalman filter technique in extracting the 

features of a SSVEP based BCI. Chapter 5 will present and discuss the results of applying 

the proposed method on a SSVEP based BCI. Chapter 6 gives a conclusion and an outlook 

on future work. 
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Chapter 2 

Review of Literature 

2.1. Introduction 

In this chapter, we want to provide a detailed background of the mechanism used in 

BCI applications. Figure 2.1 shows a typical BCI system framework. In general, the 

sequence of events in a BCI system is as follows. The brain signal is recorded employing a 

signal acquisition device. These signals are then converted from analog to digital using an 

amplifier and feed to a computer. After that, pre-processing is performed to get rid of 

unnecessary data like noises and artifacts. Features that are relevant for recognizing different 

mental activities are then extracted, and classification algorithms are used to recognize that 

activity is performed by the user. The result of the classification is then translated into 

commands and is employed to regulate an application [13]. 

 

Figure 2.1: Basic block diagram of BCI system. 
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As mentioned in the chapter 1, the BCI system has stages to interpret signal, which are 

signal acquisition, feature extraction, feature selection, classification, application and 

feedback. Therefore, in Section 2.2, we give the neuroimaging methods use in BCIs. Then, 

in Section 2.3, we analyze the most neuroimaging method, which is EEG in BCI systems. 

After that, we review signal acquisition stage used for recording brain activities in Section 

2.4. In addition, we analyze EEG signal in Subsection 2.4.1, Steady State Visual Evoked 

Potentials (SSVEP) in Subsection 2.4.2 and we discussed Oscillatory Brain Activity in 

Subsection 2.4.3. Pre-processing stage are studied in Section 2.6.An outline of the method 

feature extraction stage and its methods are studied in Section 2.7. 

 

2.2  Neuroimaging Methods in BCIs 

Physiological activities in the human body, including those occurring in the brain, can 

be directly measured through electrophysiological signals such as those caused by the 

aforementioned action potentials. Those include electrocardiography (ECG, heart), 

electroencephalography (EEG, brain), electromyography (EMG, brain and muscular 

system), magnetoencephalography (MEG, brain), electrogastrography (EGG, stomach) and 

electrooptigraphy (EOG, eye dipole field). Neuroscientists use a type of sensing methods to 

measure brain signals. Some of methods, which are usually used, are EEG (invasive and 

noninvasive), magnetoencephalography (MEG), positron emission tomography(PET), 

function magnetic resonance imaging (fMRI) and functional Near Infrared (fNIR) .The three 

techniques which are used to measure brain activity (as opposed to brain structure) are 

MEG, fMRI and EEG. Each of these methods has its own unique advantages and 
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disadvantages. We give short description for MEG, fMRI provided and full description of   

EEG method because it most common used for BCI and we used it in this thesis [2, 4]: 

- MEG maps brain activities by recording magnetic fields produced by the electrical 

activities in the brain. MEG needs expensive and intensive low noise amplifier called 

superconducting quantum interference device(SQUID), furthermore the measurements 

are sensible to ferromagnetism therefore MEG equipment should be isolated inside 

Magnetically Shielded Room (MSR) where MSR will isolate SQUID from all external 

magnetic field even Earth’s magnetic field which is billion time stronger than the raw 

MEG. MEG is known for having very high temporal and spatial resolution and can be 

useful for studying activities that take less than 10 milliseconds. Unfortunately, in terms 

of BCI, MEG has two very serious problems. Firstly, it is extremely expensive, with 

MEG devices often costing hundreds of thousands of dollars or more. Secondly, MEG 

devices are very big and are not suitable for ambulatory applications such as BCI 

[2].fMRI (functional magnetic resonance imaging) uses nuclear magnetization of the 

hydro atoms in the fluids, mainly the blood, to adjust a powerful magnetic field. 

Because fMRI depends on the fluids moves in the body tissues, it will be more helpful 

for slow events around many hundred milliseconds. Since of this and other reasons, 

fMRI is unusually used for BCIs [2]. 

- EEG signals are obtained by recording fluctuations in the local electric potentials on the 

surface of the scalp, where it is assumed that these fluctuations originate from the 

underlying human brain activity. Although EEG contains more noise, EEG signal has 

low SNR, than MEG and fMRI, EEG is the most used techniques in BCI that represents 

more than 80% of BCI published work where EEG has very low setup cost and is very 

portable. The EEG rhythm contains much interesting information. For example, each 
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frequency band of the EEG signal is associated with certain brain activities. 

Neuroscientists have associated each of these frequency bands with a specific set of 

mental activities or states [2].The next section EEG will be explained in detail. 

2.2.1 EEG analysis  

EEG is a non-invasive recording method in which electrical components of the 

electromagnetic domain of the brain generated by neuronal activity are measured. Since its 

discovery by Hans Berger [6], the EEG has been used to evaluate neurological disorders in 

the clinic and to investigate brain function in the laboratory. Over this time, people have 

speculated that the EEG could have a fourth application as it offers the possibility of a new 

non-muscular communication and control channel (a practical BCI). The most important 

advantages of the EEG method that also make it commonly used in BCI are it’s relatively 

short time constants, its functionality in most environments, and its relatively simple and 

inexpensive equipment [2, 7]. 

The EEG signal is usually recorded at many brain locations simultaneously using 

one electrode (sensor) at each position (the term channel is often used to refer to a recording 

position). These electrodes are stuck to the scalp with a conductive gel in order to improve 

the contact impedance between the skin and the electrodes. A set of differential amplifiers 

(one for each channel) are then used to digitize the signals [10]. For the application of a 

larger number of electrodes, an electrode cap is often used Figure 2.2. The distance between 

neighboring electrodes is usually in the range of one to a few centimeters and available EEG 

caps can record up to 128 channels.  

EEG recordings exhibit adequate time resolution but suffer from disadvantages that 

have mostly caused by the skull bone, the meanings, and the intra-cerebral liquor. These 
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layers cause the signals from a local ensemble of neurons to spread to scalp electrodes that 

are up to 10 cm away from the recording electrode.  A very effect of these layers is that a 

low-amplitude activity at frequencies of more than 40 Hz is practically invisible in the EEG. 

Therefore, it is difficult to use the EEG to record the activity of single neurons or even of a 

small brain region. Moreover, the analysis of the EEG is also complicated due to the 

presence of artefacts that are signal components picked up by EEG electrodes and are not 

caused by neural activity. Typical artefacts in EEG comprise muscle activity, movements of 

the eyeball, eye blinks and the stray pick-up from exterior signal sources [13].  

 

As artefacts have much larger amplitude than the signals of interest, it has to be 

removed before EEG signals analysis. The fact that artefacts are picked up with highest 

intensity at electrodes closest to their origin can help in identifying them. Most artefacts can 

be controlled using additional control electrodes close to possible artefact locations, by 

proper frequency filtering of the recorded signals, and by using digital signal processing 

algorithm [12].  

Figure 2.2: An EEG cap for the use of a large number of electrodes. 
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Another important issue with the EEG signals that must be considered is its non-

stationary. Non-stationary of the signal is a considerable variation in its statistics at different 

time lags. In general, during normal brain condition the multichannel EEG distribution is 

considered as multivariate Gaussian. However, the mean and covariance statistics change 

from segment to segment, and this is the first symptom of non-stationary. The second 

symptom appears due to the change in the distribution (itself) of signal segments (i.e. Away 

from Gaussian). This can be observed, for example, during the changes in the oscillatory 

brain activity, during the transition between physiologic states, during eye blinking, and in 

the event-related potential (ERP) signals. The non-Gaussianity of the signals can be checked 

by some measures such as skewness, negentropy, kurtosis, and Kulback-Laibler (KL) 

distance [7]. Even with the aforementioned shortcomings, EEG is still the most interesting 

recording method of BCI systems and other clinical and research applications [2, 10, 13]. 

2.3  Signal Acquisition Stage 

There are different types of features of the ongoing EEG signals, relying on different 

physiological activities related to human brain. There are two main classes of these features. 

The first is time- and phase-locked (evoked) to an externally or internally paced event. This 

class is based on the responses of the subject to some stimuli and it is known as Event 

Related Potentials (ERPs), including the P300, steady-state visual evoked potentials 

(SSVEPs), and Motor-Related Potentials (MRPs). The second class is also time-locked but 

not phase-locked (induced) where the subject regulates the brain activity by concentrating 

on specific mental tasks. For example imagination of hand movement which can be applied 

to modify activity in the motor cortex. This class includes the event-related de-

synchronizations (ERDs) and event-related synchronizations (ERSs). These two classes as 

well as the most frequently used features (for BCI purpose) which are firs Event Related 
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Potentials (ERPs) are specific patterns generated by the brain of the subject after or during 

the presentation of preselected visual and/or audio stimuli. These patterns can be detected by 

analyzing the recorded EEG signals and can be specified which stimulus among a larger set 

of possible stimuli has drawn the subject’s attention. ERPs were initially developed for 

environment control. They are mainly proposed for disabled subjects who are unable to 

interact with outside world thoroughly their neuromuscular pathways. ERPs include P300 

patterns, Steady State Visual Evoked Potentials (SSVEP) and motor-related potentials 

(MRPs), which also known as slow negative potentials or slow cortical potentials (SCP). 

However, only the SSVEP type of patterns will be described here. 

 

2.3.1  Steady State Visual Evoked Potentials 

Steady-state visual evoked potentials (SSVEPs) are oscillations in the EEG that are 

generated in the visual cortex when a subject views a periodically flickering stimulus. An 

interesting characteristic of these oscillations is their amplitude, which can be modulated by 

visual attention. Subjects can increase the amplitude of the SSVEPs by concentrating on the 

stimulus or decrease the amplitude by ignoring it. Hence, SSVEP is employed in BCI 

applications by the presentation of several flickering light sources with different frequencies. 

In such a paradigm, the focused light elicits a signal pattern of the same frequency or 

harmonics with that of the source. Therefore, an SSVEP based BCI system can be realized 

by the detection of the focused light sources from these signal patterns. As an example, a 

wheelchair can be controlled by using only four light sources to perform a movement on the 

main directions [8]. 
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2.3.2  Oscillatory Brain Activity 

Physiologically significant signal features can be extracted from changes in the 

oscillatory brain activity. Such changes can be evoked by presentation of stimuli by 

concentration of the user on a specific mental task. Various frequency bands are related to 

changes in the amplitude of oscillatory activity. These frequency bands are shown in Table 

2.1. For example, in systems based on motor imagery, movement or preparation for 

movement is typically accompanied by a power decrease in mu and beta frequency bands, 

particularly contra lateral to the movement. This means that imagination of left hand 

movement corresponds to a decrease in mu-band amplitude over the right sensorimotor 

cortex, whereas imagination of the right hand movement corresponds to a decrease in mu-

band amplitude over the left sensorimotor cortex. This decrease in the band power has been 

labeled as event-related de-synchronization (ERD). In contrast, the increase in the amplitude 

of mu and beta bands after a movement indicates relaxation and is due to synchronization in 

firing rates of large populations of cortical neurons. This increase has been labeled as event-

related synchronization (ERS) see Figure (2.3) [2, 5]. 

 

Figure 2.3: ERD and ERS [2]. 
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Table 2- 2: Characteristics of normal EEG rhythms 

 

Moreover and mainly related for BCI use, ERD and ERS do not require actual 

movement; they occur also with motor imagery (i.e. imagined movement). Thus, they might 

support an independent BCI [2]. However, these systems require a long training period for 

the subject to obtain a successful performance. The subject is required to learn to regulate 

his brain activity with feedback mechanisms in these training sessions [2,10,13]. 
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2.4   Preprocessing Stage 

The raw EEG signals usually contain frequency components of up to 300 Hz due to 

noise and artefacts. However, neural information often lies below 100 Hz (and in many 

application lies below 30 Hz). Hence, components above these frequencies are considered as 

undesired components and must be filtered out. By removing the undesired frequencies, we 

retain the effective information in the signal, reduce the noise, and make the signals suitable 

for processing and classification. The undesired frequencies or components in EEG signal 

are usually due to noise and artefacts associated with the signal. EEG noise and artefacts are 

generated either within the brain (patient-related or internal artefacts) or over the scalp 

(system or external artefacts). The internal artefacts are usually related to EOG signals 

(electro-oculogyric) which monitor eye blinking, the ECG signals (electrocardiograms) 

which monitor heart electrical activity, the EMG signals (electromyogram) which monitor 

muscles electrical activity, and possibly the sweating process. On the other hand, the system 

or external artefacts include the 50/60 Hz power supply interference, electrical noise from 

the electronic components, cable defects, unbalanced impedances of the electrodes, and 

impedance fluctuation. Most of these artefacts are filtered out by the hardware provided in 

new EEG machines. However, usually a remaining part of artefacts needs to be removed [2].  
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Figure 2.4: preprocessing stage [2]. 

In general, the filtering algorithms can be divided into adaptive and non-adaptive 

filters. The main examples of the non-adaptive filters are high pass filters, low pass filters, 

and Notch filters. The high pass filters with a cut-off frequency of usually less than 0.5 Hz 

are used to remove the very low frequency noise such as those of breathing. On the other 

side, high frequency components are reduced by using low pass filters with a cut off 

frequency of approximately 50-70 Hz. Notch filters, however, with a null frequency of 50 

Hz are usually necessary to ensure removing of the strong 50 Hz power supply [13].  

The adaptive noise filters are also used by many researchers to remove noise and 

artefacts from the EEG signals. However, an effective adaptive filter requires usually 

reference electrodes during the EEG recordings. The reference electrodes carry significant 

information about the noise or artefact. For example, in the removal of eye blinking and 

(EOG) artefacts, a signature of eye blink and (EOG) signals can be captured from the FP1 

and FP2 electrodes. In the detection of possible jaw and neck muscle activity, as another 

example, the (EMG) signal can be captured from the two front-temporal electrodes (FT9, 

FT10) and the two occipital electrodes (O9, O10). The most fundamental type of adaptive 

filters is the Wiener filter [5, 7 , 13]. 
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2.5   Feature Extraction Stage  

Different thought actions produce in varying patterns of brain signals. BCI is 

recognized as a pattern recognition system that assigns each pattern in a class corresponding 

to its features. BCI extracts some features from brain signals that reveal similarities to a 

certain class as well as contrast from the rest of the classes. The features are measured of the 

attributes of the signals that contain the discriminatory data interested to separate their 

different kinds. The design of a proper set of features is a challenging issue. The data of 

interest in brain signals is hidden in a highly noisy environment, and brain signals comprise 

a huge number of Synchronous sources. A signal that interested may be overlapped in time 

and space by many signals from several brain tasks. Because of this reason, in more than 

cases, it is not just to use Easy methods as a band pass filter to select the desired band 

power. Brain signals measure in many channels. No need for all information provided by the 

measured channels is generally appropriate for now the underlying events of interest. 

Dimension reduction methods such as principal component analysis or independent 

component analysis can be used to decrease the dimension of the real data, remove the 

unnecessary and irrelevant information. Computational costs are then reduced.  Brain signals 

are naturally non-stationary. Time information about when a certain feature occurs should be 

taken. Some approach divides the signals into short segments and the parameters can be 

estimated from each segment. However, the segment length influences the accuracy of 

estimated features. Multiples features are extracted from many channels and from many time 

segments before being concatenated into one feature vector. The main difficulties in BCI 

design is selecting relevant features from the large number of possible features. High 

dimensional feature vectors are not desirable because of the “curse of dimensionality” in 

training classification algorithms [11]. 

 

Figure 2.5: Feature Extraction [2]. 
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2.5.1 Features Extraction Methods 

As described, above the neurophysiologic features of the brain signals. In order to 

control a BCI system, these features have to be mapped to values that allow for easy 

discrimination of different classes of brain signals. The classified signals in turn should be 

translated into simple commands for a computer or other devices. However, if more than 

one feature is used for the discrimination, it is impossible for a human to specify an optimal 

mapping between signals and commands. Furthermore, neurophysiologic signals vary from 

person to person. Hence, it is necessary to specify mapping rules for each subject, wants to 

use a BCI, individually [11, 13].  

To solve these problems, most BCI systems acquire labeled training data from a 

subject. Then, a computer is used to learn from a set of training examples how to map 

signals to desired commands. This technique called supervised machine learning. The term 

“supervised learning” comes from the idea that a teacher or supervisor indicates the desired 

output, or command, for each training input example. Machine learning algorithms are 

usually divided into feature extraction and classification modules. The feature extraction 

module aims to transform raw EEG signals from time series into another representation that 

makes classification easy. The new representation usually removes unnecessary information 

from the signals and retains information that is important to discriminate different classes of 

signals. After feature extraction, machine-learning algorithms are used to infer specific 

mapping between the labeled feature vectors, produced by the feature extraction module, 

and classes. We only consider supervised machine learning algorithms. All feature 

extraction methods summaries in Tables based on its domain, So Table 2.2 shows 

dimensional reduction methods, like principal component analysis or independent 

component analysis are explained.  In a Table 2.3 time and/or frequency methods, like 
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matched filtering or wavelet transform, and parametric modeling, like autoregressive 

component. In Table 2.4, spatial pattern algorithms are an explained. Feature extraction 

methods are one of the main themes of this thesis [11]. 

Table 2.2:  Summary of Feature extraction Method Spatial Domain [11]. 

Method Properties 
Refere

nces 

PCA 

(Principal  

Component 

Analysis ) 

 Linear transformation  

 Set of possibly correlated observations is transformed into 

a set of uncorrelated variables 

 Optimal representation of data in terms of minimal mean-

square-error 

 No guarantees always a good classification 

 Valuable noise and dimension reduction method. PCA 

requires that artifacts are uncorrelated with the EEG signal 

 

 

 

[14] 

 

ICA 

(independent 

component 

analysis) 

 Splits a set of mixed signals into its sources  Mutual   

 statistical independence of underlying sources is assumed 

  Powerful and robust tool for artifact removal. Artifacts are 

required to be independent from the EEG signal 

 May corrupt the power spectrum 

 

 

[15] 
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Table 2.3: Summary of Feature extraction Method Time Frequency Domain [11]. 

 

Table 2.4:  Summary of Feature extraction Method Space Domain [11]. 

 

 

AR (Autoregressive 

Components) 

 Spectrum model 

  High frequency resolution for short time 

segments 

  Not suitable for non-stationary signals 

 Adaptive version of AR: MVAAR 

 

[16] 

MF(Matched Filtering) 

 Detects a specific pattern on the basis of its 

matches with 

 predetermined known signals or templates 

 Suitable for detection of waveforms with 

consistent temporal characteristics 

[17] 

CWT (Continuous Wavelet 

Transform ) 

 Provides both frequency and temporal 

information 

  Suitable for non-stationary signals 

[18] 

DWT (Discrete Wavelet 

Transform) 

 Provides both frequency and temporal 

information 

 Suitable for non-stationary signals 

  Reduces the redundancy and complexity of 

CWT 

[19] 

Method Properties References 

CSP (Common 

Spatial Pattern) 

 Spatial filter designed for 2-class problems. 

Multiclass extensions exist 

  Good result for synchronous BCIs. Less 

effective for asynchronous BCIs 

  Its performance is affected by the spatial 

resolution. Some electrode 

 locations offer more discriminative information 

for some specific 

brain activities than others Improved versions 

of CSP 

 

 

 

[20] 
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In Section 2.3, we described the neurophysiologic features of the brain signals. In 

order to control a BCI system, these features have to be mapped to values that allow for easy 

discrimination of different classes of brain signals. The classified signals in turn should be 

translated into simple commands for a computer or other devices. However, if more than 

one feature is used for the discrimination, it is impossible for a human to specify an optimal 

mapping between signals and commands. Furthermore, neurophysiologic signals vary from 

person to person. Hence, it is necessary to specify mapping rules for each subject wants to 

use a BCI individually. We will explain domains as follows [7, 13]: 

- Spatial Domain Analysis 

Most BCI systems work with multivariate time series, i.e. data from more than one 

electrode is available for analysis. Therefore, the features extracted from those electrodes 

should be combined efficiently for the discrimination of a given set of cognitive task. Thus, 

the goal of spatial domain analysis methods is to find efficient combinations of features 

from more than one electrode. Actually, there are two main ways for performing spatial 

domain analysis. The first way is to use a subset of all available electrode positions that 

carry the informative features for a classification task. This approach depends on the fact 

that changes in neurophysiologic features (such as changes in SSVEP peaks) are often 

stronger at electrodes over brain regions implying a related cognitive task. Optimal electrode 

subset can then be selected manually (without performing any computations), or by using 

one of the expert algorithms developed in the literature [7].  

The second way to perform spatial analysis, instead of choosing a subset of electrode 

position, consists of applying spatial separating (filtering) algorithms. The most common 

separating algorithm is the independent component analysis (ICA). ICA algorithm is an 

iterative technique used to separate multichannel signals in to several components 
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corresponding to statistically independent sources (brain or noise). Hence, by retaining only 

components that have informative features, classification accuracy can be improved. The 

obvious drawback of this method is when the number of sources becomes more than the 

number of electrodes or observations (known as underdetermined systems). In such a 

system, the ICA method cannot be applied, and generally, the original sources cannot be 

extracted. One solution to this problem is to utilize clustering based methods when the 

signals are sparse [9, 10, 13]. 

- Frequency Domain Analysis 

Changes in oscillatory activity discussed in Section 2.3.2 are usually not time-locked 

to the presentation of stimuli or to actions of the user. Hence, time domain analysis methods 

cannot be used to reveal this kind of features. Instead, methods that are invariant to exact 

temporal evolution of signals should be used. Therefore, signals should be transformed from 

time domain to frequency domain representation. This representation is useful for estimating 

the power spectral density (PSD) of the signal that is an important characteristic that can be 

used to identify oscillatory activity components. The two main groups of methods for 

frequency transformation are developed in the literature include Fourier methods and 

parametric methods [9, 10, 13]. 

The Fourier group contains methods that are based on the fast Fourier transform (FFT) 

such as the periodogram, the Welch method, and the multi-taper method [8]. However, these 

methods are not practical for BCI systems. This is because time series analyzed for such 

systems are typically very short, where Fourier methods can give reasonable results only for 

long signal sequences and the performance usually deteriorates with shorter sequences [8]. 

On the other hand, the parametric group contains methods such as autoregressive (AR) 

method, the moving average (MA) method, or the combination of these two methods 
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(ARMA). However, the autoregressive method is often applied in BCI systems since it 

seems to be sufficiently powerful to model typical rhythmic and broadband brain activity [9, 

10, 13]. 

The idea behind all parametric methods is to employ priori assumptions regarding the 

generating random process. Depending on these prior assumptions, a model class and model 

order can be chosen in order to estimate the PSD, and hence capture the signal 

characteristics. In general, parametric methods are superior for estimating PSD than Fourier 

methods since they can work efficiently even with short time series. Moreover, modeling of 

a time series using a parametric method itself is a strong reduction in dimensionality as well 

as the noise of the EEG signals. However, some informative data may be lost during this 

modeling process, which is considered as a drawback of the parametric methods. 

Furthermore, the training of the AR model, which often be used with BCI systems as 

mentioned above, does not incorporate knowledge about the discriminative value of the 

information. This may, in principle, case a problem for a following classification task. To 

avoid this problem, the optimal AR model order and, therefore, the compression rate, have 

to be determined using validation techniques [9, 10, 13]. 

- Time Domain Analysis 

We often choose to analyze EEG signals in time domain if the amplitude of the 

neurophysiologic signals changes over time. Such change usually occurs time-locked to the 

presentation of stimuli or time-locked to actions of the user of a BCI system. SSVEP and 

MRPs are two valid examples for signals that can be characterized with the help of time 

domain features. Analyzing an EEG signal in time domain in order to reveal 

neurophysiologic changes is straightforward. Time series features, such as the following, 

can easily be computed: 



34 

 

 The average of the signal (offset). 

 The linear trend of the signal. 

 Absolute minimum and maximum values. 

 Number and order of local minimum and maximum values. 

 Weight factors describing the matching and positions of predefined patterns. 

 Slopes/steepness/height/width of predefined patterns. 

Most of these time domain features cannot be observed in single trial studies and can 

be clearly extracted only by averaging many trials over temporal windows or channels. In 

addition, the averaging strategy helps to reduce dimensionality and noise from EEG signals. 

However, averaging, particularly over channels, shift the analysis away from the brain 

enforcing inferences about summary measures. This leads to uncertainty about how signals 

should be analyzed and generated, and what they tell us about the underling system. 

Therefore, time domain features that depend on averaging methods can be useful for BCI 

only in combination with good classification algorithms. [9, 10, 11]. 

 

2.5.2 Dynamic Systems 

A dynamical system is defined as the system that changes its state over time, 

frequently in a rather complex manner. Understanding, processing, and classifying such 

changes is of greatest importance for the analysis of EEG signals. Formally, a dynamical 

system is given by a phase space, a continuous or discrete time, and a time-evolution law 

(also called system dynamics).The elements or points that represent possible states of the 
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system are called state variables and the space made up of the state variables is called phase 

space or state space. The state of a system may be described by m variables, and thus it can 

be represented by a point in an m-dimensional phase space. Let us assume that the state of 

such a system at a fixed time t can be specified by m variables. These parameters can be 

considered to form a vector 

 ⃑ ( )  (  ( )   ( )      ( ))
                                        (   ) 

Time-evolution law allows calculating all future states given a state at any particular 

moment. For time-continuous systems, the time evolution equations consists of a system of 

coupled differential equations, one for each of the systems variables. 

 ⃑ ̇( )   
  ⃑ ( )

  
   ⃑ ( ⃑ ( ))                                          (   ) 

The vectors  ⃑ ( ) (i.e. the line connecting system states) define a trajectory in phase 

space, which is a path followed by a dynamical system as time progresses [9, 19]. A 

dynamical system may be a linear system if all the equations describing its dynamics are 

linear; otherwise, it is nonlinear. On the other hand, a dynamical system can be deterministic 

if the equations of motion (which every future state of the system must follow) are 

predefined and stochastic otherwise. However, the neural networks of the brain, which is of 

prime concern to us in the present context, are likely to be a chaotic system [19]. The 

important features of such a system is its nonlinearity and deterministic. Although chaotic 

systems are kind of systems that are deterministic, their behavior shows sustained 

irregularity.  

An important property of the chaotic systems is that, after long observation, the 

trajectory will converge to a subspace of the total phase space. This subspace is called the 
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attractor of the system since it 'attracts' trajectories from all possible initial conditions .The 

attractor, in chaotic systems, is a very complex object with fractal geometry [9, 19].  

 

2.6   Signal Classification Stage 

The features extracted in the previous stage are the input for a classifier. The goal of 

the classification step is to determine the mental state of an individual. Based on that 

classification a command can be given to an external device. Therefore, the classification 

algorithm takes the abstract feature vector that reflects specific aspects of the current state of 

the user EEG and transforms that vector into an application-dependent device command. In 

certain cases, the classification can simply be done by comparing the signal resultant from 

the preprocessing step to a threshold. Other possibilities are the use of linear classifiers such 

as Linear Discriminate Analysis (LDA) or Fisher LDA classifiers. Another very popular 

method is to use neural network methods. These are more complex and non-linear 

techniques. The most common examples are Support Vector Machines (SVMs) and Hidden 

Markov Models (HMMs). Moreover, one can choose between an adaptive and a non-

adaptive classifier. We will discuss simpler Bayesian linear discriminate analysis (BLDA) 

algorithm, as we use it for classification in this thesis [2]. 
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Figure 2.6: Classification stage [2]. 

    2.6.1 Fisher's LDA 

The main goal in Fisher’s linear discriminate analysis (FLDA) is to compute a 

discriminate vector that separates two or more classes as accurate as possible [9]. In this 

thesis, we only consider the two-class case because our aim in SSVEP-based BCI 

applications is to discriminate between EEG signals contain SSVEP property and EEG 

signals do not contain it. We are given a set of input vectors     
    *       +  and 

corresponding class-labels     *    +. Denoting by    the number of training examples 

from the first class (for which     ), by    the set of indices i belonging to the first class, 

and using analogous definitions for   ,   , the objective function for computing a 

discriminant vector         is  

                            ( )   
( 
 
  

 
)
 

  
    

                                                     (   ) 

where 
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This means that we are searching for a discriminate vector that yields a large distance 

between the projected means and small variance around the projected means (small within-

class variance). Matrix equations for the quantities ( 
 
  

 
)
 
 and   

    
   can be used in 

order to compute the optimal discriminant vector for a training data set. Hence, we need first 

to define the class means    as following: 

   
 

  
∑  
    

                                                              (   ) 

Then, we can define the between-class scatter matrix    and the within-class scatter 

matrix   . 

    (     )(     )
                                            (   ) 

   ∑∑(     )(     )
 

    

 

   

                                  (   ) 

With the help of these two matrices, the objective function for computing the 

discriminate vector can be written as  

 ( )  
     

     
                                                               (   ) 

Then, by computing the derivative of J and setting it to zero, we can show that the 

optimal solution for   satisfies the following equation: 

    
  (     )                                                                 

The main advantages of FLDA are its conceptual and computational simplicity, 

especially for the situation in which the number of training examples N is large and the 
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number of features D is small (i.e.    ). However, we run into problems if other cases 

occur. If the number of training examples N becomes smaller than the number of features D 

(i.e.   ), then the within-class scatter matrix    becomes singular and cannot be 

inverted. A simple solution for this problem is to replace the inverse   
   by the Moore-

Penrose pseudo-inverse   
 

 [10], and the optimal solution for   then reads:  

    
 (     )                                                       (   ) 

On the other hand, if the number of features D is nearly as big as the number of 

training examples N over-fitting occurs. This situation is often found in BCI applications 

[1], because data from BCI experiments usually contains outlier, resulting from, for 

example, muscle activity or eye-blinks, and therefore there is an increased tendency for 

over-fitting. One solution to this problem is to use a regularized version of FLDA [13].  

 

2.7  BCI Applications  

 
The main objective of a BCI is to detect small differences in brain signals and use 

these to steer an external device. In principle this external device can be anything, as so can 

be the input causing the change in brain signal. However, the input is generally limited to 

some typical tasks intended for subject training. These tasks include (limited) cursor control, 

motor imagery, tracking a moving object or selecting a target. The results of these tasks can 

then be translated into more useful applications in the field of communication environmental 

control or neural prosthetics. As shown in Figure 1.10, the kind of application will on the 

one hand depend on the severity of the locked-in state. A distinction is made between 

Complete 
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Locked-In Syndrome (CLIS) and LIS patients, and healthy subjects. On the other hand, it 

will depend on the Information Transfer Rate (ITR) of the BCI-system. This is a 

measurement for how often in time an accurate decision can be made [2]. 
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Chapter 3 

Kalman Filter 

 

3.1 Introduction 

This chapter covers Kalman Filter (KF) from all aspects. It gives an overview of 

Kalman filter, its advantages, its applications and an example of Kalman filter. Kalman filter 

will be used in this thesis for features extraction. 

3.2 Kalman Filter Definition  

Kalman filter is invented by Rudolf E. Kalman in 1969 and it became one of the most 

filtering algorithms today because of its small computational requirements. G. Welch and G. 

Bishop [8] defined Kalman filter as “set of mathematical equations that provides an efficient 

computational (recursive) means to estimate the state of a process, in a way that minimizes 

the mean of the squared error ". Also Grewal and Andrews [22] defined Kalman filter as  

"Theoretically Kalman Filter is an estimator for what is called the linear-quadratic 

problem, which is the problem of estimating the instantaneous “state” of a linear dynamic 

system perturbed by white noise" by using measurements linearly related to the state but 

corrupted by white noise. The resulting estimator is statistically optimal with respect to any 

quadratic function of estimation error". 
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3.3 Kalman Filter Advantages   

Kalman Filter considers the greatest achievement in estimation theory of the twentieth 

century. It enabled technology for Space Age. It made the precise of navigation of spacecraft 

through the solar system efficient and powerful. Today it used in modern control systems; 

tracking and navigation of all types of vehicles and predictive design estimation of and 

controlled systems. Some of its advantages are:  

 Efficient because it use least-square method. 

 It estimates past, present, future and estimates missing states with inequality 

measure. 

 Powerful and robust because it forgives in many ways and stable. 

 Can be implemented in the form of an algorithm for digital computer. It makes 

capable   of much greater than analog filters. 

 No need for deterministic dynamics or the random processes have stationary 

properties, and many applications of importance include non-stationary stochastic 

processes as EEG signal. 

 Compatible with state space formulation of optimal controllers for dynamics systems 

and it prove useful dual properties of estimations and control. 

 Provides the necessary information for mathematically sound, statistically based 

decision methods for detecting anomalous measurements [23]. 
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3.4 Kalman Filter Applications 

The KF has been used in a wide range of applications. Control and prediction of 

dynamic systems are the main areas. When a KF controls a dynamic system, it is used for 

state estimation.When controlling a system, it is important to know what goes on in the 

system. In complex systems, it is not always possible to measure every variable that is 

needed for controlling the system. A KF provides the information that cannot directly be 

measured by estimating the values of these variables from indirect and noisy measurements. 

A KF can for example be used to control continuous manufacturing processes, aircrafts, 

ships, spacecraft, and robots When KFs are used as predictors, they predict the future of 

dynamic systems that are difficult or impossible for people to control. Examples of these 

systems are the flow of rivers during flood, trajectories of celestial bodies, and prices of 

traded goods [24]. 

As mention above, KF Kalman filter is the most common today and can be used in 

many fields but its main goals estimate and perform analysis of estimators. We choose some 

applications use Kalman filter. Some of KF applications are listed below to prove its 

importance and ability: 

 Phase- locked loops in radio equipment. 

 Smoothing the output from laptop trackpads. 

 Autopilot. 

 Brain-computer interface. 

 Chaotic signals. 

 Tracking and vertex fitting of charged particles in particle detectors. 

 Tracking of objects in computer vision. 

 Dynamic positioning [22]. 

http://en.wikipedia.org/wiki/Autopilot
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3.5 Kalman Filter Example 

To understand Kalman Filter (KF) we give this example to get an idea how the KF 

work. Suppose, there is a robot moves around in place and need to localize itself. Of course, 

a robot is subject to sources of noise when it drives around. To estimate its location we 

suppose that the robot has access to absolute measurement   
  

 Model. We model the system of a navigating robot .We suppose robot drive at constant 

speed s. for this we have system model describes the right locations of robot over time, 

                                                           (   )  

Where new location    depends on previous location     , speed constant per time step s, 

and a noise  . We suppose the noise is zero mean random noise, and Gaussian distributed. This 

means that on average the noise is zero sometimes more or less. We present the deviation in the 

noise by  . 

To use absolute measurements in estimating the location, we have to describe how these 

measurements are related to the location. We suppose a measurement model that describes how 

measurements   depend on the location    of the robot, 

zk = xk + vk                                                  (3.2) 

Sensor in this case give measurement   of location of the robot  , it corrupted by 

measurement noise  . We suppose this noise is zero mean on average Gaussian distributed, and 

it has a deviation of  v. 

 Initialization. Suppose the initial estimate of the location of the robot   
 and the 

uncertainty, that is, variance, of   
   this is the true location. 

 Prediction. Suppose the robot drives for one time step. As we know the from system 

model, the location will on average change with about s. Therefore, we can update the 
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estimate of the location with this information. We can predict what the location of the 

robot most likely is after one-step. We calculate the new location   
  at step k = 1 as 

  
  =    

  + s + 0                                                   (3.3) 

We took the noise in the system equation as zero. From equation (4.1) we know that the 

state is corrupted by noise, we do not know the exact amount of noise at a certain time. Since 

we know the noise on average is zero, we used wk =0 in calculating the new location estimate.  

As we know noise varies around zero, we can update the uncertainty in the new 

estimate. We calculate the uncertainty   
  . We have in a new estimate: 

  
      

                                                       (3.4) 

- Correction. If the robot keeps on driving without getting any absolute 

measurements, the uncertainty in the location given by equation (3.5) will 

increase more and more.  If we do make an absolute measurement, we can update 

the belief in the location and reduce the uncertainty in it. That is, we can use the 

measurement to correct the prediction that we made. 

Suppose that we make an absolute measurement z1.We want to combine this 

measurement into our estimate of the location. We include this measurement in 

the new location estimate using a weighted average between the uncertainty in the 

observed location from the measurement    and the uncertainty in the estimate 

that we already had x1 

    ¯=  
  
 

  
    

  +  
  
 

  
    

       
  
 

  
    

 (      
 )                     (   ) 

This way of including the measurement has as consequence that if there is relatively 

much uncertainty  
 in the old location estimate, that we then include much of the 

measurement. On the other hand, if there is relatively much uncertainty   
 in the measurement, 

then we will not include much of it. Absolute measurements do not depend on earlier location 
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estimates; they provide independent location information. Therefore, they decrease the un- 

certainty in the location estimate. Realize that probabilities represent populations of samples in 

a way like mass represents populations of molecules.  With this, we notice that we can 

combine the uncertainty in the old location estimate with the uncertainty in the measurement.  

This gives us the uncertainty  

 

  
   =  

 

  
  

 

  
  

 

We can rewrite into 

  
     

  
  
 

  
    

   
                                                (3.6) 

Notice in this equation that incorporating new information always results in  

lower uncertainty in the resulting estimate. The uncertainty  
2, + 

is smaller than or equal to both 

the uncertainty in the old location estimate   
  and the uncertainty in the measurement  

 .Note 

also that we use in (3.5) and (3.6) same weighting factor. We introduce a factor K representing 

this weighting factor and rewrite (4.5) and (4.6) into 

                     
   =  

     (     
 )                                               (3.7) 

             
       

      
   (  – )                                            (3.8) 

where 

  
  
 

  
    

                                                                   (3.9) 

 

Factor K is a weighting factor that determines how much of the information from the 

measurement should be taken into account when updating the state estimate. If there is almost 

no uncertainty in the last location estimate, that is, if   
 is close to zero, then K will be close to 
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zero. This has consequently that the received measurement is not taken into great account. If 

the uncertainty in the measurements is small, that is, if   
  is small, then K will approach one. 

This implies that the measurement will in fact be taken into account. 

 

In summary, we have in essence shown the equations that the Kalman Filter uses 

when the state and measurements consist of one variable. The Kalman Filter estimates the 

state of a system that can be described by a linear equation like (3.1). For reducing the 

uncertainty, the Kalman Filter uses measurements that are modeled according to a linear 

equation like (3.2). Starting from an initial state, the Kalman Filter incorporates relative 

information using equations (3.3) and (3.4). To include absolute information, the Kalman 

Filter uses equations (3.7) and (3.8) with means of the K factor from the equation (3.9). 

In the following sections, we will formalize the concepts that we used here and derived 

the general Kalman Filter equations that can also be used when the state we want to 

estimate consists of more than one variable [23]. 

 

3.6 Kalman Filter Process 

The Kalman filter discusses the general problem of trying to estimate the state x 

    of a discrete-time controlled process that is governed by a linear stochastic difference 

equation 

                                                                (3.10) 

 

 

with a measurement, that is z    

 

                                                              (3.11) 
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The random variables    and    represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white and with normal 

probability distributions  

 

 ( )     (   )                                                 (3.12) 

 

 ( )     (   )                                                  (3.13) 

 

 

The process Q noise covariance and R measurement noise covariance matrices might 

vary with each time step or measurement, but here we consider they are constant. The n × n 

matrix A in the difference equation (3.10) describes the state at the previous time step k – 1 

to the state at the current step k, in the absence of both a driving function and process noise. 

See that A might vary with each time step, but here we assume it is constant. The n × l 

matrix B describes the optional control input u     to the state x. The m × n matrix H in the 

measurement equation (3.12) describes the state to the measurement   .  H might vary with 

every time step or measurement, but here we assume it is constant [22, 23]. 

 

3.7 Kalman Filter Computational Origins  

Let    x  k¯    be a priori state estimate at step k given information of the process 

prior to step k and x  k     be a posteriori state estimate at step k addressed 

measurement  . We also can then define a priori and a posteriori estimate errors as: 

  
         ¯                                                   (3.14) 

                                                                         (3.15) 

 

 

The a priori estimate error covariance is then  

 

    
   ,  

   
   -                                                    (3.16) 

         ,    
    -                                                           (3.17) 
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In deriving the equations for the Kalman filter, our aim to find  an equation computes 

an a posteriori state estimate x  k as a linear compound of an a priori estimate x  k¯   and a 

weighted difference between an real measurement    and a measurement prediction H x  k ¯  

as seen below in (3.18). Some justification for (3.18) is given in “The Probabilistic Origins 

of the Filter” found below 

           ¯ + k (    x  k ¯)                           (3.18) 

The difference (  - H x  k ¯) in (3.18) is named the measurement innovation or the 

residual. The residual indicates the difference between the predicted measurement H x  k ¯ 

and the real measurement   . A residual of zero means that the two are in full agreement 

[30, 33]. 

The (n × m) matrix K in (3.18) is the gain or mixing factor to minimize a posteriori 

error covariance in equations (3.17). This will achieve first change in equations (1.7) in the 

above defined for k. when substitute into (3.17), will perform the indicate expectations. 

When derive of the track of the result with respect to K making result equal to zero, and then 

solving for K. One method of the Resulting K that minimizes (3.17) is given by 

      
   (    

      )  = 
  
   

    
      

                             (3.19) 

 

From (3.19) we can see that as the measurement error covariance R equals zero, the 

gain K weights the residual more heavily. Clearly, 

1

0
lim k
R

K H 


  

On the other hand, as the a priori estimate error covariance   
 approaches zero, the 

gain K weights the residual less heavily. Specifically 

Another way of thinking about the weighting by K is that as the measurement error 

covariance approaches zero, the actual measurement   is “trusted” more and more, while 

the predicted measurement   x  k ¯ is trusted less and less. On the other hand, as the a 
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priori estimate error covariance     
  approaches zero the actual measurement   is trusted 

less and less, while the predicted   x  k¯ measurement is trusted more and more[30,33]. 

 

3.8 Kalman Filter Operation  

 

The Kalman filter uses feedback control to estimates a process. It estimates the process 

state at any time and takes feedback from (noisy) measurements. Kalman filter equations 

classify into two groups: time update equations and measurement update equations. Time 

update equations project forward (in time) the current state and error covariance estimates to 

get the a priori estimates for the next time step. The measurement update equations are held 

for the feedback, i.e. for joining a new measurement into the a priori estimate to get an 

updated a posteriori estimate. The time update equations can also be considered of as 

predictor equations, while the measurement update equations can be considered of as 

corrector equations. Really, the final estimation algorithm resembles that of a predictor-

corrector algorithm for solving numerical problems. In Figure 3.1, the time update projects 

the current state estimate ahead in time. The measurement update adjusts the projected 

estimate by an actual measurement at that time [22, 23].  
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Figure 3.1: Kalman Filter Cycle [22]. 

 

 

Table 3.1: Kalman filter time update equations [21]. 

 

                –                                                                            (3.20 

                                                                 
     =    –   

 + Q                                                (3.21) 

 

 

From Table 3-1: 

 Project the state and covariance estimates forward from time step  –   to step . 

 Calculate A and B are from (3.10). 

 Calculate Q from (3.11). 

 

 

 

 

 

 

 

 

 

 

 

Time update    

Predict 

Measurement Update 

Correct 
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Table 3.2: Kalman filter update equations [21]. 

 

      
   (    

      )                                        (3.22) 

           ¯ + k (     x  k ¯)                                      (3.23) 

           (     )  
                                                     (3.23) 

 

 

From Table 3-2: 

 First step during the measurement update is to compute the Kalman gain    . 

 Next step is to actually measure the process to obtain   . 

 Final step is to obtain an a posteriori error covariance estimate via (3.23)  

 

Next, each time and measurement update set, the process is returned with the previous 

a posteriori estimates related to forecast the new a priori estimates. This recursive view is 

one of the every interesting features of the Kalman filter it makes efficient implementations 

much more available than (for example) an implementation of a Wiener filter which is 

designed to work on all of the data directly for all estimate. The Kalman filter instead 

recursively conditions the current estimate on all of the past measurements. Figure 1-2 

below offers a full picture of the operation of the filter, joining the high-level design of 

Figure 3-1 with the equations from Table3-1 and Table 3-2 [22]. 

 

In the real implementation of the filter, the measurement noise covariance R is usually 

measured before operation of the filter. Including the measurement error covariance R is 

usually practical (possible) because we want to be ready to measure the process anyway 

(while operating the filter), so we should generally be able to take any off-line sample 

measurements in order to manage the variance of the measurement noise. The judgment of 
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the process noise covariance Q is generally higher complex as we typically do not can 

quickly observe the process we are estimating. Sometimes an almost easy (poor) process 

model can give satisfactory results if one “injects” enough uncertainty into the process 

through the selection of Q. Certainly in this case one would hope that the process 

measurements are reliable. In both case, whether or not we have a reasonable basis for 

taking the parameters, often-superior filter performance (statistically speaking) can be 

achieved with setting the filter parameters Q and R. The tuning is regularly done off-line, 

usually with the help of another (distinct).Kalman filter in the process usually referred to as 

system identification [22]. 

 

Figure3.2: Kalman filter Operation [21]. 

 
 

We see that under requirements where Q and R .are in fact constant, both the 

estimation error covariance    and the Kalman gain    will stabilize fast and then wait 
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constant as we saw in the filter update equations. If this is the case, these parameters can be 

pre-computed by either running the filter off-line, or by managing the steady-state value. It 

is often the case but that the measurement error (in fact) does not remain constant. For 

example, when sighting beacons in our optoelectronic tracker ceiling panels, the noise in 

measurements of nearby beacons will be smaller than that in far-away beacons. In addition, 

the process noise is seldom modified dynamically through filter operation becoming in order 

to set to different dynamics. For example, in the problem of tracking the head of a user of a 

3D virtual environment we might reduce the magnitude of if the user shows to be going 

slowly, and increase the magnitude if the dynamics start changing rapidly. In so cases might 

be taken to account for both uncertainty of the user’s intentions and uncertainty in the model 

[22, 23]. 

 

3.9  Nonlinear Dynamic Systems 

Many dynamic system and sensor models are not linear as EEG, but not far from it 

either. This means that the functions that describe the system state and measurements are 

nonlinear, but approximately linear for small differences in the values of the state variables. 

Instead of assuming a linear dynamic system, we now consider a nonlinear dynamic system, 

consisting of a nonlinear system and a nonlinear measurement model. Nonlinear System 

Model. The system of which we want to estimate the state is no longer governed by the 

linear equation from (3.1), but by a nonlinear equation.  

We have 

  =  (    )                                   (3.24)  

where   is a nonlinear system function relating the state of the previous time step to 

the current state, and where      represents the noise corrupting the system. The noise is 
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assumed independent, white, zero-mean, and Gaussian distributed. Nonlinear Measurement 

Model. We also no longer assume that the measurements are governed by a linear equation 

as in (3.2). Instead, we have that 

  =  (  ) +                                    (3.25) 

Where  is a nonlinear measurement function relating the state of the system to a 

measurement, and where    is the noise corrupting the measurement. This noise is also 

assumed independent, white, zero-mean, and Gaussian distributed [23]. 

 

3.10  Extended Kalman Filter (EKF) 

The Kalman filter addresses the general problem of trying to estimate the state x    of 

a discrete-time controlled process that is ruled by a linear stochastic difference equation. 

However, what happens if the process to be estimated and (or) the measurement relationship 

to the process is non-linear. Some of the most interesting and successful applications of 

Kalman filtering have been such situations. A Kalman filter that linearizes about the current 

mean and covariance is referred to as an Extended Kalman Filter or EKF. In something akin 

to a Taylor series, we can linearize the estimation around the current estimate using the 

partial derivatives of the process and measurement functions to compute estimates even in 

the face of non-linear relationships. To do so, we must begin by modifying some of the 

material presented in Section 4.1. Let us assume that our process again has a state vector, but 

that the process is now governed by the non-linear stochastic difference equation [21]: 

    (                )                                     (3.26) 

 

And measurement z    

     (      )                                      (3.27) 
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Where the random variables   and    represent the process and measurement noise as 

in (1.3) and (1.4). In this case, the non-linear function  in the difference equation (2.1) 

relates the state at the previous time step     to the state at the current time step k. It 

includes as parameters any driving function      and the zero-mean process noise   . The 

non-linear function   in the measurement equation (2.2) relates the state    to the 

measurement   . 

In use, sure one does not know the original values of the noise   and   at any time 

step. However, one can close the state and measurement vector without them as 

       (    
        )                                 (3.28) 

  
    (   

   )                                                               (3.29) 

where   
  is some a posteriori estimate of the state (from a previous time step k). It is 

necessary to see that a primary flaw of the EKF is that the distributions (or densities in the 

continuous case) of the several random variables are no longer common after undergoing 

their own nonlinear transformations. The EKF is easily an ad hoc state estimator that only 

approximates the optimality of Bayes’ rule by linearization. The complete set of EKF 

equations is shown below in Table 3-3 and Table 3-4. Note that we have substituted   
  for 

  
 to remain consistent with the earlier “super minus” a priori notation, and thatwe now 

attach the subscript k to the Jacobians matrices  ,  , ,  and , to reinforce the notion that 

theyare different at (and therefore must be recomputed at) each time step. 

 

Table 3.3: Extended Kalman filter time update equations [21]. 

 

                                              
          (    

         )                                                       ( 3.30) 

  
       =        –    

  +                                                 (3.31) 



57 

 

 

 

As with the basic Kalman filter, the time update equations in Table 3.3 project the state 

and covariance estimates from the previous time step    to the current time 

step        and     are the process Jacobians at step k, and   is the process noise 

covariance at step k. 

 

Table 3.4: Extended Kalman filter update equations [22]. 

 

      
   

 (    
   

         
 )                                        (3.32) 

        
   +    (    (   

  ,0))                                      (3.33) 

         (     )  
                                                     (3.34) 

 

As with the basic Kalman filter, the measurement update equations in Table 3.4 correct 

the state and covariance estimates with the measurement    . Again   in (3.33) comes from 

(3.29),    and V are the measurement Jacobians at step k, and    is the measurement noise 

covariance at step k. Note we now subscript R allowing it to change with each measurement. 
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Figure 3.3: An operation of the Extended Kalman Filter [21]. 

 

 

An important feature of the EKF is that the Jacobian  in the equation for the Kalman 

gain  serves to correctly propagate or “magnify” only the relevant component of the 

measurement information. For example, if there is not a one-to-one mapping between the 

measurement    andthe state through   , the Jacobian    affects the Kalman gain so that it 

only magnifies the portion of the residual (    (   
  ,0  ))that does affect the state. Of 

course if overall measurements there is one one-to-one mapping between the 

measurement    and the state via  , then as you might expectthe filter will quickly diverge. 

In this case, the process is unobservable [21, 22]. 

 

The extended Kalman filter (EKF) is presumably the common generally applied 

estimation algorithm for nonlinear systems. But , higher than 35 years of experience in the 

estimation society has revealed that is difficult to implement, difficult to tune, and just 
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reliable for systems that are almost linear on the time scale of the updates. Many of these 

difficulties arise from its use of linearization [22, 23]. 

 

3.11  Perturbation Kalman Filter 

Linearized or Perturbation Kalman Filter (PKF) estimates the state of nonlinear 

dynamic systems by linearizing its nonlinearities. Linearization techniques simulate linear 

behavior locally at a point or along a small interval. The results of this simulation are then 

extrapolated to the general domain. The extrapolation depends on the direction of the 

linearity, that is, the direction of the derivatives at a point on a surface. Linearization around 

a point   means approximating the function at a very small distance from  ,  -. 

 

3.12  Iterated Extended Kalman Filter 

The EKF linearizes the nonlinear system and measurement function, redefining the 

nominal trajectories using the latest state estimates once. When there are significant 

nonlinearities, it can be beneficial to iterate the nominal trajectory redefinition a number of 

times using the new nominal trajectory. The idea of the Iterated Extended Kalman Filter 

(IEKF) is to use all information in a measurement by repeatedly adjusting the nominal state 

trajectory [24]. 

 

3.13  Unscented Kalman Filter  

A recursive estimator uses knowledge from the previous period in extension to the 

current observation measurement to produce an estimate of the current state. Unlike the 

Kalman Filter though, EKF and UKF are designed for non-linear systems. In difference, 

UKF uses unscented transformation technique, which measures the statistics of a stochastic 
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variable that undergoes non-linear transformation .It is perfect up to the second order and 

needs fewer samples compared to an alike particle filter.  The performance of UKF under 

certain conditions and showed that it performed robustly in general tracking applications of 

non-linear systems. Figure 1 shows the overview of the UKF process, which is composed of 

two main parts, similar to the KF. First is the time-update, where in the initial state estimate 

is calculated by choosing sigma points and solving for its mean and covariance. The 

observation is also propagated in this step and its mean and covariance are calculated. The 

second part is the measurement update. The Kalman gain and cross-covariance of the 

propagated state and the propagated observation are measured and used to update the state 

and its covariance [25]. 

 

 

 

 

Figure 3.4: Unscented Kalman Filter process [25]. 
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3.14  Particle filters 

Particle filters are an alternative technique for state estimation. Particle Filters 

represent the complete posterior distribution of the states. Therefore, they can deal with any 

nonlinearities and noise distributions. Particle filter have been combined with the Unscented 

Kalman Filter in the Unscented Particle Filter [24]. 

 

3.15  Ensemble Kalman Filter   

Ensemble Kalman Filter allows for states with huge amounts of variables. Due to the 

computations involved in propagating the error covariance in the KF, the dimension of the 

states is restricted to no more [24]. 
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Chapter 4 

Proposed Feature Extraction 

Method 

 

4.1  Introduction 

Steady-state visual evoked potentials (SSVEP) are periodic change in brain signals as 

a response to repetitive visual stimuli. The frequency of repetitive visual stimulus and its 

harmonics appear in the recoded Electroencephalography (EEG). Thus, the recorded EEG 

signal can be modeled as a weighted sum of stimulus frequency and its harmonics. The 

weights can be estimated using Kalman filter. 

 

4.2  SSVEP Modeling 

Any periodic signal can be decomposed into a set of Fourier series. As the brain 

dynamics perform as a low-pass filter [26, 27], high harmonic components will be filtered. 

Therefore, a preprocessed SSVEP signal generated from stimulus with frequency f can be 

decompose into the Fourier series of its harmonics as follows [28]: 

     1 2

1

sin 2 cos 2
n

i i i

i

y t w i ft w i ft e 


                                     (4.1) 
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Where f is the base frequency,
1 2

, , ,
T

t
s s s

 , T is the number of samples and s is the 

sampling rate (128 Hz in our case), n is the number of harmonics and ie is a Gaussian noise with 

zero mean and 
2 variance. We assume that the time segment is short enough for the noise to 

be stationary within this segment [29]. 

 

4.3  Estimation of Model Parameters 

In order to estimate the parameters of recorded EEG signal modeled by equation (4.1), 

Kalman filter described in Figure 3.2 is employed. To this end, the system (4.1) should be 

rewritten in the form of equation where the system parameters are the state of the new 

system. 

1k k kW W E                                                       (4.2) 

k k ky HW v                                                       (4.3) 

where  11 21 1 2k n nW w w w w , kE is the covariance matrix of the process 

noise of zero mean,        sin 2 cos 2 sin 2 cos 2
T

H ft ft n ft n ft       and kv

is the measurement noise with zero mean. 

 The parameter vector kW can be estimated using Kalman filter described in Figure 

3.2. The initial values of can be set as described in [29, 30]. The estimation process is shown in 

the following figure: 
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Figure 4.1: Proposed estimation process 
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Chapter 5 

Results and Discussion 

  

5.1  Introduction 

In order to evaluate the developed feature extraction method, a SSVEP experiment is 

built. The experiment is run using a predefined procedure where the user has to look at each 

stimulus with a specific frequency and time. The recorded signals are preprocessed and two 

methods are employed to extract the features: Fast Fourier Transform approach and the 

proposed method. A linear discriminate classifier is used to classifier the two sets of features 

and the results are compared. 

 

5.2  SSVEP Experiment 

The proposed SSVEP system consists of two checkerboards working at different 

frequencies as shown in Figure 5.1. 

 

Figure 5.1: Proposed 2-class visual stimulation system 
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A subject looks at specified checkerboard indicated by the yellow square beside it. 

The generated EEG signal is recorded using EPOC Emotiv headset with fourteen sensors 

distributed over the scalp as shown in Figure 5.2 . 

 

 
 

 

Figure 5.2: Signal acquisition unit: the Emotiv EPOC headset (Left) and the 

location of electrodes relative to the head (Right). 

 

In order to extract features from recorded EEG signal, the recorded EEG signal is 

firstly filtered by a fourth order Butterworth filter between 2 Hz and 30 Hz. Then two 

channels are constructed from the fourteen EEG signals using a correlation method. EEG 

segments correspond to left and right flickers are extracted from constructed channels. Each 

segment is divided into 1 second segments and Fast Fourier Transform (FFT) is applied on 

each 1 second segments. Finally, the values of FFT of each 1 second segment at working 

frequencies and their harmonics are extracted to form the feature vector as shown in Figures 

5.3 and 5.4. 
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Figure 5.3: Training Mode SSVEP Experiment using FFT. 

 

 

Figure 5.4: Signals in Training Mode using FFT. 
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The obtained samples, feature vectors and their classes are divided into training and 

test groups using 10-fold cross-validation method. The training samples are used to train 

linear classifier and the test samples are used to test the trained classifier error rate. 

Same above experiment is performed but using the proposed Kalman filter instead of 

the FFT. The obtained results will be presented in next section as shown in Figures 5.5 and 

5.6. 

 

 

Figure 5.5: Training Mode SSVEP Experiment using KF. 
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Figure 5.6: Signals in Training Mode using KF. 

 

5.3  Results and Discussion 

The FFT method produced an average error rate 35%. Figure 5.6 shows the Classified 

and misclassified samples. 

 

Figure 5.7: Classified and misclassified samples (black samples are misclassified). 
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The Kalman method produced an average error rate 20%. Figure 5.7 shows the 

Classified and misclassified samples. 

 

Figure 5.8: Classified and misclassified samples (black samples are misclassified). 
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5.4 Conclusion 

A feature extraction method is proposed in this master research. The proposed method 

is based on modeling the short-time preprocessed SSVEP signal as weighted sum of 

sinusoidal signals with frequency equal to the stimulus frequency and its harmonics. Then a 

Kalman filter is employed to estimate the weights of this sum. 

The proposed methods is applied in a binary SSVEP experiment and it showed better 

classification accuracy comparing with other methods. 

 

5.5  Future Work 

As a future work, the number of harmonics used in the SSVEP signal model need to 

be optimized. More experiments need to be carried out with different number of harmonics 

and the optimal value should be defined. 

In addition, the initial values used in the Kalman filter need to be determined in a more 

accurate way. 
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