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ABSTRACT 

 

Nowadays, the processing power of a single system is obviously insufficient for many 
complex scientific problems that need high computing power to process, and we do not 
always have the option of using supercomputers or HPCs. Now, cloud infrastructures are 
being involved in many institutions with different services (e.g. computing, storage, 
software) provided at different levels of availability, performance, cost and reliability.  

With the great advance in software and hardware, cloud-computing systems developed 
to utilize and benefit from these advances efficiently to solve a broad range of intensive-
computing problems. Grid computing, which aggregates several machines’ resources, 
can give a similar power of computing as we can get from a supercomputer, yet with the 
required quality of service (QoS) that meets the client’s needs. This can be achieved 
through our proposed Manager that aggregates cloud resources (i.e. Computing and 
Storage) to make a grid of clouds that enhance resource utilization. Because of the 
heterogeneity of cloud resources in this grid, a platform independent middleware is 
required for resource management.  

In this thesis, we present the design and architecture of an Agent-based Manager for 
Grid Cloud Systems (AMGCS) using software agents to ensure the independency and 
the scalability when the numbers of resources and jobs increase. The AMGCS handles 
IaaS resources and schedules compute-intensive jobs for execution over the available 
resources according to the QoS criteria. It shows a good performance in executing 
complex tasks submitted from regular machines, with an optimized task execution and 
high resource utilization, through the power of grid clouds’ capabilities. 
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على الوكیل البرمجي لحوسبة شبكة من الأنظمة  دعتمِ مدیر مُ 
 السحابیة

 

 

 أسامھ حمدي یونس عبد الحمید
 

 

 المستخلص
 

 

في  قدةالمع العلمیة المشكلاتواحد غیر كافیة للعدید من  نظامقوة معالجة أصبحت في الوقت الحاضر، 
استخدام "الحاسبات كما أن ، المھاممثل ھذه  لمعالجةعالیة  حوسبةالعلوم والھندسة والتي تتطلب قوة 

نى البوأصبحت في كل الأحوال.  امتاحً  اعالیة الأداء" قد لا یكون اختیارً العملاقة" او أجھزة "الحوسبة 
، خزینت مساحات (حوسبة، مختلفة ستخدم في العدید من المؤسسات لتقدیم خدماتالتحتیة السحابیة تُ 

 .یةوالجاھز التوفرالأداء ومدى كلفة، سرعة الاستجابة، تلا من على مستویات مختلفة قدمـتُ و )برامج

في اجھزة ومكونات الحاسبات والبرمجیات، تم تطویر انظمة الحوسبة السحابیة  الكبیرقدم مع الت
للاستفادة من ھذه الخواص بطریقة فعالة لحل المشكلات المعقدة التي تحتاج متطلبات معالجة قویة. 

وة فس قتستطیع تحقیق ن ببعضھا البعض، الحاسباتموارد الحوسبة الشبكیة، والتي تربط مجموعة من 
الحوسبة التي تحققھا اجھزة "الحوسبة عالیة الأداء" مع تحقیق متطلبات جودة الخدمة لاحتیاجات 

تجمیع الخدمات السحابیة مثل المدیر المُقترَح ھنا والذي یقوم بمن خلال  المستخدم. یمكن تحقیق ذلك
لتسھیل وتعزیز الأنظمة السحابیة  من شبكة لعمل وحدات المعالجة المركزیة ووحدات التخزین

 ،غیر متجانسة الاستفادة من ھذه المصادر. ھذه الشبكة تضم مختلف الموارد السحابیة والتي تكون
او نظم محددة لإدارة ھذه ) لذلك نحن بحاجة الى وسیط استقلالي لا یعتمد على منصة (معماریة

 الموارد. 

البرمجي لحوسبة شبكة من الانظمة عتمد على الوكیل مدیر مُ  تصمیم ومعماریة ، نقدمه الرسالةفي ھذ
 مواردعندما تزداد عدد الوإمكانیة التوسع  ستقلالیةلضمان الاالسحابیة باستخدام الوكیل البرمجي 

بطریقة  )IaaS(" خدمات البنُى التحتیة"على شكل  من الموارد المتاحة ھذا المدیر ستفیدیوالمھام. 
ظھر ھذا یُ  وفقاً لمعاییر جودة الخدمة المطلوبة. التي تحتاج قوة معالجة عالیة وذلك المھاملتنفیذ  الةفعّ 

المُرسلة من الأجھزة العادیة بالطریقة الأمثل وبدرجة عالیة في تنفیذ المھام المعقدة  اجیدً  أداءً المدیر 
 حابیة. السشبكة الأنظمة المتوفرة على من استغلال الموارد، وذلك من خلال قوة الإمكانات 
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Chapter 1 

 

 

Introduction 

 

 

1.1 Introduction 

The growing need for computational resources to solve large-scale problems leads to 

the cloud computing approach. Making a grid of cloud computing allows to include a 

variety of resources like clusters, supercomputers, storage systems, computational 

kernels and Symmetric Multi-Processors (SMPs) including PCs and workstations, etc. 

These resources are coupled to be available as a single integrated resource.  

The Grid cloud infrastructure can benefit many applications, including distributed 

supercomputing, high-throughput computing and data exploration. One type of grids 

is the computational grid, to bring supercomputing power to users by using resources 

in the network. The emerged Grid Cloud computing is a computing paradigm to solve 

complex applications in science and engineering, as it involves the combined effective 

utilization of a cloud resources to achieve high performance computing [1]. To utilize 

the benefits of the grid clouds, we need an efficient grid cloud management system, a 

complicated system, as it involves the distributed, heterogeneous and dynamically 

available resources, as well as handling diverse needs for these resources [2].  
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The scheduler here is an important module of the system as it is responsible for 

managing and selecting the geographically available resources, and for scheduling 

jobs efficiently to meet the user or application requirements, in terms of performance 

and utilizing resources. Therefore, the acceptability and efficiency of a resource 

management of computational grid clouds depends on its scheduling strategy and how 

the process of allocating the needed resources to the job requests is done, and also on 

how the resource manager is able to determine the availability of specific resources, 

and mapping jobs to these resources [3].  

Hence, the manager needs to achieve the following efficiently: dividing jobs into 

tasks (if possible), scheduling and monitoring jobs, and sending the proper requests to 

the associated cloud, all via agents that are communicating together. 

Clouds can fulfill a huge amount of computations that cannot be done by the best 

supercomputers. However, Cloud computing performance can be improved by 

making sure that all the available resources in the grid cloud are utilized by good QoS 

algorithm to make sure that most resources are involved in the cloud grid 

computations under the required criteria. Due to the disparate of job arrival and the 

inequality of computing capabilities, the resources in one grid cloud may be 

overloaded (or doesn’t meet the QoS criteria specified) while others in different grid 

cloud may be available. Therefore, dispatching jobs must be to the right resources to 

reduce the job average response time and achieve a better resource utilization. 

The grid cloud manager will adopt the software agent technology to handle the 

heterogeneity and interoperability, though; it is hard to build high performance and 

reliable agents applications that meet the grid cloud requirements. 
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Here, we present an Agent-based Manger for Grid Cloud System, to manage 

distributed computational resources in grid clouds by scheduling and providing an 

efficient way of processing high computing requests, based on software agents using 

Jade, to adapt the requirements of scalability, robustness and interoperability by the 

grid cloud system. Jade is an open-source middleware for implementations of multi-

agents systems in compliance with FIPA specifications (http://www.fipa.org) [4].  

 

1.2 Thesis Motivation  

There are increasing number of cloud service providers, varying in the quality of service 

provided, and complex tasks are getting increase in fields of science and engineering. 

We want to take advantage of these clouds’ services and utilize them in a proper way. 

Combining services together from multiple cloud providers will open new directions of 

computational capabilities, so instead of using costly supercomputers and High 

Performance Computers we can group Compute services together by creating a grid of 

clouds. Also with storage services, which are available on different levels from many 

service providers, would be great if there is a manager that selects the most proper 

resource that meets our needs. 

Compute and Storage services are categorized as Infrastructure-as-a-Service on the 

cloud, so we built a manager that manages these services and select properly from vast 

cloud resources available on multiple clouds. Selecting the proper resource helps in 

executing compute-intensive jobs using cloud resources without the need of HPCs or 

Supercomputers. Hence, a significant reduce in cost and response time, in addition to a 

high performance and throughput compared to a single cloud system. This manager 

achieves high utilization for cloud resources that are aggregated in a grid cloud system. 
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1.3 Thesis Objectives and Methodology 

Many factors affect resource management for grid cloud systems. The main factors 

are the heterogeneity of resources, scalability degree of the manager and the 

performance of each cloud in the grid. Heterogeneity and scalability can be solved by 

building the system to be interoperable and platform-independent using an agent-

based architecture to be scalable to large number of resources without affecting the 

performance. The performance of each cloud can be maintained by using a scheduler 

agent that distributes load over the available resources, and the system performance 

can be evaluated depending on resource utilization, waiting and execution time. 

In this research, we introduce an Agent-based Manger for Grid Cloud System to 

manage distributed IaaS resources in the grid clouds based on software Agents, using 

Jade [4], to adapt scalability, robustness and interoperability requirements by the grid 

cloud system and to process large number of computing requests. 

The methodology will be as follows: 

1. to identify the attributes of IaaS and describe the associated resources. 

2. to build a grid cloud computing manager for executing high CPU jobs on the 

resources available on the grid clouds. 

3. to present the architecture of our Agent-based Manager for the system with its 

modules: the Scheduler module to divide jobs to tasks, if possible, and 

distribute them over the available resources, and the Monitor module to 

monitor the resources and tasks. These modules are designed using Agents to 

increase interoperability, independently and scalability of the system. 
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4. finally to test this manager on real clouds (Google Compute Engine, Windows 

Azure) “selected from Table 1.1” to evaluate the AMGCS performance in 

terms of execution time and system throughput. 

In order to use the aforementioned clouds we signed up for an account and purchase 

the computing services (Infrastructure-as-a-Service) to be used to execute our jobs. 

Google Compute Engine has a variety of scalable services to select from, its API will 

be integrated programmatically with our manager to be able to deal with the cloud and 

execute our tasks with high scalability level according to the QoS. The same with Azure 

Compute, we have purchased IaaS services and integrated its API with our manager to 

execute jobs on Azure infrastructure. Our manager has been implemented to manage 

and monitor the execution of jobs using the combined agents and APIs, tested with real 

high-computing jobs (scientific/mathematical analysis) to evaluate our manager and 

how the grid cloud computation perform tasks according to the specified QoS criteria. 

Table 1.1: Selected list of clouds 
Cloud Name URL 

Google AppEngine http://developers.google.com/appengine/ 

Google Compute Engine http://developers.google.com/compute/ 

Amazon EC2 http://aws.amazon.com/ec2/ 

AppScale http://github.com/AppScale/appscale 

Amazon S3 http://aws.amazon.com/s3/ 

Windows Azure http://www.windowsazure.com/ 

Windows Azure Big Compute http://www.windowsazure.com/en-us/solutions/big-compute/ 

Zimory http://www.zimory.com/ 

Rackspace http://www.rackspace.com/ 

Salesforce1 http://www.salesforce.com/ 

SpotCloud http://www.spotcloud.com/ 
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1.4 Thesis Organization 

Thesis structure is organized as follows:  

Chapter 1 introduces the research subject, provides overview about the problem 

statement and addresses the objectives and motivation of this research. 

Chapter 2 presents a brief overview of the Grid and Cloud systems, their characteristics 

and the architectural models of these systems and their applications. It also presents an 

overview of the Software Agents, its definition and intention. 

Chapter 3 presents a related work to this research and a literature review of cloud 

federation. It concludes these works and discusses them in the research. 

Chapter 4 presents the architecture and design of Agent-based Manager for Grid Cloud 

System (AMGCS) in details, with explanations of system’s characteristics and services. 

Chapter 5 discusses the implementation details of the AMGCS, explaining its detailed 

services and metadata structure. Multiple tests will be conducted and presented to 

clarify the system’s functions and performance. 

Chapter 6 shows and discusses the experiments and tests performed on the AMGCS, 

evaluating its performance and throughput. It also compares the results with a single 

cloud system and shows the difference in optimization and performance.  

Chapter 7 concludes this research ideas and points out the limitations, advantages and 

the future works that can be done to extend the scope of this research. 
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Chapter 2 

 

 

Background 

 

 

This chapter gives an overview about Grid and Cloud systems, discusses the 

characteristics, architectural designs and services of their environments. It also provides 

an overview about Software Agent, its characteristics, when and why to use it. 

 

2.1 Grid Overview   

The Grid is the collection of computer resources from multiple locations to reach a 

common goal. Grids tend to be more loosely coupled, heterogeneous, and 

geographically dispersed. A Grid is a system that integrates and coordinates resources 

that are not subject to centralized control, i.e. live within different control domains, and 

it uses standard, open, general-purpose protocols and interfaces to address fundamental 

issues such as resource discovery and resource access. Grid is also a system that deliver 

nontrivial qualities of service, by allowing resources to be used in a coordinated fashion 

to deliver various QoS “response time, throughput, availability, and co-allocation of 

multiple resource types” to meet complex user demands.  
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Grid technology was initially developed to enable resource sharing within scientific 

collaborations, and then they are used in different large-scale collaborations. Sharing in 

Grid is not only in database or in files but also includes software and computational 

resources. Sharing resources in Grid is necessarily highly controlled, with resource 

providers and consumers defining clearly and carefully, just what is sharing, who is 

allowed to share, and the conditions under which sharing occurs. Grid systems build 

virtual supercomputers, which consist of different machines and networks.  

Grid computing offers a solution to intensive-computing problems. The grid-computing 

paradigm is the field of computing science that aims to offer a seamless, integrated 

computational and collaborative environment [5]. Computational grid has been defined 

as "a hardware and software infrastructure that provides dependable, consistent, 

pervasive and inexpensive access to high end computational capabilities" [6].  

The idealized features and properties that are required by a Grid system to provide users 

with a seamless computing environment are characterized as follows [7, 8]: 

• Large scale: a grid must be able to deal with a number of resources ranging from 

few to thousands, avoids potential performance degradation as a grid size increases. 

• Geographical distribution: grid’s resources may be located at distant places. 

• Heterogeneity: a grid hosts software and hardware resources that vary ranging from 

data, files, software components or programs to sensors, scientific instruments, 

display devices, computers, super-computers and networks. 

• Resource sharing: resources in a grid belong to many different organizations that 

allow other organizations (i.e. users) to access them. Nonlocal resources can thus 

be used by applications, promoting efficiency and reducing costs.  
8 

 



• Multiple administrations: each organization may establish different security and 

administrative policies under which their owned resources can be accessed and 

used. As a result, the already challenging network security problem is complicated 

even more with the need of taking into account all different policies. 

• Resource coordination: resources in a grid must be coordinated in order to provide 

aggregated computing capabilities. 

• Transparent access: a grid should be seen as a single virtual computer. 

• Dependable access: a grid must assure the delivery of services under established 

QoS requirements. The need for dependable service is fundamental as users want 

to guarantee they will receive predictable, sustained and high levels of performance. 

• Consistent access: a grid must be built with standard services, protocols and inter-

faces thus hiding the heterogeneity of the resources while allowing its scalability. 

Otherwise, application development and pervasive use would not be possible. 

• Pervasive access: the grid must grant access to available resources by adapting to a 

dynamic environment in which resource failure is commonplace. 

Using these properties and features, we can define a grid as geographically distributed 

hardware and software infrastructure composed of heterogeneous aggregated resources, 

owned and shared by multiple organizations coordinated to provide transparent, 

dependable and consistent computing support to a wide range of applications. These 

applications can perform distributed computing, high throughput computing, on-

demand computing, data-intensive computing or collaborative computing [8]. 
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2.1.1 Grid Architecture  

The focus of a Grid architecture is on the interoperability and protocols among 

providers and users of resources to establish the sharing relationships. The required 

protocols are organized into layers, presented in figure 2.1, according to [12]. 

 

The functionality of each layer is summarized as follows: 

• Fabric layer comprises the physical resources that are shared within the Grid, 

i.e. computational, storage and network resources and software modules.  

• Connectivity layer “contains the core communication and authentication 

protocols required for a Grid-specific network transaction” [12]. These 

protocols enable the data exchange between resources of the fabric layer.  

• Resource layer uses the communication protocols from the connectivity layer 

to control negotiation, initiation and monitoring for the sharing of functions of 

individual resources, it comprises information and management protocols. 

Figure 2.1: Grid architecture 
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• The Collective layer is responsible for all global resource management and for 

interaction with collections of resources, and this layer’s protocols implement 

sharing behaviors. Its functionalities include directory services, co-allocation, 

scheduling, monitoring and diagnostics services and data replication services. 

• The Application layer involves the user Grid-enabled application that is 

deployed on the Grid, i.e. an application that is designed to run in parallel and 

use multiple processors of a Grid setting. 

These layers of Grid Computing are interconnected and depend on each other; each 

layer uses the interfaces of the underlying layer. Together they create the Grid 

middleware and provide a comprehensive set of functionalities necessary for enabling 

reliable and efficient sharing of resources. 

As a Grid is a collection of resources, i.e. compute, storage, communication and 

software; some of these resources may be used by all grid users while other resources 

may have restrictions. The following are the main components of a Grid system: 

• Computation Resources  

Computing is the most common resource provided by the grid machines’ processors. 

The processors vary in speed, architecture, software platform, memory, storage, and 

connectivity. There are three main ways to utilize computation resources of a grid [9]. 

The first is to use it to run an existing application on an available machine on the grid 

rather than locally. The second is to use an application designed to split its work in such 

a way that the separate parts can execute in parallel on different processors. The third 

is to run an application that needs to be executed many times on different machines in 

the grid.  
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• Storage Resources  

The second most common resource used in a grid is data storage resources. A grid 

providing an integrated view of data storage is sometimes called a data grid [10]. Each 

machine on the grid usually provides some quantity of storage for grid use, even if 

temporary. Storage can be a memory attached to the processor or it can be a secondary 

storage, using hard disk drives or other permanent storage media to increase the 

capacity and reliability of data.  

• Communications Resources 

The rapid growth in communication capacity among machines makes grid-computing 

feasible, compared to the limited bandwidth available when distributed computing was 

first emerging. Therefore, another important resource of a grid is data communication 

capacity and communications within the grid and external to the grid. Communications 

within the grid are important for sending jobs and their required data to points within 

the grid. Some jobs require a large amount of data to be processed, that may not reside 

on the machine running the job. The bandwidth available for such communications can 

often be a critical resource that can limit utilization of the grid.  

• Special equipment and architectures 

Platforms on the grid often have different architectures, operating systems, capacities 

and equipment. Each of these represents a different kind of resource that the grid can 

use as criteria for assigning jobs to machines, while some software may only run on 

specific architectures. Such attributes must be considered when assigning jobs to 

resources in the grid, and the administrator of a grid may create a new artificial resource 

type that is used by schedulers to assign work according to policy rules. 
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2.1.2 Grid features 

When a grid is deployed it must meets a set of requirements, and in order to match the 

grid-computing capabilities to these requirements, it is better to keep in mind common 

motivations for using grid computing [11]. Some of these motivations can be explained 

in terms of the grid as a high throughput computing system and high performance 

computing system. The main motivations for using Grid are:  

• Fault Tolerance and Reliability 

If a job submitted for execution at a specific node in the grid, the job allocates 

appropriate resources based on availability and the scheduling policy of the grid. Now 

if that node crashes for some reason, the grid makes provision for automatic 

resubmission of jobs to other available resources. To illustrate this concept, take as an 

example the Data Grids, which are grids for managing and sharing a large amount of 

distributed data. They serve multiple purposes and can be used to increase data transfer 

speed. Several copies of data are created in geographically distributed areas, whenever 

a user needs the data for computational purpose it can be accessed from the nearest 

machine hosting the data. Hence increase overall computational efficiency.  

• Balancing and Sharing Varied Resources 

Balancing and sharing resources provides the necessary resource management features. 

This aspect enables the grid to equally distribute tasks to the available resources. If the 

system in the grid is over-loaded, the scheduling algorithm can reschedule some tasks 

to other systems that are idle. In this way, the grid-scheduling algorithm transparently 

transfers the tasks to a less loaded system, making use of the underutilized resources. 
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• Parallel Processing 

Some jobs can be broken into multiple tasks, each of which could be run on a different 

machine. Such jobs can be written to run as independent tasks and then the results from 

these tasks combined to produce the output. However, there might be constraints on the 

types of jobs that can be partitioned or a limitation on the number of tasks into which a 

job can be divided, to maximize the performance. If two of these tasks are running on 

the same set of data, then some locking mechanism similar to semaphores in operating 

systems must exist to guarantee data consistency. Therefore, constraints exist on the 

type of job to make it grid-enabled application.  

2.1.3 Grid Applications  

The different types of computing support offered by grids can be categorized according 

to the challenges they represent from the grid architecture point of view. The 

categorizations include the following: 

– Distributed supercomputing support: Allows applications to use grids to couple 

computational resources in order to reduce the completion time of a job or to tackle 

problems that cannot be solved on a single resource. 

– High-throughput computing support: Allows applications to use grids to utilize 

unused processor cycles to work in loosely coupled or independent tasks. 

– On-demand computing support: Allows applications to use grids in order to retrieve 

re-sources that cannot be cost-effectively or conveniently located locally. 

– Data-intensive computing support: Allows applications to use grids to synthesize 

new information from distributed data repositories, digital libraries and databases. 
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2.2 Cloud Overview 

There are many definitions for the term Cloud Computing from academics, analyst and 

industry practitioners. They differ in the description and definition of Cloud Computing 

from the perspective of the provider, end users, architectural aspects and other 

perspectives. From a scientific literature, a detailed definition of Cloud Computing 

from the Berkeley RAD Lab [13] is the following: 

“Cloud Computing refers to both the applications delivered as services over the 

Internet and the hardware and systems software in the datacenters that provide those 

services. The services themselves have long been referred to as Software as a Service 

(SaaS). The datacenter hardware and software is what we will call a Cloud. When a 

Cloud is made available in a pay-as-you-go manner to the general public, we call it a 

Public Cloud; the service being sold is Utility Computing. We use the term Private 

Cloud to refer to internal datacenters of a business or other organization, not made 

available to the general public. Thus, Cloud Computing is the sum of SaaS and Utility 

Computing, but does not include Private Clouds. People can be users or providers of 

SaaS, or users or providers of Utility Computing” [13].  

The data center is the main Cloud component that contains the physical hardware 

resources for storage and computing, these two services together with software are 

offered in a pay-as-you-go manner. One characteristic of Cloud Computing is the 

integration and combination of hardware and system software with applications, that is 

integration of utility computing and SaaS.  
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Another definition by Foster et al. [14]: “large-scale distributed computing paradigm 

that is driven by economies of scale, in which a pool of abstracted, virtualized, 

dynamically-scalable, managed computing power, storage, platforms, and services are 

delivered on demand to external customers over the Internet”. This definition shows 

two aspects, virtualization and scalability. The virtualized resources are provided 

through an Application Programming Interface (API) or a service. Resources, at the 

hardware level, can be added or removed according to the demand received through the 

interface, which itself is not changing to the user. This allows more flexibility and 

scalability on the physical layer of the Cloud without any impact on the interface to the 

end user. Figure 2.2 illustrates the Cloud Computing concept. 

Figure 2.2: Cloud computing concept 
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In other words, the Cloud is a large group of interconnected machines extends beyond 

a single enterprise. Resources of the cloud such as storage, hardware, network and 

software are provided in a X-as-a-Service manner.  

The most important features of Clouds are the virtualization and the dynamic scalability 

on demand, so a cloud system consists of a group of virtualized computers dynamically 

provisioned as one or more unified computing resource.  

All Cloud services are offered through the Internet to users across multiple platforms, 

via a defined API or Web browser, depending on the user’s usage. In cloud computing 

platforms, resources need to be dynamically reconfigured virtualization, consumers’ 

requirements can vary over the time and amendments must be accommodated. 

 

 

2.2.1 Cloud Architecture  

In literature, there are a number of concepts for Cloud structures, these classifications 

may appear to be different from one another to varying extent, but finally they describe 

and classify a related structure and share a common denominator [15-17]. Most of these 

concepts do not provide a description that is a sufficiently generic for Cloud structure 

and its components, but the concept that is used to describe a generic structure and 

components of a cloud is the three-layered concept. Figure 2.3 shows the architecture 

of the Cloud. 
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Cloud Computing comprises different IT capabilities, namely infrastructure, platforms 

and software. These different “capabilities” may also be referred to as “layers”, because 

Infrastructure, Platform and Software are built successively onto the forerunning level 

and are logically connected as different layers of the Cloud architecture. Therefore, the 

three architectural layers of Cloud Computing are: Software as a Service (SaaS), 

Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) [18]. 

 

Figure 2.3: Cloud Architecture 
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The three layers are illustrated in Figure 2.4, where cloud services are related to the 

cloud infrastructure. 

 
- Infrastructure as a Service (IaaS): offers storage, computing and network resources, 

accessed remotely with some benefits like pay per use, security, and reliability. Instead 

of selling raw hardware infrastructure, IaaS is offered as a virtualized infrastructure as 

a service. Examples are Google Compute Engine, Windows Azure Compute, Amazon 

Elastic Compute, Google Cloud Storage and Amazon Simple Storage. 

- Platform as a Service (PaaS): is an abstraction layer between the virtualized 

infrastructure “IaaS” and the software applications “SaaS”. Applications can be written 

and uploaded according to the specifications of a specific platform without worrying 

about underlying hardware infrastructure. Examples include Salesforce and Google 

App Engine, which allows applications to be run on Google’s infrastructure. 

- Software as a Service (SaaS): is the software which is owned, delivered and managed 

remotely by providers, offered in a pay-per-use manner. Because it is the actual 

software applications that are accessed and used, it is considered as the most visible 

layer of the Cloud for end-users. Examples are Google Apps (Gmail, Docs and 

Spreadsheets) and Salesforce.com.   

Figure 2.4: Cloud Layers 
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2.2.2 Cloud Features: 

The benefits of Cloud Computing are many; the major advantages of them could be 

summarized as follows: On-demand self-service, location-independent resource 

pooling, ubiquitous network access, transference of risk, lower costs, ease of utilization, 

quality of service, and reliability. For all different types of Cloud customers, the major 

opportunities known for X-as-a-Service offerings are offered by the Cloud. From the 

perspective of the user, the utility-based payment model is one of the benefits of Cloud 

Computing. There is no need for up-front infrastructure investment; software licenses, 

risk of unused but paid software licenses, hardware infrastructure, maintenance and 

staff.  

Users of the Cloud services only use the volume or capacity of resources they actually 

need and pay only for the volume of resources they actually use, while they take 

advantage of the flexibility and scalability of the Cloud, as it enables easy and fast 

scaling of computing resources required on demand. Figure 2.5 shows different parties 

that can benefit from the Cloud.   

Figure 2.5: Cloud Parties 
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2.2.3 Cloud Models: 

Cloud models are the description of the physical arrangement of the cloud 

infrastructure. Generally, clouds are classified according to the owner of the Cloud data 

centers. From cloud definitions aforementioned in section 2.2.1, Cloud Computing can 

be characterized as the obtaining of IT capabilities from external providers as a service. 

External data centers, e.g. those of Amazon, Azure or Google, are the foundation on 

the raw hardware level to deliver IT resources or capabilities as Cloud services. To 

differentiate between internal Cloud infrastructures “internal Clouds” and external 

providers of Cloud services “external Clouds”, two main types of cloud models are 

commonly used: Private for internal Clouds and Public for external Clouds [13, 17]. 

• Public Cloud: the most common type of cloud models, where data center hardware 

and software are run by third parties, e.g. Google and Azure, and expose their 

services to companies and consumers via the Internet. It is considered for web-based 

applications used by individuals and businesses where the application is a one-size-

fits-all type of approach. It is not restricted to limited user base; it is made available 

in a pay-as-you-go manner to the public [13]. Examples of applications on public 

clouds include web-based emails, social media and online multimedia services. 

• Private Cloud: refer to internal data centers, fully owned by a company who has 

control over the applications run on the infrastructure, where they run and the 

people using it [13]. This cloud is considered as dedicated for a given application 

or customer including being a part of the same physical location or in a remote 

location, and is customized to the exact needs of that application or customer. It 

relies on the virtualization of existing infrastructure for an organization, leading to 

increased utilization as described earlier. A key benefit here is the gain of all 

advantages of virtualization while retaining full control over the infrastructure [19]. 
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As their names imply, public and private clouds differ by the degree with which the 

customer controls the configuration and who has access to the data. In a public cloud, 

there is little influence on the part of the customer, and the only interface is through the 

use of the web-based application. In a private cloud, the customer can control access, 

the platform type and even the hardware used; but the capital outlay is greater.       

Private clouds are also used when the customer is geographically diverse and wants to 

centralize their technology needs so that it is accessible from any of their locations [20].  

Public and private clouds represent the two main cloud models, but there are other 

adopted models like Hybrid cloud and Community cloud: 

• Hybrid Cloud: where Public and Private Clouds are combined, and applications 

could be delineated such that some exist on a public cloud and others exist on a 

“secure” dedicated private cloud. This way, companies can benefit from scalable 

resources offered by external Cloud providers while keeping specific applications 

or data inside the firewall. 

• Community Cloud: an emerged model of hybrid cloud arrangement for businesses 

that are in some way related to each other, for example, different departments within 

a large corporation even if the actual work being performed by these different 

departments was independent of each other. It is an attempt to receive the cost 

benefits of a shared tenancy of a public cloud with the security and control provided 

by a private cloud, this led to multiple businesses with similar needs using a single 

private cloud infrastructure. The physical infrastructure of the cloud can be local or 

remote to the businesses that it supports, and its ownership can be the supported 

businesses or a third party [20]. Figure 2.6 shows the different models of the Cloud.  
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2.3 Gird Computing VS. Cloud Computing  

The description of Grid Computing in section 2.1 and Cloud Computing in section 2.2 

show that there are similarities between Grid and Cloud Computing. This has motivated 

many discussions in commercial and scientific literature asking if Grids and Clouds are 

the same, if Cloud is only a new hype of marketing, or if there are significant differences 

between Grid and Cloud Computing. 

Cloud computing is a computing technology that uses the Internet and remote servers 

to maintain data and applications. It allows consumers to use applications without 

installation and access their personal files at any computer through Internet access [13]. 

It also allows for more efficient computing by centralizing memory, processing, storage 

and bandwidth.  

Figure 2.6: Cloud Types 

23 

 



Cloud computing emerges from grid computing and provides on-demand resource 

provisioning. Grid computing may or may not be in the cloud depending on the type of 

users who are using it. If the users are integrators and system administrators, they care 

about how things maintained in the cloud, they install and virtualize servers and 

applications. If the users are consumers, they do not care how things are run in the 

system.  

Grid computing requires using software that can divide and farm out pieces of a 

program to several thousand computers. One problem with the grid is that if one piece 

of the software on a node fails, other pieces of the software on other nodes may fail if 

that component does not have a failover component on another node. Problems can 

arise if components rely on other pieces of software to accomplish the computing tasks. 

Large system images and hardware associated to operate them can cost a large capital 

and operating expenses.  

Grid and Cloud computing are scalable, scalability is accomplished through the load 

balancing of application instances running individually on a range of operating systems 

and connected using Web services, also CPU and network bandwidth is allocated and 

de-allocated on demand. The system's storage capacity increased and decreased 

depending on the number of instances, users and the amount of data transferred at a 

given time. Table 2.1 compares between Grid and Cloud Computing [19-22]. 
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Table 2.1: Comparison: Grid Computing and Cloud Computing 

Topic Grid Computing Cloud-Computing 

The problem Computation over large data sets,   
or of parallelizable Compute   
intensive applications. Problem    
areas are often in pure research or     
in compute-intensive commercial  

On-demand scalability for all 
applications, including 
research, development and 
business applications. 

Main Target 
Market 

First – Academia 

Second – certain industries. 

Industry and academia. 

The consumer A member of a defined grid 
community, or a function within   
a large company 

Open to anyone who can pay 

 

User motivation Low cost for large computations 
and processing of large amount    
of data. 

- On demand scalability 

- Lower IT infrastructure costs 
(operations, energy, personnel) 

The capability 
offered 

Access to computers Access to services, VMs and 
applications. 

Unit of work Grid computing application;          
a batch job, or a group of parallel 
batch jobs with a storage service 

Either a Virtual Machine 
instance dedicated to the user 
where anything can be run, or 
using an online application 
with a Storage Service 

Administration Distributed, Virtual organizations. Centralized. 

Means of 
utilization 

Allocation of multiple servers  
onto a single task or job. 

Virtualization of servers; one 
server to concurrently compute 
several tasks. 

Typical usage 
pattern 

To execute jobs, i.e. execution     
of a program for a limited time. 

To support long-running 
services 

Abstraction level Low abstraction, details exposed High abstraction level. 
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2.4 Software Agents Overview  

Software Agent is an autonomous component that interacts with its environment and 

with other agents on a user's behalf. It is kind of software abstraction, which provides 

a convenient and powerful way to describe a complex software entity, defined in terms 

of its behavior. Software Agent has the following capabilities, which make it a unique 

solution suitable for specific circumstances [23]:  

o Persistence; code is not executed on demand but runs continuously and decides for 

itself when it should perform some activity.  

o Autonomous; agents have capabilities of task selection, prioritization, goal-directed 

behavior, decision-making, operating as a standalone process and performing 

actions without human intervention. 

o Communicative; agents are able to engage other components through some sort of 

communication and coordination; communicate with users, other software agents, 

other software processes or they may collaborate on a task. 

o Reactivity; agents are able to perceive and respond to changes in its environment. 

So an agent is a computer system that is capable of autonomous actions, that is, deciding 

and figuring out what needs to be done to satisfy its objectives. A multi-agent system 

consists of a number of agents; interact by cooperating, coordinating and negotiation 

with one another. When several agents work together and draw on the broad collection 

of their capabilities to achieve a common goal, this is called Cooperation. While 

Coordination is the process of achieving the state in which agents’ actions fit in well 

with each other. The Negotiation is a process by which a group of agents communicate 

with each other trying to come to a mutually acceptable agreement on some matter [24]. 
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2.4.1 Characteristic of Software Agents 

Characteristics of Software Agents are many, these characteristics work together to 

make agent-oriented systems more flexible, the following are some of them [25]: 

 Autonomy: an agent is responsible for its own thread of control and can pursue 

its goal without being dependent on other agents. 

 Adaptability: an agent’s behavior may be changed after it has been deployed. 

 Collaboration: agents communicating and working cooperatively with other 

agents to form multi-agent systems that are working together on some tasks. 

 Knowledgeable: an agent is capable of reasoning about its knowledge and goals. 

 Persistence: the infrastructure enables agents to retain knowledge and state over 

extended times, including robustness to face any potential run-time failures. 

 Mobility: The ability to move from one context to another, either by moving the 

agent’s code and starting the agent again or by serializing state and code, 

allowing an agent to continue execution in a new context with retaining its state. 

In addition, software agent is defined in terms of its behavior, rather than being defined 

in terms of methods and attributes like other programming languages. Figure 2.7 shows 

the paradigm shifts of abstraction level of languages over the time. 

 

 

 

  

Figure 2.7: Paradigm Shifts 
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2.4.2 Types of Software Agents 

• Personal agents: present some "personality" or "character", interact directly 

with a user, monitor and adapt to the user's activities, learning the user's style 

and preferences, and automate and simplify certain rote tasks.  

• Mobile agents: to be sent to remote sites to aggregate and analyze data, 

collecting information or performing actions and then return with results. Such 

data-intensive analysis is better to be performed at the source of the data rather 

than transferring big raw data. 

• Collaborative agents: communicating and interacting in groups, they represent 

organizations, users, and services. Multiple agents negotiate and share 

information through exchanging messages.  

 

2.4.3 Why and when to use Software Agents   

It is important to use high-level abstractions in building software that is complex to 

manage the complexity. An abstraction focuses on the essential and important 

properties of a problem and hides components that are incidental of that problem. 

Agents manage complexity by providing a new way of describing a complex process. 

Using agents make it easy to define a system in terms of agent-mediated processes. 

Software agents are appropriate for use in a wide variety of applications. They are well 

suited for use in applications that involve communication between components or 

distributed computation, also for applications that reason about the objects or messages 

received over a network.  
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Multi-agent systems are also suited for applications that require distributed, concurrent 

processing capabilities. They can make it easier to build several kinds of complex 

systems. However, it must be remembered that software agents are appropriate for use 

to implement certain kinds of applications; but in other problem domains, other 

technologies could be more appropriate. 

One of the benefits of the agent-based approach is that a complex processing function 

can be broken into several smaller, simpler ones. Since each individual agent can be 

crafted to be an expert in performing a particular task or solving a specific problem, 

systems could be built that show complex behaviors by using a group of relatively 

simple agents.  

As known, essential characteristics of cloud computing include resource pooling and 

resource sharing. In agent-based cloud computing, the cooperation and coordination 

protocols of software agents are adopted to automate the activities of resource pooling 

and sharing in the clouds that are pooled to serve multiple cross-platform users [26]. 
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Chapter 3 

 

 

Related Work 

 

 

There are projects focusing on cloud computing management with a variety of 

architectures and services. In this chapter, we study cloud resource management and 

mention some other systems that are related to this research, conclude these works and 

discuss them. We also present a literature review for Cloud Federation as a technique 

for integrating Cloud resources. 

 

3.1 Cloud Resources Management 

There are a number of management systems for cloud services, and some of these 

systems can be found as a locally installed management application with a GUI, 

command-line tools, extensions of a web browser or as online tools. They provide 

their own management interfaces, designed to specific needs without the ability to 

interact with other cloud deployments of the same system, particularized to work only 

with a specific cloud technology and not compatible with others. Some IaaS systems 

are replicating the same capabilities offered by public providers like Amazon AWS. 

These may include Nimbus, Eucalyptus, OpenStack and OpenNebula [27, 28].  
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We found some existing systems for managing grid of IaaS clouds, some of them are 

suitable for only services of one cloud [29], and others for multiple services from 

multiple providers, like ‘Karlsruhe Open Application for cLoud Administration’. It is 

a web based application for managing AWS compatible cloud services, allows for 

working seamlessly with a variety of services of various clouds like Google Storage, 

S3 and Walrus storage services. [30, 31].  

There is also an open source, cross platform, cloud management system called Scalr; 

provides server management and auto scaling disaster recovery [32]. The manager has 

the ability to scale the virtual infrastructure according to the load based on RAM, 

disk, CPU, network or date.  

Furthermore, there are open source initiatives like deltacloud [33], jcloud [34] and 

Libcloud [35], in addition to their limitation to a specific interface or programming 

language, they are mainly concerned with the management of public IaaS providers 

with basic support for some private IaaS systems. While they manage virtual 

instances, they do not concern about the underlying physical infrastructure. Other 

systems provided from academia offer a generic model for management to be adapted 

to any product. As their model was built with an exact technology, REST or SOAP 

web services, their interface is fixed. It is not easy to extend them to offer other kind 

of interfaces such as web pages or command-line tools. 

If we look to other related works that use software agents in the management of the 

grid clouds, we can find some examples like [36]; they simulate a proposed 

framework based on agents to manage resources for service workflows, with a 

hierarchical architecture for separating decisions of resource management on service, 

workflow and cloud levels.  
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Others proposed an adaptive model for resource allocation for finding a proper data 

center according to the consumer location and the data center workload, also 

simulated using the agent-based testbed [37]. Another prototypal implementation 

found for an interface that is compliant with Open Cloud Computing Interface [38] to 

manage IaaS resources. This interface developed as an entryway to a standard FIPA 

multi agent system, offers services for IaaS management and resources negotiation 

[39]. Another group has presented an agent-based protocol for cloud service 

discovery. Taking advantage of an ontology description (semantic description of each 

resource), they developed a multi-agent system by introducing an ontology-based 

matching, using database for keeping track of historical data to make 

recommendations based on the prediction of the attribute value [40].  

We also found that the number of works that involve the use of software agents in the 

process of managing grid clouds are limited, most of them either for resource 

negotiation / brokering or they are just a simulated ideas for resource allocation 

without implementation on real clouds [41, 42, 43]. We will study the works 

aforementioned, their functions of management and how they were designed. The 

motivation for choosing these systems is to study the resource management 

architectures, especially in the computational cloud system at IaaS level. 
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3.2 Cloud Federation 

Cloud Computing offers three main service models; Infrastructure as a Service ‘IaaS’, 

Platform as a Service ‘PaaS’ and Software as a Service ‘SaaS’, in addition to others. 

IaaS services include Compute Clouds and Cloud Storage. PaaS provides platforms 

and execution environments, and SaaS provides only software. We can arrange these 

models as a stack as they relate to each other. The IaaS layer is the lowest level close 

to the underlying hardware. In this layer, we can distinguish two service types: 

computational and storage. Examples of clouds that provide infrastructure services are 

Google Compute Engine, Amazon EC2 and Azure Compute (Table 1.1). Next layer is 

the PaaS layer; examples include Amazon Elastic Beanstalk, Windows Azure and 

Google AppEngine. The third layer, SaaS e.g. Google Docs, is based on IaaS or PaaS. 

In this research we are focusing on the IaaS layer as it provides the compute and 

storage services, we mainly use the computing services from different clouds using 

our proposed manager to execute jobs on these clouds. Grid clouds are similar to the 

concept of cloud federation, where services comprised from different clouds are 

aggregated together.  

The term Federated Cloud has been used interchangeably with hybrid cloud in that 

both described a mixture of public and private clouds that are aligned with the needs 

of a given customer. Recently, however, the federated cloud term is being used to 

describe a different kind of cloud business model that is more aligned with a utility 

network model. The physical cloud resources are themselves being considered as a 

service, and cloud providers are offering their resources for other providers to expand 

the global cloud coverage offered to their customers without needing physical 

resources in every geographic locale. 
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In other words, a customer can obtain cloud services from a single provider, and that 

provider would obtain cloud resources in any geographical location via a local cloud 

provider, in a manner that is seamless to the customer and removes any latency 

concerns by being local to the point of use [20]. Consequently, the cloud become a 

federation of infrastructure providers or alternatively there will be a federation of 

clouds, making a collection of clouds that interoperate together, i.e. exchanging data 

and computing resources through defined interfaces. In cloud federation, each single 

cloud remains independent but can interoperate with other clouds in the federation 

through standardized interfaces. Figure 3.1 shows the layers of the cloud with 

different types of integrations (Horizontal and Vertical).  

 

There are two types of federation, Horizontal federation and Vertical federation. 

Horizontal federation expands the capacity of a cloud by integrating a new site and it 

takes place on one level of the Cloud Stack e.g., infrastructure level. Vertical 

federation allows the integration of new infrastructures to provide new capabilities by 

spanning multiple levels [44].  

Figure 3.1: Integration types in the Cloud 
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Presently, a Cloud Federation is still a theoretical concept, as there is no common 

standard for cloud interoperability. A new initiative is trying to develop a common 

standard is the Open Cloud Computing Interface, with a goal of a standardized API 

among clouds. This enables interoperability among diverse providers and enables a 

new business models and platforms like 1) “Integrators” for advanced management 

services spread over several Clouds, and 2) “Aggregators” for a single common 

interface to multiple Cloud providers. Interoperability and open standards between 

public and private clouds enable a high level of flexibility for uses, and users also 

would be able to partly outsource processes and data to clouds that are privacy-

sensitive or less secure. The possibility of building federated clouds would enable 

specialization of single clouds as well as a broader choice for users [19]. 

One important point to be mentioned here is that Cloud Federation requires one 

provider to rent or sale computing resources to another provider. Those resources 

become a permanent or temporary extension of the buyer's cloud computing 

environment. Therefore, an agreement must be initiated between different cloud 

providers in order to make this integration “federation” valid. 

The idea of managing grid cloud services, especially infrastructure services, emerges 

a new way of computing technology through grid cloud system. The related works 

that aggregate multiple clouds together are only simulated works, no real clouds are 

involved in their experiments. In contrast, the Agent-based Manager for Grid Cloud 

System is using real clouds. Furthermore, there is no need for an agreement between 

providers, as the Manager is integrating all APIs of these Clouds together and then 

managing resources and tasks using the proper API.  
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Chapter 4 

 

 

Agent-based Manager for Grid Cloud System (AMGCS) 

 

 

This chapter presents our work by providing the architecture of the Agent-based 

Manager for Grid Cloud System (AMGCS), with explanations on its functions and 

services. We introduce this chapter by providing a brief overview about Cloud 

management services, architectures and main phases in Cloud resources integration that 

AMGCS is based on in our study. 

 

4.1 Grid Cloud Management Overview    

Before we discuss our work in this thesis, we introduce this chapter by presenting an 

overview about some of the important aspects that affect the management in the grid 

cloud system. Architecture and services provided by the resource management system 

are affected by the type of the resources they manage. For computational grid cloud, 

the main resources that are being managed by the resource manager are the compute 

resources while in a data grid cloud the focus is to manage data distributed over cloud 

geographical locations. In this thesis, we only focus on a grid cloud that aggregates and 

manages the compute and storage resources. 
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Scheduling is an important component of the manager, which plays an important role 

in the overall performance of an application running on the grid cloud. Proper 

scheduling requires information about the status and availability of the resources in the 

grid clouds.  

In a Grid Cloud management system, the following are frequently used terms: 

- A resource is a term used to denote anything that can be scheduled and required to 

carry out an operation such as virtual machines, disk space, network and so forth.  

- A job is any application that needs any kind of resources, i.e. bandwidth, compute, 

storage or any other resource to be run and to complete its tasks.  

- The properties of a job are the parameters like memory or CPU requirements, 

priority, deadline, cost, reliability… etc. 

 

4.1.1 Grid Cloud Management System Structures   

A manager can be implemented in different structures, which determine the architecture 

of the resource management system and the scalability of the system. These structures 

are classified as centralized, hierarchical or decentralized, shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

Decentralized Centralized 

Grid Cloud 
Manager 

Architecture 

Hierarchical 

Figure 4.1: Categories of Grid Cloud Manager 
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• In a centralized model, jobs are submitted to a single manager that is responsible 

for scheduling them on the available resources. As all scheduling information 

is available at single place, the scheduling decisions are optimal but not very 

scalable in large systems. As the size increases, it would be difficult to keep all 

information about all resources states. Figure 4.2 shows a central manager 

architecture. 

 

 

 

 

 

 

 

 

• In a decentralized model, there is no central manager as the managers are 

distributed on multiple locations. This approach is scalable and suits large 

systems. However, the managers should cooperate together in making 

scheduling decisions, and the generated schedule may not be the optimal one. It 

is perfect for peer-to-peer architectures and dynamic environments. Figure 4.3 

shows a decentralized manager architecture. 

 

Figure 4.2: Centralized Manager Architecture 
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• In a hierarchical model in Figure 4.4, the managers are organized into a 

hierarchy. High level resource entities are scheduled at higher levels and lower 

level. The smaller sub-entities are scheduled at lower levels of the manager 

hierarchy. This model is considered as a combination of the above two models. 

 

 

 

 

 

 

 

 

 

  

Figure 4.3: Decentralized Manager Architecture 

Figure 4.4: Hierarchical Manager Architecture 

39 

 



One way of classifying a manager is by the scope of its operation. A centralized 

manager schedules and manages all jobs submitted to the grid cloud, whereas a 

decentralized manager handles jobs submitted to a particular manager in the grid cloud. 

A centralized manager has a full knowledge and control on the resources and jobs. 

Hence, it can perform good scheduling, but easily become a single point of failure and 

a performance bottleneck. On the other hand, decentralized manager architecture scales 

well but with low optimal scheduling performance due to the multiplicity of managers.  

Scheduling policies used by the grid cloud system can be classified into two major 

categories: user-oriented scheduling and system-oriented scheduling. User-oriented 

scheduling try to optimize the performance for an individual user by minimizing the 

response time for each job submitted by the user, whereas system-oriented scheduling 

often strives to maximize over system throughput, average response time, fairness or a 

combination of these. [46]. A decentralized manager uses a user-oriented policy, 

whereas a centralized manager performs system–oriented scheduling. The comparison 

between a centralized and decentralized manager is summarized in Table 4.1.  

 Table 4.1: Comparison between Centralized and Decentralized Manager 

  

 Centralized Manager Decentralized Manager 

Scalability Not scalable Scalable 

Fault tolerance Single point of failure More fault tolerance 

Architecture Client-Server 
architecture 

Peer-to-Peer and dynamic 
environments 

Information 
Storage 

Keep information about 
all resources and jobs 

Don’t keep information 
about all resource and jobs 

Performance System-oriented User-oriented 
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4.1.2 Scheduling Phases  

A grid cloud Scheduler is an important component in a management system. The user 

essentially interacts with the resource manager that hides the complexities of Grid 

Cloud computing. The grid cloud scheduler does not own the physical resources and 

therefore does not have control over them [47]; hence, the Scheduler must make best 

effort decision and submit the job to the resources selected.  

In general, the scheduler function is to map jobs to the suitable resources in the grid 

cloud. The scheduler involves three main phases: Resources Discovery, Resource 

Selection and Job Execution (see Figure 4.5). Grid Cloud scheduling maintains a list of 

available resources and selects a best set of resources depending on users requirement 

and load balancing strategies. Then the scheduler dispatches the job to a selected virtual 

machine to execute it and finally it collects the results.  

 

Figure 4.5: Scheduling Phases1 

 

1 This Figure is taken from Schopf, J., "Ten Actions When Grid Scheduling" [48]. 

Phase 1: Resource Discovery 

  1. Authorization 

2. Application Definition  

3. Min. application Requirement 

Phase 2: Resource Selection 

  4. Gathering Information 

5. Selecting Resource 

Phase 3: Job Execution 

  6. Advanced Reservation 

7. Job Submission 

8. Tasks Preparation 

9. Monitoring Progress 

10. Job Completion 

11. Clean up tasks  
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Phase 1: Resource Discovery  

Resource discovery is an important function of the resource management, used by the 

scheduling system to obtain information about the resources available. The goal of this 

task is to identify a list of authorized virtual machines that are available to a given user. 

Approaches to resource discovery can be classified as query-based or agent-based [49]. 

In the mostly used approach, query-based, the resource information store is queried for 

resource availability. In agent-based discovery, agents traverse the grid cloud system to 

gather information about resource availability. In this thesis, we use the agent-based 

approach but with alteration in the manner of discovering resources in the grid clouds. 

Phase 2: Resource Selection  

The scheduler selects resources to execute jobs depending on load balance algorithms. 

To select a resource, two steps must be done: gathering information about resources 

and making decision depending on expected starting time, the usage duration of 

resources, the CPU load on the resource… etc. [50]. The information about resources 

in the grid clouds is stored and maintained for scheduling uses. 

Phase 3: Job Execution 

When resources are chosen, the application can be submitted to the resources. Job 

submissions may be as easy as running a command or complicated as running series of 

scripts and may or may not require setups or staging. The simple acts of job submission 

can be complicated because of the lack of standards for job submission. The preparation 

stage may involve setup, stage, reservation or other required actions in order to prepare 

the resource to execute the job.  
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4.2 Agent-based Manager for Grid Cloud System (AMGCS) Overview  

Resource management is important in the grid cloud system, its functions are to identify 

resource requirement, match and allocate resources, schedule and monitor them and to 

utilize them efficiently. Grid Cloud resource management focuses on the virtualization 

and coordinated use of heterogeneous and distributed resources. The current trend in 

Cloud systems is the adoption of the software agents for Grid Cloud architecture, as the 

software agent characteristics that we already presented in chapter 2 are compatible 

with cloud environments.  

The compatibility of software agents’ characteristics with Grid Cloud architecture 

allows us to design a manager for such architectures based on software agents. Using 

agents in managing grid clouds’ resources enhances the interoperability, scalability and 

flexibility with high platform independence. 

Different resources in a grid cloud are varying in operating systems, CPUs, VM images, 

memory… etc. This difference can lead to complex management for these resources. 

Software agent is well suited to address issues that arise from such a heterogeneous and 

remotely controlled but globally shared system. Dealing with changing requests and 

supporting autonomous resource mapping accentuate the need for cloud resource 

management systems, especially those systems that are capable of continuously 

managing the process of resource reservation by monitoring current service requests, 

amending future service requests, and autonomously adjusting schedules to 

accommodate dynamically changing resource demands [51].  
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Software agents are the most appropriate option for autonomously managing cloud 

resources in AMGCS, as users need to make decisions on selecting appropriate 

providers and negotiate with them to achieve “ideal” service contracts. Also providers 

need to make decisions on selecting appropriate requests to accept and execute 

depending on the resource availability, both current and future demands for services, 

and existing service obligations. Since agents are capable of making decisions when 

carrying out tasks on behalf of their users, and interacting with other agents through 

negotiation, cooperation, and coordination protocols, all of the above-mentioned 

requirements (challenges) motivates to adopt autonomous agents to allocate resources 

amid dynamically changing resource demands. Agent-based cloud computing is 

concerned with designing software agents for bolstering cloud service discovery, 

negotiation, and composition [52, 53]. 

In this thesis, we introduce an Agent-based Manager for Grid Cloud System (AMGCS) 

to group multiple clouds together (Figure 4.6) and run complex jobs that need high CPU 

by using the CPUs of the virtual machines in the grid clouds. The AMGCS aims to: 

• Make full use of available computing power and built-in load balancing, 

• Provide flexible access to virtual machines, 

• Utilize cloud resources usage, 

• Introduce an agent-based prototype for managing cloud resources and executing 

complex tasks using these resources, 

• Be more scalable to more users and virtual machines.   

Cloud System n 

AMGCS 

Cloud System 1 Cloud System i 

Figure 4.6: Managing integrated cloud systems 
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4.3 Grid Cloud concept 
Grid cloud is built on the concept of Cloud Federation, which we mentioned in section 

3.2. So a grid cloud  is a way in which services characterized by interoperability features 

are aggregated from different clouds in one grid. It addresses the problems of vendor 

lock-in and provider integration, in addition to increasing the performance and the 

disaster-recovery process through techniques like co-location and geographic 

distribution. It may also enable further reduction of costs due to partial outsourcing to 

more cost-efficient regions. This concept satisfies some security requirements that 

might be necessary for some users, by using the fragmentation technique to execute 

part of the job on one cloud and the other part on another cloud, then combining results 

without allowing each cloud to know the actual job context.  

As mentioned in section 3.2, the two types of federation are horizontal and vertical. 

Horizontal federation expands the capacity of a cloud by integrating a new site and it 

takes place on one level of the Cloud Stack, e.g. infrastructure level, illustrated in 

Figure 4.7a, showing integration link between different clouds on the same level. 

Vertical federation allows the integration of new infrastructures to provide new 

capabilities by spanning multiple levels [44], illustrated in Figure 4.7b.   

Figure 4.7:      a) Horizontal Federation    b) Vertical Federation 
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Applying this concept in our manager adds benefits like resource redundancy (parallel 

usage of similar services in different domains), resource relocation (data items, VM 

images or source code from domain to another) and combination of complementary 

services by combining different types to combined services [45]. 

Here we focus on the horizontal federation as it decreases the provider dependency and 

increases the availability (across multiple geographic regions). Therefore, if the QoS of 

executing jobs/tasks specifies the lower cost, for example, it can be executed on a cloud 

with the lowest cost or any other specific QoS required. Unlike Cloud Federation, 

AMGCS does not require an agreement between providers to integrate their services 

and resources, the manager itself combines the APIs of all grid clouds. 

4.4 AMGCS Architecture 

The general schematic of the Grid Cloud resource Manager that we designed in this 

thesis is illustrated in Figure 4.8.  

Figure 4.8: AMGCS structure 
46 

 



Because AMGCS provides different functions such as managing and monitoring 

resources and jobs, it consists of different agents, each of which is associated with a 

cloud API and managing resources on that cloud. The architecture model of AMGCS 

consists of two modules: a Scheduler and Monitor modules. The scheduler is 

responsible for managing resources available in the grid clouds, and allocates proper 

resources to jobs. The monitor module is monitoring jobs’ executions and the 

resources reserved on the clouds for these jobs. These modules are interacting 

together in order to achieve their tasks properly, as illustrated in figure 4.9. 

 

These two modules are composed of sub-modules, each one associated with an agent, 

these sub-modules are job scheduling, job decomposition, job manager, resources 

metadata, each one with specific role but they are communicating together. The role 

of job scheduling is to schedule jobs according to available resources and user desires, 

job decomposition helps in decomposing job into tasks (based on job structure) to 

assign each task to a proper resource according to the information collected about all 

resources available in the grid clouds. Job manager monitors the execution of the jobs 

or tasks and the associated resources, finally the resources metadata sub-module 

collects and updates the metadata about available resources in all grid cloud systems. 

Monitor Scheduler 

Cloud #1 
Job #1 
Job #2 
Job #n 

Resource #1 
Resource #2 
Resource #n 

Cloud #2 
Job #1 
Job #2 
Job #n 

Resource #1 
Resource #2 
Resource #n 

Cloud #n 
Job #1 
Job #2 
Job #n 

Resource #1 
Resource #2 
Resource #n 

Figure 4.9: Modules of the AMGCS 
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4.4.1 Manager Services in AMGCS  

AMGCS manages the virtual machines in the grid cloud system and is responsible for 

grouping multiple clouds together in the system; it schedules jobs depending on the 

metadata information then sends the job to the selected cloud to execute it on the 

associated virtual machine and returns the results. Moreover, it monitors execution of 

jobs and the utilization of available resources, also collects and updates metadata 

information about all available resources on the grid clouds, to create customized virtual 

machines to execute tasks and terminates these them after finishing their executions. 

Therefore, the manager here consists of number of services; each of which is associated 

with an agent and performs a specific function of the manager, by cooperating with 

each other to satisfy the manager responsibilities and goals. Figure 4.10 shows the 

algorithm used by the manager to achieve its services.  

 

 

 

 

  

Input: Job J, User desires U, List of available resources R 

Begin 

Update metadata 

Sort List R depending on U 

If J can be decomposed, Decompose J into tasks JTs 

If best-fit resource list BFR is not empty 

Send J to BFR 

Else send J to first-fit resource FFR 

Execute J on selected virtual machine VM 

Monitor J, R 

Return results  

End 

Figure 4.10: AMGCS algorithm 

48 

 



 

 

 

Chapter 5 

 

 

Implementation and Testing of AMGCS 

 

 

This chapter discusses the implementation of the AMGCS. The techniques and tools 

used in building this manager with its integrated APIs. It also presents the architecture 

of each cloud system and an explanation on how to initialize the APIs used in the 

AMGCS manager.  

 

5.1 AMGCS Implementation 

The manager has been built using Java programming language to implement the 

agents that compose the manager itself. Each agent is implemented to perform 

specific tasks, decomposing jobs if it is possible, managing resources in different 

clouds and updating the metadata that contains the information about the available 

resources in all grid clouds. We have integrated our manager with multiple clouds 

APIs, these clouds are Google Compute Engine, Google Cloud Storage and Windows 

Azure Compute. Resources on these clouds are managed and controlled through the 

API functions of each cloud. In order to do that, we have had to understand their APIs 

and how to integrate them with the manager. Once we understand their functions, we 

can call them directly through our manager. 
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To be able to use these APIs, there must be an authorization and authentication 

processes that must be initiated before actual invoking of APIs functions and making 

requests. This initialization process must be done once, and then the manager will use 

these API functions to make any requests to manage our tasks and resources on these 

clouds, without the need of doing these steps again. We will go through these 

initialization steps briefly in each cloud we integrated with our manager.  

 

5.2 AMGCS integration with Google Compute Engine 

The API of the Google Compute Engine (GCE) has been integrated with our manager 

to directly call and request any details about the available resources and managing 

them. GCE first needs to authenticate the machine before accepting any request; this 

is done through the OAuth 2.0 protocol, which provides clients a method for 

accessing resources on behalf of a resource owner, like different clients or end-users.  

The OAuth 2.0 authorization framework enables a third-party application to obtain an 

access to an HTTP service, either on behalf of a resource owner by orchestrating an 

approval interaction between the resource owner and the HTTP service, or by 

allowing the third-party application to obtain access on its own behalf [54].  

We have integrated the Google Compute Engine API with our Manager to get their 

latest machine types available, manage our resources on the GCE and to store and 

retrieve these data in the manager’s metadata. We used a cloud database to store this 

metadata, which is Google Cloud Storage, (section 5.5), to guarantee the compatibility 

and independency of any platform. 
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Figure 5.1 shows the architecture of Google Compute Engine and the different ways 

of accessing the cloud, either through the Command Line Interface (CLI), User 

Interface (UI) or the API code library using different programming languages 

including Java.   

 

In this thesis we used the Java library for the API code to be integrated with the manager 

which will make requests through this API to manage the related resources and jobs. 

To use this API within our manager, we would need a key from Google Compute 

Engine that must be associated with our manager in order to be authorized to perform 

any requests, this key is called the "client_secrets” and can be downloaded in a JSON 

format from Google Developers Console, here is an example client_secrets.json file:  

 { 
  "installed": { 
    "client_id": "837647042410-75ifg...usercontent.com", 
    "client_secret":"asdlkfjaskd", 
    "redirect_uris": ["http://localhost", "urn:ietf:wg:oauth:2.0:oob"], 
    "auth_uri": "https://accounts.google.com/o/oauth2/auth", 
    "token_uri": "https://accounts.google.com/o/oauth2/token" 
  } 
}   

Figure 5.1: Google Compute Engine architecture 
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The manger will take advantage of OAuth 2.0 to authenticate the RESTful API to create 

and delete virtual machine instances, disks, and other resources, and to seamlessly 

integrate with other Google Cloud services such as Google Cloud Storage to store 

metadata that will be accessed by the manager itself to manage and schedule tasks 

according to this updated metadata information. Figure 5.2 shows the flow of 

authenticating APIs calls. 

 

 

 

 

 

 

 

The servlet is a Java class to extend the server capabilities to respond to any requests 

types and to extend the applications hosted by web servers. There are several machine 

types available from Google Compute Engine, categorized as micro, standard, high 

CPU and high memory machine types; Table 5.1 shows some of these machine types. 

AMGCS can select the high CPU machine types to be used for tasks that require more 

virtual cores relative to memory. Google Compute Engine uses GCEU (Google 

Compute Engine Unit) as a unit of CPU capacity describing the compute power, the 

minimum power of one logical core on the Sandy Bridge platform is 2.75 GCEUs. 

 

Figure 5.2: Authenticated API calls sample flow 
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             Table 5.1: Selected list of machine types on GCE 

Configuration Virtual Cores Memory 
Micro - Small Shared 0.60 – 1.7 GB 

Standard 1 3.75 GB 

High Memory, 

High CPU 

2 7.50 – 13 GB 

4 15 – 26 GB 

8 30 – 52 GB 

16 60 – 104 GB 

 
These machine types, in addition to many others, are included in our metadata database, 

so the scheduler will choose the proper one to execute the received job, according to 

the required QoS and whether the cost or the response time is the most critical factor 

for user desires. After the machine type has been selected, the API call will send a 

request, after being authenticated, to initiate a new instance with the specified 

configuration. Afterward, the manager calls the API function to start running the 

specified instance (virtual machine) on the Infrastructure after specifying the machine 

properties and configurations, using the instances().insert function. These instances can 

run Linux server from many images available; provided by Google or customized 

images of other systems, as we need. Finally, the selected jobs will be executed on this 

instance and others on other instances, results returned to the manager then to the user. 

The integration of the GCE API with our manager is illustrated in figure 5.3. 

 

  

AMGCS 

Figure 5.3: GCE integration with AMGCS 

Monitor Scheduler 

GCE agent 
GCE API 

GCE Cloud 
Job #1, Job #2, Job #n 

Resource #1, Resource #2, Resource #n 
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Figure 5.4: Windows Azure Compute architecture 

5.3 AMGCS integration with Windows Azure Compute  

Windows Azure IaaS supports Microsoft operating systems and non-Microsoft ones. 

The VM image gallery in Azure Compute includes latest releases of Windows Server, 

SharePoint, SQL Server, BizTalk Server, and many non-Microsoft workload like 

Ubuntu, SUSE Linux, openSUSE, OpenLogic, etc. Integrating Azure Compute with 

AMGCS gives the power of handling yet more requests for high computing, with a 

built-in capability of Load Balancer, it also monitors VMs and restarts any that fail. 

Roles are the core of Windows Azure Compute; a role instance is a set of code, 

configuration, and local data, jobs are run in these instances (VMs) and, if required, 

data will be stored in the storage. AMGCS calls the associated API requests to create 

new instances, which are Add Role then Start Roles requests. The following schematic 

illustrates Windows Azure Compute (WAC). 
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Windows Azure Compute has many machine types ranging from extra small to extra-

large machines, and also AMGCS will select from this wide range of machine types 

the proper machine type with proper configurations that suits the job requirements, 

Table 5.2 shows some of these machine types. 

     Table 5.2: Selected list of machine types on Azure Compute 

Configuration Virtual Cores Memory 
Extra small Shared core 768 MB 

Small 1 1.75 GB 

Medium 2 3.5 – 14 GB 

Large 4 7 – 28 GB 

Extra large 8 14 – 56 GB 

 

The integration of the GCE API with the manager’s agents is illustrated in figure 5.5. 

 

 

 

 

 

 

 

 

 

In order to use this API, we would need the following: 

1. A subscription Id: which uniquely identifies our subscription; we get this id 

from the Windows Azure portal. 

2. A management Certificate: which is required to authenticate API calls, it must 

be associated with our subscription by uploading the certificate to the portal.  

AMGCS 

Figure 5.5: Windows Azure Compute 
integration with AMGCS 

Monitor Scheduler 

WAC agent 
WAC API 

Windows Azure Compute Cloud 
Job #1, Job #2, Job #n 

Resource #1, Resource #2, Resource #n 
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The API is a REST based API and so the endpoints are accessible over HTTP. In our 

code, we create an endpoint specific to a particular kind of operation that we want to 

perform, and then we create an HTTP request for that endpoint. To authenticate the 

request, we attach the management certificate with that request. The following are the 

steps of using Management Certificate: 

Step 1: Creating a Keystore: We have to create a Keystore by using a tool called 

Keytool. The following command is used to create a Keystore: 

keytool -genkeypair -alias mydomain -keyalg RSA -keystore WindowsAzureKeyStore.jks 

-keysize 2048 -storepass "osama123" 

We created a Keystore called “WindowsAzureKeyStore.jks” and set access password, 

the file created in “C:\Program Files\Java\jre7\bin” folder. 

Step 2: Exporting Management Certificate: to export a certificate from this Keystore 

that we just created, also using Keytool, the following command was used: 

keytool -v -export -file D:\WindowsAzureSMAPI.cer -keystore WindowsAzureKeyStore.jks 
-alias mydomain 

This will create a file called “WindowsAzureSMAPI.cer” in the “D:\” folder. 

Step 3: Uploading Certificate: we login into the Windows Azure Portal and upload the 

file named “WindowsAzureSMAPI.cer” under the “Management Certificates” tab. 

In the code, AMGCS needs this management certificate in order to make its requests 

authenticated. The management certificate is in the Keystore so we open it by the full 

path of the Keystore we have just created with password to get the SSLSocketFactory. 

We have integrated the Windows Azure Compute API with our Manager to get the 

available Virtual Machine types, manage our resources on the Windows Azure and to 

send and receive messages between the Manager and the tasks being executed on the 

cloud, through “Windows Azure Service Bus, and Messaging Queue”.   
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5.4 Using the integrated APIs through the manager in execution time 

For Windows Azure Compute, our manager will execute the HTTP requests; this is 

done through the following scenario: 

1) Creating a URL: based on the operation that we want to perform. In our case, 

our subscription id is “4bbac197-9348-4d19-8898-0e4baa009639”, and for 

example we want to perform operation “List Locations”, the URL would be: 

https://management.core.windows.net/4bbac197-9348-4d19-8898-

0e4baa009639/locations 

2) Creating HttpsURLConnection object: by using this URL, we create an 

instance of HttpsUrlConnection object and set the SSLSocketFactory. 

3) Providing other necessary information: like required request headers, request 

method, content type… etc. then execute the request. For example, if we want 

to perform the operation “List Locations”, we need to perform a “get” request. 

For Google Compute Engine, the AMGCS manager specifies an action also by using 

an HTTP verb such as GET, POST, PUT or DELETE. It specifies the resource by a 

globally unique URI in the following form: 

https://www.googleapis.com/compute/v1/{resourcePath}?{parameters} 

The returned data will be in the JSON (JavaScript Object Notation) format. 

The metadata stored by the manager will be saved in the Google Cloud Storage, using 

the same account used for the GCE, the following section describes the metadata and 

how it was built on the Google Cloud Storage.  
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5.5 Monitoring tasks and resources 

As we mentioned earlier, the manager has an agent for monitoring tasks and 

resources, this agent is specific to a particular cloud system, so we have a separate 

agents for Google Compute Engine and Windows Azure Compute. Each one of these 

clouds has its own API functions to get the status of the resources, and how tasks are 

being executed on these resources. So the manager is using these API functions or 

requests to monitor and get the status updates periodically. Figure 5.6 and 5.7 shows 

the monitoring charts for GCE and WAC respectively.  

  

Figure 5.7: Monitoring WAC resources 

Figure 5.6: Monitoring GCE resources 
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5.6 AMGCS Metadata  

We have used the Google Cloud Storage (GCS) to store the AMGCS manager’s 

metadata. This storage service is provided by Google, with features like object 

versioning, parallel uploads and CRC-based integrity checking to maintain the 

robustness of our sophisticated manager. We can access its API using XML, JSON or 

using the libraries for several popular programming languages including Java [55]. 

We used this storage service to guarantee the platform independency and the proper 

integration with agents associated with different clouds. The metadata include the 

following details from each cloud system in the grid cloud:  

Name: name of the resource or virtual machine. 

Description: description about the resource. 

ID: The unique ID of the resource. 

CPUs: Number of CPUs in the virtual machine  

ImageSpace: The size of the server image in Gigabyte. 

Kind: The category of the virtual machine, e.g. high memory, high CPU, or standard. 

Disks: The maximum number of disks can be associated to a specific virtual machine. 

DisksSize: The size of the disks associated to a specific virtual machine 

Memory: The size of memory in Megabyte.  

Location: The location of the server, e.g. Central US, West Europe, East Asia… etc. 

ServerType: The type of the server, e.g. Windows, Linux, SQL, Oracle…etc. 

ServerImage: The image of the server, which contains the boot loader, an operating 

system and a root file system that is necessary for starting an instance, e.g. debian-7, 

centos-6, rhel-6, sles-11, Windows Server 2012 R2 Datacenter, SQL Server 2012 SP1 

Enterprise, OpenSUSE 13.1, Ubuntu Server 14.04 LTS… etc. 
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Figure 5.8 is a snapshot of the current metadata collected about available resources. 

 

After the task is received by the manager, it will look for the suitable resource 

available from this metadata, then start a new virtual machine with specific properties 

on the specific cloud provider, then it will send the task to this particular virtual 

machine. Another agent of the manager will monitor the execution of these tasks on 

these resources, and will send periodic notifications to inform when the task or job 

execution is completed. After finishing the job execution, the manager will make a 

request to terminate the virtual machine and de-allocate the associated resources. The 

integration of the GCS API with AMGCS agents is illustrated in figure 5.9. 

 

 

 

   

Figure 5.8: Manager’s metadata 

AMGCS 

Figure 5.9: Google Cloud Storage integration 
with AMGCS 
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GCS API 
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Chapter 6 

 

 

Evaluation and Comparison Study 

 

 

This chapter discusses the experiments using the AMGCS System to measure its 

performance and evaluations. It also explains the results in tables and graphs. 

 

 

6.1 Introduction  

To evaluate AMGCS system, we made various experiments to measure its efficiency. 

We tested the execution of complex jobs that need high compute to be executed. If a 

compute-intensive job has been requested to be executed with specified desires selected 

by the user like performance, cost or reliability, the AMGCS manager selects the proper 

resource from the metadata and sends the job to that resource in order to execute it. This 

process requires having full information about the resources available in the grid clouds, 

which is done through our manager by calling the API functions associated with each 

cloud in the grid cloud. There is an updated list of this information in the manager’s 

metadata.  
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6.2 Test cases and results 

With a centralized manager, the AMGCS has been tested on a compute-intensive job, 

which is a big matrices multiplication job. These matrices are huge and need long time 

to be manipulated. The size of the first matrix is [4096][2048] and the second matrix 

size is [2048][2048], this calculation would take long time to be done, depending on 

the type of the machine that executes the job, memory, location, server type and so on.    

The first test case is a single job executed on single cloud system, with the required user 

desires: Low cost and minimum execution time. If a regular user wants to perform this 

job on a cloud system, he will just select any cloud with any properties, as he is looking 

for a low cost, he might manually select the lowest-cost resource to execute this job.   

In contrast, the AMGCS manager will select the most proper resource that suits the user 

desires, and achieves this job efficiently. If we consider that the user has sent the job 

arbitrary to a lowest-cost resource, which is a virtual machine with a shared core, the 

job of multiplying these huge matrices took about 43.8 minutes to be calculated. 

AMGCS manager, however, submitted this job to a more proper VM from the list of 

resources information available in the manager’s metadata, also a shared core but with 

capabilities that make this VM the best option to select from the available resources in 

the grid cloud, “Memory and ServerImage”. Figure 6.1 shows the result of this test case. 

Figure 6.1: Comparison of execution time (minutes), shared core 

Shared core (arbitrary) Shared core (using our Manager)

43.8

14.1
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The optimized execution on the right of figure 6.1 has been achieved by executing the 

job on a VM with proper properties (capabilities), because the manager knows the full 

details about all resources from the metadata, it chose one cloud of the grid clouds and 

create a proper virtual machine to execute this job. The configuration of this particular 

virtual machine customized the memory, and the server image (Debian 7 Wheezy). 

Obviously, here one server is better than the other and hence the significant difference 

in execution time between them. The server type of the left one is a Windows server, 

and the type of the optimized one on the right is a Linux server. To make sure that the 

enhancement here is achieved by the manager’s selection strategy and not by the type 

of the server (Linux or Windows), we did a second test to arbitrary execute the same 

job on a Linux server also with a shared core, but without using our manager. The 

results proved that the AMGCS resource scheduling is the reason for that significant 

enhancement. This is because of the many options that can be customized to a particular 

virtual machine and hence make this virtual machine the best proper option to execute 

the required tasks, unlike the regular user’s selection that may ignore any consideration 

to the capabilities or properties of the server’s virtual machine.  Figure 6.2 shows the 

execution time on the other server type (Linux) without using AMGCS, it was almost 

near the time taken on the Windows server in figure 6.1. 

Figure 6.2: Execution time (minutes) without AMGCS, shared core 
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A third test case, the same job but different user desire, which is minimum execution 

time. Here the user does not care about the cost and the most care about the execution 

time. It also tested by submitting this job arbitrary to any cloud with any properties, and 

compare this with the selection of our manager which depends on knowledge of the 

user desires, job structure and nature, resources available and the recommended 

resources for complex jobs. As we need the minimum execution time, we definitely 

need a high compute power to solve this problem as fast as possible. Hence, a virtual 

machine with eight cores is the proper one. Yet, even with eight cores, we can optimize 

the performance further by taking into account other factors that might degrade the 

performance and efficiency of the execution, like the memory and server type. So here 

the job has been executed on multiple VMs with the same cores number, eight cores.  

Figure 6.3 shows the difference in execution time; the one on the right is much less in 

execution time compared to the arbitrary selected virtual machine on the left. This is 

because the manager has submitted the job to a more suited cloud with better virtual 

machine capabilities (serverType and memory space). 

 
Figure 6.3: Comparison of execution time (minutes), 8 cores 

8 cores (arbitrary) 8 cores (using our manager)
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All these test cases are submitting the job to the clouds’ virtual machines without 

decomposing it into tasks. Now if we tried to decompose this big job into tasks, and 

then execute these tasks individually on multiple clouds. This definitely will increase 

the performance and the reliability of executing this job.  

The fourth test case is to measure the improvement of enhancement after decomposing 

a job, the same job has been divided into two tasks (parts) to be executed on the grid 

cloud system, with one user desire which is minimum execution time. Decomposition 

here is programmed in the code just to test the prototypal manager, by dividing the first 

matrix by half and keep the second as it is, to maintain the matrix multiplication rules. 

Now the manager has many options to execute these tasks; one of these options is to 

send each of these tasks to a different virtual machine in order to be executed separately 

and then combine the results together. This is the case here, where the two tasks of the 

multiplication job are processed on multiple clouds; hence the time decreased by half.  

Figure 6.4 below shows the significant difference in time compared to the execution on 

single cloud system. 

  
Figure 6.4: Comparison of execution time (minutes), Single Cloud vs. Grid Cloud 

Single Cloud System Grid Cloud System
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The fifth test case was conducted to evaluate the improvement of using grid clouds in 

executing tasks, by sending replications of these tasks (parts of the job) to multiple 

clouds. Each task has been replicated and processed two times on multiple virtual 

machines (other than previously used VMs) so if any failure occurs in any VM we have 

another copy on another VM. Hence, we guarantee the reliability in execution of these 

tasks, despite the cost that might be high, because here reliability is the user desire and 

reliability is always costly. Figure 6.5 shows the results of this experiment. 

 
We end up with an enhancement in executing complex-tasks on grid cloud resources 

in an efficiently-managed way, combining the comparisons above proves that there is 

an improvement by 16% - 30% between single and grid cloud, illustrated in figure 6.6. 

 

 

 

  

Figure 6.5: Execution time (minutes) for tasks of the job, on Grid Cloud 
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Figure 6.6: Overall enhancement, AMGCS vs. Single Cloud 
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6.3 Discussion of Experiments Results  

Depending on the results that we got from the performed tests and experiments, we can 

summarize our finding as follows:  

• The Manager solves current challenges of executing tasks on the cloud, utilizes 

grid clouds’ resources, solves complex and compute-intensive tasks, and tasks 

that require high reliability and high performance. 

• AMGCS manages jobs and resources and gives good performance in terms of 

execution time, resource utilization and system throughput compared with using 

a single cloud system.   

• Increasing the number of the grid clouds in the system gives more optimize 

options and high performance compared to using a small number of grid clouds.  

• The overall enhancement of Grid Cloud System is 16% - 32% compared to a 

single Cloud System. 

• The manager does not require any provider-side agreement, only configuring 

the libraries of the grid clouds. 

• Fault tolerance is guaranteed by replication, and increased performance through 

scaling resources to accommodate user’s needs, more or less. 

• There is a trade-off between high reliability and cost, our Manager may replicate 

tasks on multiple clouds and hence more cost. 

 

.    
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Chapter 7 

 

 

Conclusion and Future Work 

 

 

This chapter presents the conclusions and gives the directions for future work. The first 

section reviews the obtained research results and highlights the main contributions. The 

second section points out few future research directions. 

 

7.1 Conclusion  

In this thesis, we introduced an agent-based manager for grid cloud system (AMGCS) 

that has been designed based on software agent to ensure platform independency, 

heterogeneity handling and high flexibility of managing grid clouds. AMGCS has been 

designed, implemented and successfully tested on real clouds. The benefits of AMGCS 

are shown in increasing and optimizing the available computing power, managing jobs 

and resources, and utilizing the grid cloud IaaS resources using the integration between 

system’s modules and clouds’ APIs. 
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The research of this thesis can be beneficial to research centers to solve real-world 

complex problems that need high computing capabilities, such as Bioinformatics 

applications, engineering simulations and mathematical analysis.  

AMGCS manages jobs and resources with good performance by selecting the proper 

resource for the job, and utilizes available executer nodes in an efficient way.  

 

7.2 Future Work  

Future work includes developing a system to run a job on multiple executer nodes at 

the same time by decomposing the job into a set of tasks, where each task runs on a 

different machine or uses different resources. In addition, we want to design a tool that 

is used to read source code of a job and divides it to multiple sub-jobs depending on job 

nature. 

 

We would also like to support and execute parallel applications on the system. We want 

to add more services to increase security in the system such as applying security 

principles in sending and executing job files.  

 

We want to investigate other strategies to distribute framework components and balance 

load over available resources considering factors such as locality of resources and 

runtime metrics. 
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