

Agent-based Manager for Grid Cloud System

By

Osama Hamdy Younis

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

KING ABDULAZIZ UNIVERSITY

JEDDAH – SAUDI ARABIA

Rajab, 1435 H – May, 2014 G

Agent-based Manager for Grid Cloud System

By Osama Hamdy Younis

A thesis submitted in partial fulfillment of the requirements for degree of Master of
Science (Computer Science)

Supervised By
Prof. Dr. Fathy A. Eassa

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

KING ABDULAZIZ UNIVERSITY

JEDDAH – SAUDI ARABIA

Rajab 1435H – May 2014 G

Agent-based Manager for Grid Cloud System

By

Osama Hamdy Younis

This thesis has been approved and accepted in partial fulfillment of the requirements
for the degree of Master of Science

EXAMINATION COMMITTEE

 Name Rank Field Signature

Internal
Examiner

External
Examiner

Advisor

KING ABDULAZIZ UNIVERSITY

Rajab 1435H – May 2014 G

Dedicated to

My parents, my brothers, my sisters and my friends.

i

ACKNOWLEDGEMENT

At the beginning, praise and gratitude be to ALLAH almighty, without His gracious

help, it would have been impossible to accomplish this work. Working on this

thesis has been a very interesting and valuable experience to me and I have learned

a lot. I want to express my thanks to the people who have been very helpful during

the time it took me to finish this thesis.

First, I would like to thank my supervisor Professor Dr. Fathi E. Al-Borai who

helped me with guidance, supervision, and constructive comments until I

completed this work. He is not only my supervisor; he is just like my father. I

enjoyed working on this thesis under his supervision, I am grateful to him.

My special gratitude goes to my parents whose love and affection is the source of

motivation and encouragement for my studies. I would like to thank all my family,

all my sisters and all my brothers for unconditional support, and for being there for

me at any time. Special and great thanks go to my mother, the one who deserves to

be dedicated all my efforts and achievements. Whatever I say about her is not

enough to thank her for the unconditional love and support. Also I am deeply

thankful to my brothers and sisters for their love and encouragement.

I would like to express my gratitude to all my colleagues and my friends for useful

discussions and prayers, in addition to everyone who asked, supported and

encouraged me in any way.

Thank you all…

Osama Younis, May, 2014

ii

ABSTRACT

Nowadays, the processing power of a single system is obviously insufficient for many
complex scientific problems that need high computing power to process, and we do not
always have the option of using supercomputers or HPCs. Now, cloud infrastructures are
being involved in many institutions with different services (e.g. computing, storage,
software) provided at different levels of availability, performance, cost and reliability.

With the great advance in software and hardware, cloud-computing systems developed
to utilize and benefit from these advances efficiently to solve a broad range of intensive-
computing problems. Grid computing, which aggregates several machines’ resources,
can give a similar power of computing as we can get from a supercomputer, yet with the
required quality of service (QoS) that meets the client’s needs. This can be achieved
through our proposed Manager that aggregates cloud resources (i.e. Computing and
Storage) to make a grid of clouds that enhance resource utilization. Because of the
heterogeneity of cloud resources in this grid, a platform independent middleware is
required for resource management.

In this thesis, we present the design and architecture of an Agent-based Manager for
Grid Cloud Systems (AMGCS) using software agents to ensure the independency and
the scalability when the numbers of resources and jobs increase. The AMGCS handles
IaaS resources and schedules compute-intensive jobs for execution over the available
resources according to the QoS criteria. It shows a good performance in executing
complex tasks submitted from regular machines, with an optimized task execution and
high resource utilization, through the power of grid clouds’ capabilities.

iii

على الوكیل البرمجي لحوسبة شبكة من الأنظمة دعتمِ مدیر مُ
 السحابیة

 أسامھ حمدي یونس عبد الحمید

 المستخلص

في قدةالمع العلمیة المشكلاتواحد غیر كافیة للعدید من نظامقوة معالجة أصبحت في الوقت الحاضر،
استخدام "الحاسبات كما أن ، المھاممثل ھذه لمعالجةعالیة حوسبةالعلوم والھندسة والتي تتطلب قوة

نى البوأصبحت في كل الأحوال. امتاحً اعالیة الأداء" قد لا یكون اختیارً العملاقة" او أجھزة "الحوسبة
، خزینت مساحات (حوسبة، مختلفة ستخدم في العدید من المؤسسات لتقدیم خدماتالتحتیة السحابیة تُ

 .یةوالجاھز التوفرالأداء ومدى كلفة، سرعة الاستجابة، تلا من على مستویات مختلفة قدمـتُ و)برامج

في اجھزة ومكونات الحاسبات والبرمجیات، تم تطویر انظمة الحوسبة السحابیة الكبیرقدم مع الت
للاستفادة من ھذه الخواص بطریقة فعالة لحل المشكلات المعقدة التي تحتاج متطلبات معالجة قویة.

وة فس قتستطیع تحقیق ن ببعضھا البعض، الحاسباتموارد الحوسبة الشبكیة، والتي تربط مجموعة من
الحوسبة التي تحققھا اجھزة "الحوسبة عالیة الأداء" مع تحقیق متطلبات جودة الخدمة لاحتیاجات

تجمیع الخدمات السحابیة مثل المدیر المُقترَح ھنا والذي یقوم بمن خلال المستخدم. یمكن تحقیق ذلك
لتسھیل وتعزیز الأنظمة السحابیة من شبكة لعمل وحدات المعالجة المركزیة ووحدات التخزین

 ،غیر متجانسة الاستفادة من ھذه المصادر. ھذه الشبكة تضم مختلف الموارد السحابیة والتي تكون
او نظم محددة لإدارة ھذه) لذلك نحن بحاجة الى وسیط استقلالي لا یعتمد على منصة (معماریة

 الموارد.

البرمجي لحوسبة شبكة من الانظمة عتمد على الوكیل مدیر مُ تصمیم ومعماریة ، نقدمه الرسالةفي ھذ
 مواردعندما تزداد عدد الوإمكانیة التوسع ستقلالیةلضمان الاالسحابیة باستخدام الوكیل البرمجي

بطریقة)IaaS(" خدمات البنُى التحتیة"على شكل من الموارد المتاحة ھذا المدیر ستفیدیوالمھام.
ظھر ھذا یُ وفقاً لمعاییر جودة الخدمة المطلوبة. التي تحتاج قوة معالجة عالیة وذلك المھاملتنفیذ الةفعّ

المُرسلة من الأجھزة العادیة بالطریقة الأمثل وبدرجة عالیة في تنفیذ المھام المعقدة اجیدً أداءً المدیر
 حابیة. السشبكة الأنظمة المتوفرة على من استغلال الموارد، وذلك من خلال قوة الإمكانات

iv

TABLE OF CONTENTS

DEDICATION i

ACKNOWLEDGMENT ii

ABSTRACT iii

 iv المستخلص

Table Of Contents v

List Of Figures vii

List Of Tables viii

List Of Abbreviations ix

CHAPTER 1 INTRODUCTION
1.1 Introduction 1
1.2 Thesis Motivation 3
1.3 Thesis Objectives and Methodology 4
1.3 Thesis Organization 6

CHAPTER 2 BACKGROUND
2.1 Grid Overview 7
2.1.1 Grid Architecture 10
2.1.2 Grid features 13
2.2 Cloud Overview 15
2.2.1 Cloud Architecture 17
2.2.2 Cloud Features 20
2.2.3 Cloud Models 21
2.3 Grid Computing VS. Cloud Computing 23
2.4 Software Agents Overview 26
2.4.1 Characteristics of Software Agents 27
2.4.2 Types of Software Agents 28
2.4.3 Why and when to use Software Agents 28

CHAPTER 3 RELATED WORK
3.1 Cloud Resources Management 30
3.2 Cloud Federation 33

v

CHAPTER 4 AGENT-BASED MANAGER FOR GRID CLOUD SYSTEM
(AMGCS)
4.1 Grid Cloud Management Overview 36
4.1.1 Grid Cloud Management System Structures 47
4.1.2 Scheduling Phases 41
4.2 Agent-based Manager for Grid Cloud System (AMGCS) Overview 43
4.3 Grid Cloud concept 45
4.4 AMGCS Architecture 46
4.4.1 Manager Services in AMGCS 48

CHAPTER 5 IMPLEMENTATION AND TESTING OF AMGCS
5.1 AMGCS Implementation 49
5.2 AMGCS integration with Google Compute Engine 50
5.3 AMGCS integration with Windows Azure Compute 54
5.4 Using the integrated APIs through the manager in execution time 57
5.5 Monitoring tasks and resources 58
5.6 AMGCS Metadata 59

CHAPTER 6 EVALUATION AND COMPARISON STUDY
6.1 Introduction 61
6.2 Test cases and results 62
6.3 Discussion of Experiments Results 67

CHAPTER 7 CONCLUSION AND FUTURE WORK
7.1 Conclusion 68
7.2 Future Work 69

LIST OF REFERENCES 70

vi

LIST OF FIGURES

Chapter 2: Background
2.1 Grid architecture 10
2.2 Cloud computing concept 16
2.3 Cloud Architecture 18
2.4 Cloud Layers 19
2.5 Cloud Parties 20
2.6 Cloud Types 23
2.7 Paradigm Shifts 27

Chapter 3: Related Work

3.1 Integration types in the Cloud 34

Chapter 4: Agent-based Manager for Grid Cloud System (AMGCS)

4.1 Categories of Grid Cloud Manager 37
4.2 Centralized Manager Architecture 38
4.3 Decentralized Manager Architecture 39
4.4 Hierarchical Manager Architecture 39
4.5 Scheduling Phases 41
4.6 Managing integrated cloud systems 44
4.7 a) Horizontal Federation, b) Vertical Federation 45
4.8 AMGCS structure 46
4.9 Modules of the AMGCS 47
4.10 AMGCS algorithm 48

Chapter 5: Implementation and Testing of AMGCS

5.1 Google Compute Engine architecture 51
5.2 Authenticated API calls sample flow 52
5.3 GCE integration with AMGCS 53
5.4 Windows Azure Compute architecture 54
5.5 Windows Azure Compute integration with AMGCS 55
5.6 Monitoring GCE resources 58
5.7 Monitoring WAC resources 58
5.8 Manager’s metadata 60
5.9 Google Cloud Storage integration with AMGCS 60

Chapter 6: Evaluation and Comparison Study

6.1 Comparison of execution time (minutes), shared core 62
6.2 Execution time (minutes) without AMGCS, shared core 63
6.3 Comparison of execution time (minutes), 8 cores 64
6.4 Comparison of execution time (minutes), Single Cloud vs. Grid Cloud 65
6.5 Execution time (minutes) for tasks of the job, on Grid Cloud 66
6.6 Overall enhancement, AMGCS vs. Single Cloud 66

vii

LIST OF TABLES

Chapter 1: Introduction

Table 1.1 Selected list of clouds 5

Chapter 2: Background

Table 2.1 Comparison: Grid Computing and Cloud Computing 25

Chapter 4: Agent-based Manager for Grid Cloud System (AMGCS)

Table 4.1 Comparison between Centralized and Decentralized Manager 40

Chapter 5: Implementation and Testing of AMGCS

Table 5.1 Selected list of machine types on GCE 53
Table 5.2 Selected list of machine types on Azure Compute 55

viii

LIST OF ABBREVIATIONS

API Application Programming Interface

AMGCS Agent-based Manager for Grid Cloud System

VM Virtual Machine

MPI Message Passing Interface

QoS Quality of Service

SLA Service Level Agreement

SMP Symmetric Multi-Processing

XML Extensible Markup Language

GCE Google Compute Engine

GCS Google Cloud Storage

AC Azure Compute

JSON JavaScript Object Notation

IaaS Infrastructure-as-a-Service

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

REST Representational state transfer

HTTP Hypertext Transfer Protocol

ix

Chapter 1

Introduction

1.1 Introduction

The growing need for computational resources to solve large-scale problems leads to

the cloud computing approach. Making a grid of cloud computing allows to include a

variety of resources like clusters, supercomputers, storage systems, computational

kernels and Symmetric Multi-Processors (SMPs) including PCs and workstations, etc.

These resources are coupled to be available as a single integrated resource.

The Grid cloud infrastructure can benefit many applications, including distributed

supercomputing, high-throughput computing and data exploration. One type of grids

is the computational grid, to bring supercomputing power to users by using resources

in the network. The emerged Grid Cloud computing is a computing paradigm to solve

complex applications in science and engineering, as it involves the combined effective

utilization of a cloud resources to achieve high performance computing [1]. To utilize

the benefits of the grid clouds, we need an efficient grid cloud management system, a

complicated system, as it involves the distributed, heterogeneous and dynamically

available resources, as well as handling diverse needs for these resources [2].

1

The scheduler here is an important module of the system as it is responsible for

managing and selecting the geographically available resources, and for scheduling

jobs efficiently to meet the user or application requirements, in terms of performance

and utilizing resources. Therefore, the acceptability and efficiency of a resource

management of computational grid clouds depends on its scheduling strategy and how

the process of allocating the needed resources to the job requests is done, and also on

how the resource manager is able to determine the availability of specific resources,

and mapping jobs to these resources [3].

Hence, the manager needs to achieve the following efficiently: dividing jobs into

tasks (if possible), scheduling and monitoring jobs, and sending the proper requests to

the associated cloud, all via agents that are communicating together.

Clouds can fulfill a huge amount of computations that cannot be done by the best

supercomputers. However, Cloud computing performance can be improved by

making sure that all the available resources in the grid cloud are utilized by good QoS

algorithm to make sure that most resources are involved in the cloud grid

computations under the required criteria. Due to the disparate of job arrival and the

inequality of computing capabilities, the resources in one grid cloud may be

overloaded (or doesn’t meet the QoS criteria specified) while others in different grid

cloud may be available. Therefore, dispatching jobs must be to the right resources to

reduce the job average response time and achieve a better resource utilization.

The grid cloud manager will adopt the software agent technology to handle the

heterogeneity and interoperability, though; it is hard to build high performance and

reliable agents applications that meet the grid cloud requirements.

2

Here, we present an Agent-based Manger for Grid Cloud System, to manage

distributed computational resources in grid clouds by scheduling and providing an

efficient way of processing high computing requests, based on software agents using

Jade, to adapt the requirements of scalability, robustness and interoperability by the

grid cloud system. Jade is an open-source middleware for implementations of multi-

agents systems in compliance with FIPA specifications (http://www.fipa.org) [4].

1.2 Thesis Motivation

There are increasing number of cloud service providers, varying in the quality of service

provided, and complex tasks are getting increase in fields of science and engineering.

We want to take advantage of these clouds’ services and utilize them in a proper way.

Combining services together from multiple cloud providers will open new directions of

computational capabilities, so instead of using costly supercomputers and High

Performance Computers we can group Compute services together by creating a grid of

clouds. Also with storage services, which are available on different levels from many

service providers, would be great if there is a manager that selects the most proper

resource that meets our needs.

Compute and Storage services are categorized as Infrastructure-as-a-Service on the

cloud, so we built a manager that manages these services and select properly from vast

cloud resources available on multiple clouds. Selecting the proper resource helps in

executing compute-intensive jobs using cloud resources without the need of HPCs or

Supercomputers. Hence, a significant reduce in cost and response time, in addition to a

high performance and throughput compared to a single cloud system. This manager

achieves high utilization for cloud resources that are aggregated in a grid cloud system.

3

http://www.fipa.org/

1.3 Thesis Objectives and Methodology

Many factors affect resource management for grid cloud systems. The main factors

are the heterogeneity of resources, scalability degree of the manager and the

performance of each cloud in the grid. Heterogeneity and scalability can be solved by

building the system to be interoperable and platform-independent using an agent-

based architecture to be scalable to large number of resources without affecting the

performance. The performance of each cloud can be maintained by using a scheduler

agent that distributes load over the available resources, and the system performance

can be evaluated depending on resource utilization, waiting and execution time.

In this research, we introduce an Agent-based Manger for Grid Cloud System to

manage distributed IaaS resources in the grid clouds based on software Agents, using

Jade [4], to adapt scalability, robustness and interoperability requirements by the grid

cloud system and to process large number of computing requests.

The methodology will be as follows:

1. to identify the attributes of IaaS and describe the associated resources.

2. to build a grid cloud computing manager for executing high CPU jobs on the

resources available on the grid clouds.

3. to present the architecture of our Agent-based Manager for the system with its

modules: the Scheduler module to divide jobs to tasks, if possible, and

distribute them over the available resources, and the Monitor module to

monitor the resources and tasks. These modules are designed using Agents to

increase interoperability, independently and scalability of the system.

4

4. finally to test this manager on real clouds (Google Compute Engine, Windows

Azure) “selected from Table 1.1” to evaluate the AMGCS performance in

terms of execution time and system throughput.

In order to use the aforementioned clouds we signed up for an account and purchase

the computing services (Infrastructure-as-a-Service) to be used to execute our jobs.

Google Compute Engine has a variety of scalable services to select from, its API will

be integrated programmatically with our manager to be able to deal with the cloud and

execute our tasks with high scalability level according to the QoS. The same with Azure

Compute, we have purchased IaaS services and integrated its API with our manager to

execute jobs on Azure infrastructure. Our manager has been implemented to manage

and monitor the execution of jobs using the combined agents and APIs, tested with real

high-computing jobs (scientific/mathematical analysis) to evaluate our manager and

how the grid cloud computation perform tasks according to the specified QoS criteria.

Table 1.1: Selected list of clouds
Cloud Name URL

Google AppEngine http://developers.google.com/appengine/

Google Compute Engine http://developers.google.com/compute/

Amazon EC2 http://aws.amazon.com/ec2/

AppScale http://github.com/AppScale/appscale

Amazon S3 http://aws.amazon.com/s3/

Windows Azure http://www.windowsazure.com/

Windows Azure Big Compute http://www.windowsazure.com/en-us/solutions/big-compute/

Zimory http://www.zimory.com/

Rackspace http://www.rackspace.com/

Salesforce1 http://www.salesforce.com/

SpotCloud http://www.spotcloud.com/

5

1.4 Thesis Organization

Thesis structure is organized as follows:

Chapter 1 introduces the research subject, provides overview about the problem

statement and addresses the objectives and motivation of this research.

Chapter 2 presents a brief overview of the Grid and Cloud systems, their characteristics

and the architectural models of these systems and their applications. It also presents an

overview of the Software Agents, its definition and intention.

Chapter 3 presents a related work to this research and a literature review of cloud

federation. It concludes these works and discusses them in the research.

Chapter 4 presents the architecture and design of Agent-based Manager for Grid Cloud

System (AMGCS) in details, with explanations of system’s characteristics and services.

Chapter 5 discusses the implementation details of the AMGCS, explaining its detailed

services and metadata structure. Multiple tests will be conducted and presented to

clarify the system’s functions and performance.

Chapter 6 shows and discusses the experiments and tests performed on the AMGCS,

evaluating its performance and throughput. It also compares the results with a single

cloud system and shows the difference in optimization and performance.

Chapter 7 concludes this research ideas and points out the limitations, advantages and

the future works that can be done to extend the scope of this research.

6

Chapter 2

Background

This chapter gives an overview about Grid and Cloud systems, discusses the

characteristics, architectural designs and services of their environments. It also provides

an overview about Software Agent, its characteristics, when and why to use it.

2.1 Grid Overview

The Grid is the collection of computer resources from multiple locations to reach a

common goal. Grids tend to be more loosely coupled, heterogeneous, and

geographically dispersed. A Grid is a system that integrates and coordinates resources

that are not subject to centralized control, i.e. live within different control domains, and

it uses standard, open, general-purpose protocols and interfaces to address fundamental

issues such as resource discovery and resource access. Grid is also a system that deliver

nontrivial qualities of service, by allowing resources to be used in a coordinated fashion

to deliver various QoS “response time, throughput, availability, and co-allocation of

multiple resource types” to meet complex user demands.

7

Grid technology was initially developed to enable resource sharing within scientific

collaborations, and then they are used in different large-scale collaborations. Sharing in

Grid is not only in database or in files but also includes software and computational

resources. Sharing resources in Grid is necessarily highly controlled, with resource

providers and consumers defining clearly and carefully, just what is sharing, who is

allowed to share, and the conditions under which sharing occurs. Grid systems build

virtual supercomputers, which consist of different machines and networks.

Grid computing offers a solution to intensive-computing problems. The grid-computing

paradigm is the field of computing science that aims to offer a seamless, integrated

computational and collaborative environment [5]. Computational grid has been defined

as "a hardware and software infrastructure that provides dependable, consistent,

pervasive and inexpensive access to high end computational capabilities" [6].

The idealized features and properties that are required by a Grid system to provide users

with a seamless computing environment are characterized as follows [7, 8]:

• Large scale: a grid must be able to deal with a number of resources ranging from

few to thousands, avoids potential performance degradation as a grid size increases.

• Geographical distribution: grid’s resources may be located at distant places.

• Heterogeneity: a grid hosts software and hardware resources that vary ranging from

data, files, software components or programs to sensors, scientific instruments,

display devices, computers, super-computers and networks.

• Resource sharing: resources in a grid belong to many different organizations that

allow other organizations (i.e. users) to access them. Nonlocal resources can thus

be used by applications, promoting efficiency and reducing costs.
8

• Multiple administrations: each organization may establish different security and

administrative policies under which their owned resources can be accessed and

used. As a result, the already challenging network security problem is complicated

even more with the need of taking into account all different policies.

• Resource coordination: resources in a grid must be coordinated in order to provide

aggregated computing capabilities.

• Transparent access: a grid should be seen as a single virtual computer.

• Dependable access: a grid must assure the delivery of services under established

QoS requirements. The need for dependable service is fundamental as users want

to guarantee they will receive predictable, sustained and high levels of performance.

• Consistent access: a grid must be built with standard services, protocols and inter-

faces thus hiding the heterogeneity of the resources while allowing its scalability.

Otherwise, application development and pervasive use would not be possible.

• Pervasive access: the grid must grant access to available resources by adapting to a

dynamic environment in which resource failure is commonplace.

Using these properties and features, we can define a grid as geographically distributed

hardware and software infrastructure composed of heterogeneous aggregated resources,

owned and shared by multiple organizations coordinated to provide transparent,

dependable and consistent computing support to a wide range of applications. These

applications can perform distributed computing, high throughput computing, on-

demand computing, data-intensive computing or collaborative computing [8].

9

2.1.1 Grid Architecture

The focus of a Grid architecture is on the interoperability and protocols among

providers and users of resources to establish the sharing relationships. The required

protocols are organized into layers, presented in figure 2.1, according to [12].

The functionality of each layer is summarized as follows:

• Fabric layer comprises the physical resources that are shared within the Grid,

i.e. computational, storage and network resources and software modules.

• Connectivity layer “contains the core communication and authentication

protocols required for a Grid-specific network transaction” [12]. These

protocols enable the data exchange between resources of the fabric layer.

• Resource layer uses the communication protocols from the connectivity layer

to control negotiation, initiation and monitoring for the sharing of functions of

individual resources, it comprises information and management protocols.

Figure 2.1: Grid architecture

10

• The Collective layer is responsible for all global resource management and for

interaction with collections of resources, and this layer’s protocols implement

sharing behaviors. Its functionalities include directory services, co-allocation,

scheduling, monitoring and diagnostics services and data replication services.

• The Application layer involves the user Grid-enabled application that is

deployed on the Grid, i.e. an application that is designed to run in parallel and

use multiple processors of a Grid setting.

These layers of Grid Computing are interconnected and depend on each other; each

layer uses the interfaces of the underlying layer. Together they create the Grid

middleware and provide a comprehensive set of functionalities necessary for enabling

reliable and efficient sharing of resources.

As a Grid is a collection of resources, i.e. compute, storage, communication and

software; some of these resources may be used by all grid users while other resources

may have restrictions. The following are the main components of a Grid system:

• Computation Resources

Computing is the most common resource provided by the grid machines’ processors.

The processors vary in speed, architecture, software platform, memory, storage, and

connectivity. There are three main ways to utilize computation resources of a grid [9].

The first is to use it to run an existing application on an available machine on the grid

rather than locally. The second is to use an application designed to split its work in such

a way that the separate parts can execute in parallel on different processors. The third

is to run an application that needs to be executed many times on different machines in

the grid.

11

• Storage Resources

The second most common resource used in a grid is data storage resources. A grid

providing an integrated view of data storage is sometimes called a data grid [10]. Each

machine on the grid usually provides some quantity of storage for grid use, even if

temporary. Storage can be a memory attached to the processor or it can be a secondary

storage, using hard disk drives or other permanent storage media to increase the

capacity and reliability of data.

• Communications Resources

The rapid growth in communication capacity among machines makes grid-computing

feasible, compared to the limited bandwidth available when distributed computing was

first emerging. Therefore, another important resource of a grid is data communication

capacity and communications within the grid and external to the grid. Communications

within the grid are important for sending jobs and their required data to points within

the grid. Some jobs require a large amount of data to be processed, that may not reside

on the machine running the job. The bandwidth available for such communications can

often be a critical resource that can limit utilization of the grid.

• Special equipment and architectures

Platforms on the grid often have different architectures, operating systems, capacities

and equipment. Each of these represents a different kind of resource that the grid can

use as criteria for assigning jobs to machines, while some software may only run on

specific architectures. Such attributes must be considered when assigning jobs to

resources in the grid, and the administrator of a grid may create a new artificial resource

type that is used by schedulers to assign work according to policy rules.

12

2.1.2 Grid features

When a grid is deployed it must meets a set of requirements, and in order to match the

grid-computing capabilities to these requirements, it is better to keep in mind common

motivations for using grid computing [11]. Some of these motivations can be explained

in terms of the grid as a high throughput computing system and high performance

computing system. The main motivations for using Grid are:

• Fault Tolerance and Reliability

If a job submitted for execution at a specific node in the grid, the job allocates

appropriate resources based on availability and the scheduling policy of the grid. Now

if that node crashes for some reason, the grid makes provision for automatic

resubmission of jobs to other available resources. To illustrate this concept, take as an

example the Data Grids, which are grids for managing and sharing a large amount of

distributed data. They serve multiple purposes and can be used to increase data transfer

speed. Several copies of data are created in geographically distributed areas, whenever

a user needs the data for computational purpose it can be accessed from the nearest

machine hosting the data. Hence increase overall computational efficiency.

• Balancing and Sharing Varied Resources

Balancing and sharing resources provides the necessary resource management features.

This aspect enables the grid to equally distribute tasks to the available resources. If the

system in the grid is over-loaded, the scheduling algorithm can reschedule some tasks

to other systems that are idle. In this way, the grid-scheduling algorithm transparently

transfers the tasks to a less loaded system, making use of the underutilized resources.

13

• Parallel Processing

Some jobs can be broken into multiple tasks, each of which could be run on a different

machine. Such jobs can be written to run as independent tasks and then the results from

these tasks combined to produce the output. However, there might be constraints on the

types of jobs that can be partitioned or a limitation on the number of tasks into which a

job can be divided, to maximize the performance. If two of these tasks are running on

the same set of data, then some locking mechanism similar to semaphores in operating

systems must exist to guarantee data consistency. Therefore, constraints exist on the

type of job to make it grid-enabled application.

2.1.3 Grid Applications

The different types of computing support offered by grids can be categorized according

to the challenges they represent from the grid architecture point of view. The

categorizations include the following:

– Distributed supercomputing support: Allows applications to use grids to couple

computational resources in order to reduce the completion time of a job or to tackle

problems that cannot be solved on a single resource.

– High-throughput computing support: Allows applications to use grids to utilize

unused processor cycles to work in loosely coupled or independent tasks.

– On-demand computing support: Allows applications to use grids in order to retrieve

re-sources that cannot be cost-effectively or conveniently located locally.

– Data-intensive computing support: Allows applications to use grids to synthesize

new information from distributed data repositories, digital libraries and databases.

14

2.2 Cloud Overview

There are many definitions for the term Cloud Computing from academics, analyst and

industry practitioners. They differ in the description and definition of Cloud Computing

from the perspective of the provider, end users, architectural aspects and other

perspectives. From a scientific literature, a detailed definition of Cloud Computing

from the Berkeley RAD Lab [13] is the following:

“Cloud Computing refers to both the applications delivered as services over the

Internet and the hardware and systems software in the datacenters that provide those

services. The services themselves have long been referred to as Software as a Service

(SaaS). The datacenter hardware and software is what we will call a Cloud. When a

Cloud is made available in a pay-as-you-go manner to the general public, we call it a

Public Cloud; the service being sold is Utility Computing. We use the term Private

Cloud to refer to internal datacenters of a business or other organization, not made

available to the general public. Thus, Cloud Computing is the sum of SaaS and Utility

Computing, but does not include Private Clouds. People can be users or providers of

SaaS, or users or providers of Utility Computing” [13].

The data center is the main Cloud component that contains the physical hardware

resources for storage and computing, these two services together with software are

offered in a pay-as-you-go manner. One characteristic of Cloud Computing is the

integration and combination of hardware and system software with applications, that is

integration of utility computing and SaaS.

15

Another definition by Foster et al. [14]: “large-scale distributed computing paradigm

that is driven by economies of scale, in which a pool of abstracted, virtualized,

dynamically-scalable, managed computing power, storage, platforms, and services are

delivered on demand to external customers over the Internet”. This definition shows

two aspects, virtualization and scalability. The virtualized resources are provided

through an Application Programming Interface (API) or a service. Resources, at the

hardware level, can be added or removed according to the demand received through the

interface, which itself is not changing to the user. This allows more flexibility and

scalability on the physical layer of the Cloud without any impact on the interface to the

end user. Figure 2.2 illustrates the Cloud Computing concept.

Figure 2.2: Cloud computing concept

16

In other words, the Cloud is a large group of interconnected machines extends beyond

a single enterprise. Resources of the cloud such as storage, hardware, network and

software are provided in a X-as-a-Service manner.

The most important features of Clouds are the virtualization and the dynamic scalability

on demand, so a cloud system consists of a group of virtualized computers dynamically

provisioned as one or more unified computing resource.

All Cloud services are offered through the Internet to users across multiple platforms,

via a defined API or Web browser, depending on the user’s usage. In cloud computing

platforms, resources need to be dynamically reconfigured virtualization, consumers’

requirements can vary over the time and amendments must be accommodated.

2.2.1 Cloud Architecture

In literature, there are a number of concepts for Cloud structures, these classifications

may appear to be different from one another to varying extent, but finally they describe

and classify a related structure and share a common denominator [15-17]. Most of these

concepts do not provide a description that is a sufficiently generic for Cloud structure

and its components, but the concept that is used to describe a generic structure and

components of a cloud is the three-layered concept. Figure 2.3 shows the architecture

of the Cloud.

17

Cloud Computing comprises different IT capabilities, namely infrastructure, platforms

and software. These different “capabilities” may also be referred to as “layers”, because

Infrastructure, Platform and Software are built successively onto the forerunning level

and are logically connected as different layers of the Cloud architecture. Therefore, the

three architectural layers of Cloud Computing are: Software as a Service (SaaS),

Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) [18].

Figure 2.3: Cloud Architecture

18

The three layers are illustrated in Figure 2.4, where cloud services are related to the

cloud infrastructure.

- Infrastructure as a Service (IaaS): offers storage, computing and network resources,

accessed remotely with some benefits like pay per use, security, and reliability. Instead

of selling raw hardware infrastructure, IaaS is offered as a virtualized infrastructure as

a service. Examples are Google Compute Engine, Windows Azure Compute, Amazon

Elastic Compute, Google Cloud Storage and Amazon Simple Storage.

- Platform as a Service (PaaS): is an abstraction layer between the virtualized

infrastructure “IaaS” and the software applications “SaaS”. Applications can be written

and uploaded according to the specifications of a specific platform without worrying

about underlying hardware infrastructure. Examples include Salesforce and Google

App Engine, which allows applications to be run on Google’s infrastructure.

- Software as a Service (SaaS): is the software which is owned, delivered and managed

remotely by providers, offered in a pay-per-use manner. Because it is the actual

software applications that are accessed and used, it is considered as the most visible

layer of the Cloud for end-users. Examples are Google Apps (Gmail, Docs and

Spreadsheets) and Salesforce.com.

Figure 2.4: Cloud Layers

19

2.2.2 Cloud Features:

The benefits of Cloud Computing are many; the major advantages of them could be

summarized as follows: On-demand self-service, location-independent resource

pooling, ubiquitous network access, transference of risk, lower costs, ease of utilization,

quality of service, and reliability. For all different types of Cloud customers, the major

opportunities known for X-as-a-Service offerings are offered by the Cloud. From the

perspective of the user, the utility-based payment model is one of the benefits of Cloud

Computing. There is no need for up-front infrastructure investment; software licenses,

risk of unused but paid software licenses, hardware infrastructure, maintenance and

staff.

Users of the Cloud services only use the volume or capacity of resources they actually

need and pay only for the volume of resources they actually use, while they take

advantage of the flexibility and scalability of the Cloud, as it enables easy and fast

scaling of computing resources required on demand. Figure 2.5 shows different parties

that can benefit from the Cloud.

Figure 2.5: Cloud Parties
20

2.2.3 Cloud Models:

Cloud models are the description of the physical arrangement of the cloud

infrastructure. Generally, clouds are classified according to the owner of the Cloud data

centers. From cloud definitions aforementioned in section 2.2.1, Cloud Computing can

be characterized as the obtaining of IT capabilities from external providers as a service.

External data centers, e.g. those of Amazon, Azure or Google, are the foundation on

the raw hardware level to deliver IT resources or capabilities as Cloud services. To

differentiate between internal Cloud infrastructures “internal Clouds” and external

providers of Cloud services “external Clouds”, two main types of cloud models are

commonly used: Private for internal Clouds and Public for external Clouds [13, 17].

• Public Cloud: the most common type of cloud models, where data center hardware

and software are run by third parties, e.g. Google and Azure, and expose their

services to companies and consumers via the Internet. It is considered for web-based

applications used by individuals and businesses where the application is a one-size-

fits-all type of approach. It is not restricted to limited user base; it is made available

in a pay-as-you-go manner to the public [13]. Examples of applications on public

clouds include web-based emails, social media and online multimedia services.

• Private Cloud: refer to internal data centers, fully owned by a company who has

control over the applications run on the infrastructure, where they run and the

people using it [13]. This cloud is considered as dedicated for a given application

or customer including being a part of the same physical location or in a remote

location, and is customized to the exact needs of that application or customer. It

relies on the virtualization of existing infrastructure for an organization, leading to

increased utilization as described earlier. A key benefit here is the gain of all

advantages of virtualization while retaining full control over the infrastructure [19].

21

As their names imply, public and private clouds differ by the degree with which the

customer controls the configuration and who has access to the data. In a public cloud,

there is little influence on the part of the customer, and the only interface is through the

use of the web-based application. In a private cloud, the customer can control access,

the platform type and even the hardware used; but the capital outlay is greater.

Private clouds are also used when the customer is geographically diverse and wants to

centralize their technology needs so that it is accessible from any of their locations [20].

Public and private clouds represent the two main cloud models, but there are other

adopted models like Hybrid cloud and Community cloud:

• Hybrid Cloud: where Public and Private Clouds are combined, and applications

could be delineated such that some exist on a public cloud and others exist on a

“secure” dedicated private cloud. This way, companies can benefit from scalable

resources offered by external Cloud providers while keeping specific applications

or data inside the firewall.

• Community Cloud: an emerged model of hybrid cloud arrangement for businesses

that are in some way related to each other, for example, different departments within

a large corporation even if the actual work being performed by these different

departments was independent of each other. It is an attempt to receive the cost

benefits of a shared tenancy of a public cloud with the security and control provided

by a private cloud, this led to multiple businesses with similar needs using a single

private cloud infrastructure. The physical infrastructure of the cloud can be local or

remote to the businesses that it supports, and its ownership can be the supported

businesses or a third party [20]. Figure 2.6 shows the different models of the Cloud.

22

2.3 Gird Computing VS. Cloud Computing

The description of Grid Computing in section 2.1 and Cloud Computing in section 2.2

show that there are similarities between Grid and Cloud Computing. This has motivated

many discussions in commercial and scientific literature asking if Grids and Clouds are

the same, if Cloud is only a new hype of marketing, or if there are significant differences

between Grid and Cloud Computing.

Cloud computing is a computing technology that uses the Internet and remote servers

to maintain data and applications. It allows consumers to use applications without

installation and access their personal files at any computer through Internet access [13].

It also allows for more efficient computing by centralizing memory, processing, storage

and bandwidth.

Figure 2.6: Cloud Types

23

Cloud computing emerges from grid computing and provides on-demand resource

provisioning. Grid computing may or may not be in the cloud depending on the type of

users who are using it. If the users are integrators and system administrators, they care

about how things maintained in the cloud, they install and virtualize servers and

applications. If the users are consumers, they do not care how things are run in the

system.

Grid computing requires using software that can divide and farm out pieces of a

program to several thousand computers. One problem with the grid is that if one piece

of the software on a node fails, other pieces of the software on other nodes may fail if

that component does not have a failover component on another node. Problems can

arise if components rely on other pieces of software to accomplish the computing tasks.

Large system images and hardware associated to operate them can cost a large capital

and operating expenses.

Grid and Cloud computing are scalable, scalability is accomplished through the load

balancing of application instances running individually on a range of operating systems

and connected using Web services, also CPU and network bandwidth is allocated and

de-allocated on demand. The system's storage capacity increased and decreased

depending on the number of instances, users and the amount of data transferred at a

given time. Table 2.1 compares between Grid and Cloud Computing [19-22].

24

Table 2.1: Comparison: Grid Computing and Cloud Computing

Topic Grid Computing Cloud-Computing

The problem Computation over large data sets,
or of parallelizable Compute
intensive applications. Problem
areas are often in pure research or
in compute-intensive commercial

On-demand scalability for all
applications, including
research, development and
business applications.

Main Target
Market

First – Academia

Second – certain industries.

Industry and academia.

The consumer A member of a defined grid
community, or a function within
a large company

Open to anyone who can pay

User motivation Low cost for large computations
and processing of large amount
of data.

- On demand scalability

- Lower IT infrastructure costs
(operations, energy, personnel)

The capability
offered

Access to computers Access to services, VMs and
applications.

Unit of work Grid computing application;
a batch job, or a group of parallel
batch jobs with a storage service

Either a Virtual Machine
instance dedicated to the user
where anything can be run, or
using an online application
with a Storage Service

Administration Distributed, Virtual organizations. Centralized.

Means of
utilization

Allocation of multiple servers
onto a single task or job.

Virtualization of servers; one
server to concurrently compute
several tasks.

Typical usage
pattern

To execute jobs, i.e. execution
of a program for a limited time.

To support long-running
services

Abstraction level Low abstraction, details exposed High abstraction level.

25

2.4 Software Agents Overview

Software Agent is an autonomous component that interacts with its environment and

with other agents on a user's behalf. It is kind of software abstraction, which provides

a convenient and powerful way to describe a complex software entity, defined in terms

of its behavior. Software Agent has the following capabilities, which make it a unique

solution suitable for specific circumstances [23]:

o Persistence; code is not executed on demand but runs continuously and decides for

itself when it should perform some activity.

o Autonomous; agents have capabilities of task selection, prioritization, goal-directed

behavior, decision-making, operating as a standalone process and performing

actions without human intervention.

o Communicative; agents are able to engage other components through some sort of

communication and coordination; communicate with users, other software agents,

other software processes or they may collaborate on a task.

o Reactivity; agents are able to perceive and respond to changes in its environment.

So an agent is a computer system that is capable of autonomous actions, that is, deciding

and figuring out what needs to be done to satisfy its objectives. A multi-agent system

consists of a number of agents; interact by cooperating, coordinating and negotiation

with one another. When several agents work together and draw on the broad collection

of their capabilities to achieve a common goal, this is called Cooperation. While

Coordination is the process of achieving the state in which agents’ actions fit in well

with each other. The Negotiation is a process by which a group of agents communicate

with each other trying to come to a mutually acceptable agreement on some matter [24].

26

2.4.1 Characteristic of Software Agents

Characteristics of Software Agents are many, these characteristics work together to

make agent-oriented systems more flexible, the following are some of them [25]:

 Autonomy: an agent is responsible for its own thread of control and can pursue

its goal without being dependent on other agents.

 Adaptability: an agent’s behavior may be changed after it has been deployed.

 Collaboration: agents communicating and working cooperatively with other

agents to form multi-agent systems that are working together on some tasks.

 Knowledgeable: an agent is capable of reasoning about its knowledge and goals.

 Persistence: the infrastructure enables agents to retain knowledge and state over

extended times, including robustness to face any potential run-time failures.

 Mobility: The ability to move from one context to another, either by moving the

agent’s code and starting the agent again or by serializing state and code,

allowing an agent to continue execution in a new context with retaining its state.

In addition, software agent is defined in terms of its behavior, rather than being defined

in terms of methods and attributes like other programming languages. Figure 2.7 shows

the paradigm shifts of abstraction level of languages over the time.

Figure 2.7: Paradigm Shifts
27

2.4.2 Types of Software Agents

• Personal agents: present some "personality" or "character", interact directly

with a user, monitor and adapt to the user's activities, learning the user's style

and preferences, and automate and simplify certain rote tasks.

• Mobile agents: to be sent to remote sites to aggregate and analyze data,

collecting information or performing actions and then return with results. Such

data-intensive analysis is better to be performed at the source of the data rather

than transferring big raw data.

• Collaborative agents: communicating and interacting in groups, they represent

organizations, users, and services. Multiple agents negotiate and share

information through exchanging messages.

2.4.3 Why and when to use Software Agents

It is important to use high-level abstractions in building software that is complex to

manage the complexity. An abstraction focuses on the essential and important

properties of a problem and hides components that are incidental of that problem.

Agents manage complexity by providing a new way of describing a complex process.

Using agents make it easy to define a system in terms of agent-mediated processes.

Software agents are appropriate for use in a wide variety of applications. They are well

suited for use in applications that involve communication between components or

distributed computation, also for applications that reason about the objects or messages

received over a network.

28

Multi-agent systems are also suited for applications that require distributed, concurrent

processing capabilities. They can make it easier to build several kinds of complex

systems. However, it must be remembered that software agents are appropriate for use

to implement certain kinds of applications; but in other problem domains, other

technologies could be more appropriate.

One of the benefits of the agent-based approach is that a complex processing function

can be broken into several smaller, simpler ones. Since each individual agent can be

crafted to be an expert in performing a particular task or solving a specific problem,

systems could be built that show complex behaviors by using a group of relatively

simple agents.

As known, essential characteristics of cloud computing include resource pooling and

resource sharing. In agent-based cloud computing, the cooperation and coordination

protocols of software agents are adopted to automate the activities of resource pooling

and sharing in the clouds that are pooled to serve multiple cross-platform users [26].

29

Chapter 3

Related Work

There are projects focusing on cloud computing management with a variety of

architectures and services. In this chapter, we study cloud resource management and

mention some other systems that are related to this research, conclude these works and

discuss them. We also present a literature review for Cloud Federation as a technique

for integrating Cloud resources.

3.1 Cloud Resources Management

There are a number of management systems for cloud services, and some of these

systems can be found as a locally installed management application with a GUI,

command-line tools, extensions of a web browser or as online tools. They provide

their own management interfaces, designed to specific needs without the ability to

interact with other cloud deployments of the same system, particularized to work only

with a specific cloud technology and not compatible with others. Some IaaS systems

are replicating the same capabilities offered by public providers like Amazon AWS.

These may include Nimbus, Eucalyptus, OpenStack and OpenNebula [27, 28].
30

We found some existing systems for managing grid of IaaS clouds, some of them are

suitable for only services of one cloud [29], and others for multiple services from

multiple providers, like ‘Karlsruhe Open Application for cLoud Administration’. It is

a web based application for managing AWS compatible cloud services, allows for

working seamlessly with a variety of services of various clouds like Google Storage,

S3 and Walrus storage services. [30, 31].

There is also an open source, cross platform, cloud management system called Scalr;

provides server management and auto scaling disaster recovery [32]. The manager has

the ability to scale the virtual infrastructure according to the load based on RAM,

disk, CPU, network or date.

Furthermore, there are open source initiatives like deltacloud [33], jcloud [34] and

Libcloud [35], in addition to their limitation to a specific interface or programming

language, they are mainly concerned with the management of public IaaS providers

with basic support for some private IaaS systems. While they manage virtual

instances, they do not concern about the underlying physical infrastructure. Other

systems provided from academia offer a generic model for management to be adapted

to any product. As their model was built with an exact technology, REST or SOAP

web services, their interface is fixed. It is not easy to extend them to offer other kind

of interfaces such as web pages or command-line tools.

If we look to other related works that use software agents in the management of the

grid clouds, we can find some examples like [36]; they simulate a proposed

framework based on agents to manage resources for service workflows, with a

hierarchical architecture for separating decisions of resource management on service,

workflow and cloud levels.
31

Others proposed an adaptive model for resource allocation for finding a proper data

center according to the consumer location and the data center workload, also

simulated using the agent-based testbed [37]. Another prototypal implementation

found for an interface that is compliant with Open Cloud Computing Interface [38] to

manage IaaS resources. This interface developed as an entryway to a standard FIPA

multi agent system, offers services for IaaS management and resources negotiation

[39]. Another group has presented an agent-based protocol for cloud service

discovery. Taking advantage of an ontology description (semantic description of each

resource), they developed a multi-agent system by introducing an ontology-based

matching, using database for keeping track of historical data to make

recommendations based on the prediction of the attribute value [40].

We also found that the number of works that involve the use of software agents in the

process of managing grid clouds are limited, most of them either for resource

negotiation / brokering or they are just a simulated ideas for resource allocation

without implementation on real clouds [41, 42, 43]. We will study the works

aforementioned, their functions of management and how they were designed. The

motivation for choosing these systems is to study the resource management

architectures, especially in the computational cloud system at IaaS level.

32

3.2 Cloud Federation

Cloud Computing offers three main service models; Infrastructure as a Service ‘IaaS’,

Platform as a Service ‘PaaS’ and Software as a Service ‘SaaS’, in addition to others.

IaaS services include Compute Clouds and Cloud Storage. PaaS provides platforms

and execution environments, and SaaS provides only software. We can arrange these

models as a stack as they relate to each other. The IaaS layer is the lowest level close

to the underlying hardware. In this layer, we can distinguish two service types:

computational and storage. Examples of clouds that provide infrastructure services are

Google Compute Engine, Amazon EC2 and Azure Compute (Table 1.1). Next layer is

the PaaS layer; examples include Amazon Elastic Beanstalk, Windows Azure and

Google AppEngine. The third layer, SaaS e.g. Google Docs, is based on IaaS or PaaS.

In this research we are focusing on the IaaS layer as it provides the compute and

storage services, we mainly use the computing services from different clouds using

our proposed manager to execute jobs on these clouds. Grid clouds are similar to the

concept of cloud federation, where services comprised from different clouds are

aggregated together.

The term Federated Cloud has been used interchangeably with hybrid cloud in that

both described a mixture of public and private clouds that are aligned with the needs

of a given customer. Recently, however, the federated cloud term is being used to

describe a different kind of cloud business model that is more aligned with a utility

network model. The physical cloud resources are themselves being considered as a

service, and cloud providers are offering their resources for other providers to expand

the global cloud coverage offered to their customers without needing physical

resources in every geographic locale.
33

In other words, a customer can obtain cloud services from a single provider, and that

provider would obtain cloud resources in any geographical location via a local cloud

provider, in a manner that is seamless to the customer and removes any latency

concerns by being local to the point of use [20]. Consequently, the cloud become a

federation of infrastructure providers or alternatively there will be a federation of

clouds, making a collection of clouds that interoperate together, i.e. exchanging data

and computing resources through defined interfaces. In cloud federation, each single

cloud remains independent but can interoperate with other clouds in the federation

through standardized interfaces. Figure 3.1 shows the layers of the cloud with

different types of integrations (Horizontal and Vertical).

There are two types of federation, Horizontal federation and Vertical federation.

Horizontal federation expands the capacity of a cloud by integrating a new site and it

takes place on one level of the Cloud Stack e.g., infrastructure level. Vertical

federation allows the integration of new infrastructures to provide new capabilities by

spanning multiple levels [44].

Figure 3.1: Integration types in the Cloud

34

Presently, a Cloud Federation is still a theoretical concept, as there is no common

standard for cloud interoperability. A new initiative is trying to develop a common

standard is the Open Cloud Computing Interface, with a goal of a standardized API

among clouds. This enables interoperability among diverse providers and enables a

new business models and platforms like 1) “Integrators” for advanced management

services spread over several Clouds, and 2) “Aggregators” for a single common

interface to multiple Cloud providers. Interoperability and open standards between

public and private clouds enable a high level of flexibility for uses, and users also

would be able to partly outsource processes and data to clouds that are privacy-

sensitive or less secure. The possibility of building federated clouds would enable

specialization of single clouds as well as a broader choice for users [19].

One important point to be mentioned here is that Cloud Federation requires one

provider to rent or sale computing resources to another provider. Those resources

become a permanent or temporary extension of the buyer's cloud computing

environment. Therefore, an agreement must be initiated between different cloud

providers in order to make this integration “federation” valid.

The idea of managing grid cloud services, especially infrastructure services, emerges

a new way of computing technology through grid cloud system. The related works

that aggregate multiple clouds together are only simulated works, no real clouds are

involved in their experiments. In contrast, the Agent-based Manager for Grid Cloud

System is using real clouds. Furthermore, there is no need for an agreement between

providers, as the Manager is integrating all APIs of these Clouds together and then

managing resources and tasks using the proper API.

35

Chapter 4

Agent-based Manager for Grid Cloud System (AMGCS)

This chapter presents our work by providing the architecture of the Agent-based

Manager for Grid Cloud System (AMGCS), with explanations on its functions and

services. We introduce this chapter by providing a brief overview about Cloud

management services, architectures and main phases in Cloud resources integration that

AMGCS is based on in our study.

4.1 Grid Cloud Management Overview

Before we discuss our work in this thesis, we introduce this chapter by presenting an

overview about some of the important aspects that affect the management in the grid

cloud system. Architecture and services provided by the resource management system

are affected by the type of the resources they manage. For computational grid cloud,

the main resources that are being managed by the resource manager are the compute

resources while in a data grid cloud the focus is to manage data distributed over cloud

geographical locations. In this thesis, we only focus on a grid cloud that aggregates and

manages the compute and storage resources.

36

Scheduling is an important component of the manager, which plays an important role

in the overall performance of an application running on the grid cloud. Proper

scheduling requires information about the status and availability of the resources in the

grid clouds.

In a Grid Cloud management system, the following are frequently used terms:

- A resource is a term used to denote anything that can be scheduled and required to

carry out an operation such as virtual machines, disk space, network and so forth.

- A job is any application that needs any kind of resources, i.e. bandwidth, compute,

storage or any other resource to be run and to complete its tasks.

- The properties of a job are the parameters like memory or CPU requirements,

priority, deadline, cost, reliability… etc.

4.1.1 Grid Cloud Management System Structures

A manager can be implemented in different structures, which determine the architecture

of the resource management system and the scalability of the system. These structures

are classified as centralized, hierarchical or decentralized, shown in Figure 4.1.

Decentralized Centralized

Grid Cloud
Manager

Architecture

Hierarchical

Figure 4.1: Categories of Grid Cloud Manager

37

• In a centralized model, jobs are submitted to a single manager that is responsible

for scheduling them on the available resources. As all scheduling information

is available at single place, the scheduling decisions are optimal but not very

scalable in large systems. As the size increases, it would be difficult to keep all

information about all resources states. Figure 4.2 shows a central manager

architecture.

• In a decentralized model, there is no central manager as the managers are

distributed on multiple locations. This approach is scalable and suits large

systems. However, the managers should cooperate together in making

scheduling decisions, and the generated schedule may not be the optimal one. It

is perfect for peer-to-peer architectures and dynamic environments. Figure 4.3

shows a decentralized manager architecture.

Figure 4.2: Centralized Manager Architecture

38

• In a hierarchical model in Figure 4.4, the managers are organized into a

hierarchy. High level resource entities are scheduled at higher levels and lower

level. The smaller sub-entities are scheduled at lower levels of the manager

hierarchy. This model is considered as a combination of the above two models.

Figure 4.3: Decentralized Manager Architecture

Figure 4.4: Hierarchical Manager Architecture

39

One way of classifying a manager is by the scope of its operation. A centralized

manager schedules and manages all jobs submitted to the grid cloud, whereas a

decentralized manager handles jobs submitted to a particular manager in the grid cloud.

A centralized manager has a full knowledge and control on the resources and jobs.

Hence, it can perform good scheduling, but easily become a single point of failure and

a performance bottleneck. On the other hand, decentralized manager architecture scales

well but with low optimal scheduling performance due to the multiplicity of managers.

Scheduling policies used by the grid cloud system can be classified into two major

categories: user-oriented scheduling and system-oriented scheduling. User-oriented

scheduling try to optimize the performance for an individual user by minimizing the

response time for each job submitted by the user, whereas system-oriented scheduling

often strives to maximize over system throughput, average response time, fairness or a

combination of these. [46]. A decentralized manager uses a user-oriented policy,

whereas a centralized manager performs system–oriented scheduling. The comparison

between a centralized and decentralized manager is summarized in Table 4.1.

 Table 4.1: Comparison between Centralized and Decentralized Manager

 Centralized Manager Decentralized Manager

Scalability Not scalable Scalable

Fault tolerance Single point of failure More fault tolerance

Architecture Client-Server
architecture

Peer-to-Peer and dynamic
environments

Information
Storage

Keep information about
all resources and jobs

Don’t keep information
about all resource and jobs

Performance System-oriented User-oriented

40

4.1.2 Scheduling Phases

A grid cloud Scheduler is an important component in a management system. The user

essentially interacts with the resource manager that hides the complexities of Grid

Cloud computing. The grid cloud scheduler does not own the physical resources and

therefore does not have control over them [47]; hence, the Scheduler must make best

effort decision and submit the job to the resources selected.

In general, the scheduler function is to map jobs to the suitable resources in the grid

cloud. The scheduler involves three main phases: Resources Discovery, Resource

Selection and Job Execution (see Figure 4.5). Grid Cloud scheduling maintains a list of

available resources and selects a best set of resources depending on users requirement

and load balancing strategies. Then the scheduler dispatches the job to a selected virtual

machine to execute it and finally it collects the results.

Figure 4.5: Scheduling Phases1

1 This Figure is taken from Schopf, J., "Ten Actions When Grid Scheduling" [48].

Phase 1: Resource Discovery

 1. Authorization

2. Application Definition

3. Min. application Requirement

Phase 2: Resource Selection

 4. Gathering Information

5. Selecting Resource

Phase 3: Job Execution

 6. Advanced Reservation

7. Job Submission

8. Tasks Preparation

9. Monitoring Progress

10. Job Completion

11. Clean up tasks

41

Phase 1: Resource Discovery

Resource discovery is an important function of the resource management, used by the

scheduling system to obtain information about the resources available. The goal of this

task is to identify a list of authorized virtual machines that are available to a given user.

Approaches to resource discovery can be classified as query-based or agent-based [49].

In the mostly used approach, query-based, the resource information store is queried for

resource availability. In agent-based discovery, agents traverse the grid cloud system to

gather information about resource availability. In this thesis, we use the agent-based

approach but with alteration in the manner of discovering resources in the grid clouds.

Phase 2: Resource Selection

The scheduler selects resources to execute jobs depending on load balance algorithms.

To select a resource, two steps must be done: gathering information about resources

and making decision depending on expected starting time, the usage duration of

resources, the CPU load on the resource… etc. [50]. The information about resources

in the grid clouds is stored and maintained for scheduling uses.

Phase 3: Job Execution

When resources are chosen, the application can be submitted to the resources. Job

submissions may be as easy as running a command or complicated as running series of

scripts and may or may not require setups or staging. The simple acts of job submission

can be complicated because of the lack of standards for job submission. The preparation

stage may involve setup, stage, reservation or other required actions in order to prepare

the resource to execute the job.

42

4.2 Agent-based Manager for Grid Cloud System (AMGCS) Overview

Resource management is important in the grid cloud system, its functions are to identify

resource requirement, match and allocate resources, schedule and monitor them and to

utilize them efficiently. Grid Cloud resource management focuses on the virtualization

and coordinated use of heterogeneous and distributed resources. The current trend in

Cloud systems is the adoption of the software agents for Grid Cloud architecture, as the

software agent characteristics that we already presented in chapter 2 are compatible

with cloud environments.

The compatibility of software agents’ characteristics with Grid Cloud architecture

allows us to design a manager for such architectures based on software agents. Using

agents in managing grid clouds’ resources enhances the interoperability, scalability and

flexibility with high platform independence.

Different resources in a grid cloud are varying in operating systems, CPUs, VM images,

memory… etc. This difference can lead to complex management for these resources.

Software agent is well suited to address issues that arise from such a heterogeneous and

remotely controlled but globally shared system. Dealing with changing requests and

supporting autonomous resource mapping accentuate the need for cloud resource

management systems, especially those systems that are capable of continuously

managing the process of resource reservation by monitoring current service requests,

amending future service requests, and autonomously adjusting schedules to

accommodate dynamically changing resource demands [51].

43

Software agents are the most appropriate option for autonomously managing cloud

resources in AMGCS, as users need to make decisions on selecting appropriate

providers and negotiate with them to achieve “ideal” service contracts. Also providers

need to make decisions on selecting appropriate requests to accept and execute

depending on the resource availability, both current and future demands for services,

and existing service obligations. Since agents are capable of making decisions when

carrying out tasks on behalf of their users, and interacting with other agents through

negotiation, cooperation, and coordination protocols, all of the above-mentioned

requirements (challenges) motivates to adopt autonomous agents to allocate resources

amid dynamically changing resource demands. Agent-based cloud computing is

concerned with designing software agents for bolstering cloud service discovery,

negotiation, and composition [52, 53].

In this thesis, we introduce an Agent-based Manager for Grid Cloud System (AMGCS)

to group multiple clouds together (Figure 4.6) and run complex jobs that need high CPU

by using the CPUs of the virtual machines in the grid clouds. The AMGCS aims to:

• Make full use of available computing power and built-in load balancing,

• Provide flexible access to virtual machines,

• Utilize cloud resources usage,

• Introduce an agent-based prototype for managing cloud resources and executing

complex tasks using these resources,

• Be more scalable to more users and virtual machines.

Cloud System n

AMGCS

Cloud System 1 Cloud System i

Figure 4.6: Managing integrated cloud systems

44

4.3 Grid Cloud concept
Grid cloud is built on the concept of Cloud Federation, which we mentioned in section

3.2. So a grid cloud is a way in which services characterized by interoperability features

are aggregated from different clouds in one grid. It addresses the problems of vendor

lock-in and provider integration, in addition to increasing the performance and the

disaster-recovery process through techniques like co-location and geographic

distribution. It may also enable further reduction of costs due to partial outsourcing to

more cost-efficient regions. This concept satisfies some security requirements that

might be necessary for some users, by using the fragmentation technique to execute

part of the job on one cloud and the other part on another cloud, then combining results

without allowing each cloud to know the actual job context.

As mentioned in section 3.2, the two types of federation are horizontal and vertical.

Horizontal federation expands the capacity of a cloud by integrating a new site and it

takes place on one level of the Cloud Stack, e.g. infrastructure level, illustrated in

Figure 4.7a, showing integration link between different clouds on the same level.

Vertical federation allows the integration of new infrastructures to provide new

capabilities by spanning multiple levels [44], illustrated in Figure 4.7b.

Figure 4.7: a) Horizontal Federation b) Vertical Federation

45

Applying this concept in our manager adds benefits like resource redundancy (parallel

usage of similar services in different domains), resource relocation (data items, VM

images or source code from domain to another) and combination of complementary

services by combining different types to combined services [45].

Here we focus on the horizontal federation as it decreases the provider dependency and

increases the availability (across multiple geographic regions). Therefore, if the QoS of

executing jobs/tasks specifies the lower cost, for example, it can be executed on a cloud

with the lowest cost or any other specific QoS required. Unlike Cloud Federation,

AMGCS does not require an agreement between providers to integrate their services

and resources, the manager itself combines the APIs of all grid clouds.

4.4 AMGCS Architecture

The general schematic of the Grid Cloud resource Manager that we designed in this

thesis is illustrated in Figure 4.8.

Figure 4.8: AMGCS structure
46

Because AMGCS provides different functions such as managing and monitoring

resources and jobs, it consists of different agents, each of which is associated with a

cloud API and managing resources on that cloud. The architecture model of AMGCS

consists of two modules: a Scheduler and Monitor modules. The scheduler is

responsible for managing resources available in the grid clouds, and allocates proper

resources to jobs. The monitor module is monitoring jobs’ executions and the

resources reserved on the clouds for these jobs. These modules are interacting

together in order to achieve their tasks properly, as illustrated in figure 4.9.

These two modules are composed of sub-modules, each one associated with an agent,

these sub-modules are job scheduling, job decomposition, job manager, resources

metadata, each one with specific role but they are communicating together. The role

of job scheduling is to schedule jobs according to available resources and user desires,

job decomposition helps in decomposing job into tasks (based on job structure) to

assign each task to a proper resource according to the information collected about all

resources available in the grid clouds. Job manager monitors the execution of the jobs

or tasks and the associated resources, finally the resources metadata sub-module

collects and updates the metadata about available resources in all grid cloud systems.

Monitor Scheduler

Cloud #1
Job #1
Job #2
Job #n

Resource #1
Resource #2
Resource #n

Cloud #2
Job #1
Job #2
Job #n

Resource #1
Resource #2
Resource #n

Cloud #n
Job #1
Job #2
Job #n

Resource #1
Resource #2
Resource #n

Figure 4.9: Modules of the AMGCS

47

4.4.1 Manager Services in AMGCS

AMGCS manages the virtual machines in the grid cloud system and is responsible for

grouping multiple clouds together in the system; it schedules jobs depending on the

metadata information then sends the job to the selected cloud to execute it on the

associated virtual machine and returns the results. Moreover, it monitors execution of

jobs and the utilization of available resources, also collects and updates metadata

information about all available resources on the grid clouds, to create customized virtual

machines to execute tasks and terminates these them after finishing their executions.

Therefore, the manager here consists of number of services; each of which is associated

with an agent and performs a specific function of the manager, by cooperating with

each other to satisfy the manager responsibilities and goals. Figure 4.10 shows the

algorithm used by the manager to achieve its services.

Input: Job J, User desires U, List of available resources R

Begin

Update metadata

Sort List R depending on U

If J can be decomposed, Decompose J into tasks JTs

If best-fit resource list BFR is not empty

Send J to BFR

Else send J to first-fit resource FFR

Execute J on selected virtual machine VM

Monitor J, R

Return results

End

Figure 4.10: AMGCS algorithm

48

Chapter 5

Implementation and Testing of AMGCS

This chapter discusses the implementation of the AMGCS. The techniques and tools

used in building this manager with its integrated APIs. It also presents the architecture

of each cloud system and an explanation on how to initialize the APIs used in the

AMGCS manager.

5.1 AMGCS Implementation

The manager has been built using Java programming language to implement the

agents that compose the manager itself. Each agent is implemented to perform

specific tasks, decomposing jobs if it is possible, managing resources in different

clouds and updating the metadata that contains the information about the available

resources in all grid clouds. We have integrated our manager with multiple clouds

APIs, these clouds are Google Compute Engine, Google Cloud Storage and Windows

Azure Compute. Resources on these clouds are managed and controlled through the

API functions of each cloud. In order to do that, we have had to understand their APIs

and how to integrate them with the manager. Once we understand their functions, we

can call them directly through our manager.
49

To be able to use these APIs, there must be an authorization and authentication

processes that must be initiated before actual invoking of APIs functions and making

requests. This initialization process must be done once, and then the manager will use

these API functions to make any requests to manage our tasks and resources on these

clouds, without the need of doing these steps again. We will go through these

initialization steps briefly in each cloud we integrated with our manager.

5.2 AMGCS integration with Google Compute Engine

The API of the Google Compute Engine (GCE) has been integrated with our manager

to directly call and request any details about the available resources and managing

them. GCE first needs to authenticate the machine before accepting any request; this

is done through the OAuth 2.0 protocol, which provides clients a method for

accessing resources on behalf of a resource owner, like different clients or end-users.

The OAuth 2.0 authorization framework enables a third-party application to obtain an

access to an HTTP service, either on behalf of a resource owner by orchestrating an

approval interaction between the resource owner and the HTTP service, or by

allowing the third-party application to obtain access on its own behalf [54].

We have integrated the Google Compute Engine API with our Manager to get their

latest machine types available, manage our resources on the GCE and to store and

retrieve these data in the manager’s metadata. We used a cloud database to store this

metadata, which is Google Cloud Storage, (section 5.5), to guarantee the compatibility

and independency of any platform.

50

Figure 5.1 shows the architecture of Google Compute Engine and the different ways

of accessing the cloud, either through the Command Line Interface (CLI), User

Interface (UI) or the API code library using different programming languages

including Java.

In this thesis we used the Java library for the API code to be integrated with the manager

which will make requests through this API to manage the related resources and jobs.

To use this API within our manager, we would need a key from Google Compute

Engine that must be associated with our manager in order to be authorized to perform

any requests, this key is called the "client_secrets” and can be downloaded in a JSON

format from Google Developers Console, here is an example client_secrets.json file:

 {
 "installed": {
 "client_id": "837647042410-75ifg...usercontent.com",
 "client_secret":"asdlkfjaskd",
 "redirect_uris": ["http://localhost", "urn:ietf:wg:oauth:2.0:oob"],
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://accounts.google.com/o/oauth2/token"
 }
}

Figure 5.1: Google Compute Engine architecture

51

The manger will take advantage of OAuth 2.0 to authenticate the RESTful API to create

and delete virtual machine instances, disks, and other resources, and to seamlessly

integrate with other Google Cloud services such as Google Cloud Storage to store

metadata that will be accessed by the manager itself to manage and schedule tasks

according to this updated metadata information. Figure 5.2 shows the flow of

authenticating APIs calls.

The servlet is a Java class to extend the server capabilities to respond to any requests

types and to extend the applications hosted by web servers. There are several machine

types available from Google Compute Engine, categorized as micro, standard, high

CPU and high memory machine types; Table 5.1 shows some of these machine types.

AMGCS can select the high CPU machine types to be used for tasks that require more

virtual cores relative to memory. Google Compute Engine uses GCEU (Google

Compute Engine Unit) as a unit of CPU capacity describing the compute power, the

minimum power of one logical core on the Sandy Bridge platform is 2.75 GCEUs.

Figure 5.2: Authenticated API calls sample flow

52

 Table 5.1: Selected list of machine types on GCE

Configuration Virtual Cores Memory
Micro - Small Shared 0.60 – 1.7 GB

Standard 1 3.75 GB

High Memory,

High CPU

2 7.50 – 13 GB

4 15 – 26 GB

8 30 – 52 GB

16 60 – 104 GB

These machine types, in addition to many others, are included in our metadata database,

so the scheduler will choose the proper one to execute the received job, according to

the required QoS and whether the cost or the response time is the most critical factor

for user desires. After the machine type has been selected, the API call will send a

request, after being authenticated, to initiate a new instance with the specified

configuration. Afterward, the manager calls the API function to start running the

specified instance (virtual machine) on the Infrastructure after specifying the machine

properties and configurations, using the instances().insert function. These instances can

run Linux server from many images available; provided by Google or customized

images of other systems, as we need. Finally, the selected jobs will be executed on this

instance and others on other instances, results returned to the manager then to the user.

The integration of the GCE API with our manager is illustrated in figure 5.3.

AMGCS

Figure 5.3: GCE integration with AMGCS

Monitor Scheduler

GCE agent
GCE API

GCE Cloud
Job #1, Job #2, Job #n

Resource #1, Resource #2, Resource #n

53

Figure 5.4: Windows Azure Compute architecture

5.3 AMGCS integration with Windows Azure Compute

Windows Azure IaaS supports Microsoft operating systems and non-Microsoft ones.

The VM image gallery in Azure Compute includes latest releases of Windows Server,

SharePoint, SQL Server, BizTalk Server, and many non-Microsoft workload like

Ubuntu, SUSE Linux, openSUSE, OpenLogic, etc. Integrating Azure Compute with

AMGCS gives the power of handling yet more requests for high computing, with a

built-in capability of Load Balancer, it also monitors VMs and restarts any that fail.

Roles are the core of Windows Azure Compute; a role instance is a set of code,

configuration, and local data, jobs are run in these instances (VMs) and, if required,

data will be stored in the storage. AMGCS calls the associated API requests to create

new instances, which are Add Role then Start Roles requests. The following schematic

illustrates Windows Azure Compute (WAC).

54

Windows Azure Compute has many machine types ranging from extra small to extra-

large machines, and also AMGCS will select from this wide range of machine types

the proper machine type with proper configurations that suits the job requirements,

Table 5.2 shows some of these machine types.

 Table 5.2: Selected list of machine types on Azure Compute

Configuration Virtual Cores Memory
Extra small Shared core 768 MB

Small 1 1.75 GB

Medium 2 3.5 – 14 GB

Large 4 7 – 28 GB

Extra large 8 14 – 56 GB

The integration of the GCE API with the manager’s agents is illustrated in figure 5.5.

In order to use this API, we would need the following:

1. A subscription Id: which uniquely identifies our subscription; we get this id

from the Windows Azure portal.

2. A management Certificate: which is required to authenticate API calls, it must

be associated with our subscription by uploading the certificate to the portal.

AMGCS

Figure 5.5: Windows Azure Compute
integration with AMGCS

Monitor Scheduler

WAC agent
WAC API

Windows Azure Compute Cloud
Job #1, Job #2, Job #n

Resource #1, Resource #2, Resource #n

55

The API is a REST based API and so the endpoints are accessible over HTTP. In our

code, we create an endpoint specific to a particular kind of operation that we want to

perform, and then we create an HTTP request for that endpoint. To authenticate the

request, we attach the management certificate with that request. The following are the

steps of using Management Certificate:

Step 1: Creating a Keystore: We have to create a Keystore by using a tool called

Keytool. The following command is used to create a Keystore:

keytool -genkeypair -alias mydomain -keyalg RSA -keystore WindowsAzureKeyStore.jks

-keysize 2048 -storepass "osama123"

We created a Keystore called “WindowsAzureKeyStore.jks” and set access password,

the file created in “C:\Program Files\Java\jre7\bin” folder.

Step 2: Exporting Management Certificate: to export a certificate from this Keystore

that we just created, also using Keytool, the following command was used:

keytool -v -export -file D:\WindowsAzureSMAPI.cer -keystore WindowsAzureKeyStore.jks
-alias mydomain

This will create a file called “WindowsAzureSMAPI.cer” in the “D:\” folder.

Step 3: Uploading Certificate: we login into the Windows Azure Portal and upload the

file named “WindowsAzureSMAPI.cer” under the “Management Certificates” tab.

In the code, AMGCS needs this management certificate in order to make its requests

authenticated. The management certificate is in the Keystore so we open it by the full

path of the Keystore we have just created with password to get the SSLSocketFactory.

We have integrated the Windows Azure Compute API with our Manager to get the

available Virtual Machine types, manage our resources on the Windows Azure and to

send and receive messages between the Manager and the tasks being executed on the

cloud, through “Windows Azure Service Bus, and Messaging Queue”.
56

5.4 Using the integrated APIs through the manager in execution time

For Windows Azure Compute, our manager will execute the HTTP requests; this is

done through the following scenario:

1) Creating a URL: based on the operation that we want to perform. In our case,

our subscription id is “4bbac197-9348-4d19-8898-0e4baa009639”, and for

example we want to perform operation “List Locations”, the URL would be:

https://management.core.windows.net/4bbac197-9348-4d19-8898-

0e4baa009639/locations

2) Creating HttpsURLConnection object: by using this URL, we create an

instance of HttpsUrlConnection object and set the SSLSocketFactory.

3) Providing other necessary information: like required request headers, request

method, content type… etc. then execute the request. For example, if we want

to perform the operation “List Locations”, we need to perform a “get” request.

For Google Compute Engine, the AMGCS manager specifies an action also by using

an HTTP verb such as GET, POST, PUT or DELETE. It specifies the resource by a

globally unique URI in the following form:

https://www.googleapis.com/compute/v1/{resourcePath}?{parameters}

The returned data will be in the JSON (JavaScript Object Notation) format.

The metadata stored by the manager will be saved in the Google Cloud Storage, using

the same account used for the GCE, the following section describes the metadata and

how it was built on the Google Cloud Storage.

57

5.5 Monitoring tasks and resources

As we mentioned earlier, the manager has an agent for monitoring tasks and

resources, this agent is specific to a particular cloud system, so we have a separate

agents for Google Compute Engine and Windows Azure Compute. Each one of these

clouds has its own API functions to get the status of the resources, and how tasks are

being executed on these resources. So the manager is using these API functions or

requests to monitor and get the status updates periodically. Figure 5.6 and 5.7 shows

the monitoring charts for GCE and WAC respectively.

Figure 5.7: Monitoring WAC resources

Figure 5.6: Monitoring GCE resources

58

5.6 AMGCS Metadata

We have used the Google Cloud Storage (GCS) to store the AMGCS manager’s

metadata. This storage service is provided by Google, with features like object

versioning, parallel uploads and CRC-based integrity checking to maintain the

robustness of our sophisticated manager. We can access its API using XML, JSON or

using the libraries for several popular programming languages including Java [55].

We used this storage service to guarantee the platform independency and the proper

integration with agents associated with different clouds. The metadata include the

following details from each cloud system in the grid cloud:

Name: name of the resource or virtual machine.

Description: description about the resource.

ID: The unique ID of the resource.

CPUs: Number of CPUs in the virtual machine

ImageSpace: The size of the server image in Gigabyte.

Kind: The category of the virtual machine, e.g. high memory, high CPU, or standard.

Disks: The maximum number of disks can be associated to a specific virtual machine.

DisksSize: The size of the disks associated to a specific virtual machine

Memory: The size of memory in Megabyte.

Location: The location of the server, e.g. Central US, West Europe, East Asia… etc.

ServerType: The type of the server, e.g. Windows, Linux, SQL, Oracle…etc.

ServerImage: The image of the server, which contains the boot loader, an operating

system and a root file system that is necessary for starting an instance, e.g. debian-7,

centos-6, rhel-6, sles-11, Windows Server 2012 R2 Datacenter, SQL Server 2012 SP1

Enterprise, OpenSUSE 13.1, Ubuntu Server 14.04 LTS… etc.

59

Figure 5.8 is a snapshot of the current metadata collected about available resources.

After the task is received by the manager, it will look for the suitable resource

available from this metadata, then start a new virtual machine with specific properties

on the specific cloud provider, then it will send the task to this particular virtual

machine. Another agent of the manager will monitor the execution of these tasks on

these resources, and will send periodic notifications to inform when the task or job

execution is completed. After finishing the job execution, the manager will make a

request to terminate the virtual machine and de-allocate the associated resources. The

integration of the GCS API with AMGCS agents is illustrated in figure 5.9.

Figure 5.8: Manager’s metadata

AMGCS

Figure 5.9: Google Cloud Storage integration
with AMGCS

Monitor Scheduler

Metadata agent
GCS API

Google Cloud Storage
Resource #1, Resource #2, Resource #n

from n cloud systems

60

Chapter 6

Evaluation and Comparison Study

This chapter discusses the experiments using the AMGCS System to measure its

performance and evaluations. It also explains the results in tables and graphs.

6.1 Introduction

To evaluate AMGCS system, we made various experiments to measure its efficiency.

We tested the execution of complex jobs that need high compute to be executed. If a

compute-intensive job has been requested to be executed with specified desires selected

by the user like performance, cost or reliability, the AMGCS manager selects the proper

resource from the metadata and sends the job to that resource in order to execute it. This

process requires having full information about the resources available in the grid clouds,

which is done through our manager by calling the API functions associated with each

cloud in the grid cloud. There is an updated list of this information in the manager’s

metadata.

61

6.2 Test cases and results

With a centralized manager, the AMGCS has been tested on a compute-intensive job,

which is a big matrices multiplication job. These matrices are huge and need long time

to be manipulated. The size of the first matrix is [4096][2048] and the second matrix

size is [2048][2048], this calculation would take long time to be done, depending on

the type of the machine that executes the job, memory, location, server type and so on.

The first test case is a single job executed on single cloud system, with the required user

desires: Low cost and minimum execution time. If a regular user wants to perform this

job on a cloud system, he will just select any cloud with any properties, as he is looking

for a low cost, he might manually select the lowest-cost resource to execute this job.

In contrast, the AMGCS manager will select the most proper resource that suits the user

desires, and achieves this job efficiently. If we consider that the user has sent the job

arbitrary to a lowest-cost resource, which is a virtual machine with a shared core, the

job of multiplying these huge matrices took about 43.8 minutes to be calculated.

AMGCS manager, however, submitted this job to a more proper VM from the list of

resources information available in the manager’s metadata, also a shared core but with

capabilities that make this VM the best option to select from the available resources in

the grid cloud, “Memory and ServerImage”. Figure 6.1 shows the result of this test case.

Figure 6.1: Comparison of execution time (minutes), shared core

Shared core (arbitrary) Shared core (using our Manager)

43.8

14.1

62

The optimized execution on the right of figure 6.1 has been achieved by executing the

job on a VM with proper properties (capabilities), because the manager knows the full

details about all resources from the metadata, it chose one cloud of the grid clouds and

create a proper virtual machine to execute this job. The configuration of this particular

virtual machine customized the memory, and the server image (Debian 7 Wheezy).

Obviously, here one server is better than the other and hence the significant difference

in execution time between them. The server type of the left one is a Windows server,

and the type of the optimized one on the right is a Linux server. To make sure that the

enhancement here is achieved by the manager’s selection strategy and not by the type

of the server (Linux or Windows), we did a second test to arbitrary execute the same

job on a Linux server also with a shared core, but without using our manager. The

results proved that the AMGCS resource scheduling is the reason for that significant

enhancement. This is because of the many options that can be customized to a particular

virtual machine and hence make this virtual machine the best proper option to execute

the required tasks, unlike the regular user’s selection that may ignore any consideration

to the capabilities or properties of the server’s virtual machine. Figure 6.2 shows the

execution time on the other server type (Linux) without using AMGCS, it was almost

near the time taken on the Windows server in figure 6.1.

Figure 6.2: Execution time (minutes) without AMGCS, shared core

Windows server Linux server

43.8

39.5

63

A third test case, the same job but different user desire, which is minimum execution

time. Here the user does not care about the cost and the most care about the execution

time. It also tested by submitting this job arbitrary to any cloud with any properties, and

compare this with the selection of our manager which depends on knowledge of the

user desires, job structure and nature, resources available and the recommended

resources for complex jobs. As we need the minimum execution time, we definitely

need a high compute power to solve this problem as fast as possible. Hence, a virtual

machine with eight cores is the proper one. Yet, even with eight cores, we can optimize

the performance further by taking into account other factors that might degrade the

performance and efficiency of the execution, like the memory and server type. So here

the job has been executed on multiple VMs with the same cores number, eight cores.

Figure 6.3 shows the difference in execution time; the one on the right is much less in

execution time compared to the arbitrary selected virtual machine on the left. This is

because the manager has submitted the job to a more suited cloud with better virtual

machine capabilities (serverType and memory space).

Figure 6.3: Comparison of execution time (minutes), 8 cores

8 cores (arbitrary) 8 cores (using our manager)

22.8

6.9

64

All these test cases are submitting the job to the clouds’ virtual machines without

decomposing it into tasks. Now if we tried to decompose this big job into tasks, and

then execute these tasks individually on multiple clouds. This definitely will increase

the performance and the reliability of executing this job.

The fourth test case is to measure the improvement of enhancement after decomposing

a job, the same job has been divided into two tasks (parts) to be executed on the grid

cloud system, with one user desire which is minimum execution time. Decomposition

here is programmed in the code just to test the prototypal manager, by dividing the first

matrix by half and keep the second as it is, to maintain the matrix multiplication rules.

Now the manager has many options to execute these tasks; one of these options is to

send each of these tasks to a different virtual machine in order to be executed separately

and then combine the results together. This is the case here, where the two tasks of the

multiplication job are processed on multiple clouds; hence the time decreased by half.

Figure 6.4 below shows the significant difference in time compared to the execution on

single cloud system.

Figure 6.4: Comparison of execution time (minutes), Single Cloud vs. Grid Cloud

Single Cloud System Grid Cloud System

22.8

3.7

65

The fifth test case was conducted to evaluate the improvement of using grid clouds in

executing tasks, by sending replications of these tasks (parts of the job) to multiple

clouds. Each task has been replicated and processed two times on multiple virtual

machines (other than previously used VMs) so if any failure occurs in any VM we have

another copy on another VM. Hence, we guarantee the reliability in execution of these

tasks, despite the cost that might be high, because here reliability is the user desire and

reliability is always costly. Figure 6.5 shows the results of this experiment.

We end up with an enhancement in executing complex-tasks on grid cloud resources

in an efficiently-managed way, combining the comparisons above proves that there is

an improvement by 16% - 30% between single and grid cloud, illustrated in figure 6.6.

Figure 6.5: Execution time (minutes) for tasks of the job, on Grid Cloud

1st task on
cloud 1

1st task on
cloud 2

2nd task on
cloud 1

2nd task on
cloud 2

4.5

10

5.3

10.2

Figure 6.6: Overall enhancement, AMGCS vs. Single Cloud

0

10

20

30

40

50

60

Shared core 8 cores Decomposed job, 8 cores Replicated, 8 cores

Execution time (minute)

Grid Cloud System Single Cloud System

66

6.3 Discussion of Experiments Results

Depending on the results that we got from the performed tests and experiments, we can

summarize our finding as follows:

• The Manager solves current challenges of executing tasks on the cloud, utilizes

grid clouds’ resources, solves complex and compute-intensive tasks, and tasks

that require high reliability and high performance.

• AMGCS manages jobs and resources and gives good performance in terms of

execution time, resource utilization and system throughput compared with using

a single cloud system.

• Increasing the number of the grid clouds in the system gives more optimize

options and high performance compared to using a small number of grid clouds.

• The overall enhancement of Grid Cloud System is 16% - 32% compared to a

single Cloud System.

• The manager does not require any provider-side agreement, only configuring

the libraries of the grid clouds.

• Fault tolerance is guaranteed by replication, and increased performance through

scaling resources to accommodate user’s needs, more or less.

• There is a trade-off between high reliability and cost, our Manager may replicate

tasks on multiple clouds and hence more cost.

.

67

Chapter 7

Conclusion and Future Work

This chapter presents the conclusions and gives the directions for future work. The first

section reviews the obtained research results and highlights the main contributions. The

second section points out few future research directions.

7.1 Conclusion

In this thesis, we introduced an agent-based manager for grid cloud system (AMGCS)

that has been designed based on software agent to ensure platform independency,

heterogeneity handling and high flexibility of managing grid clouds. AMGCS has been

designed, implemented and successfully tested on real clouds. The benefits of AMGCS

are shown in increasing and optimizing the available computing power, managing jobs

and resources, and utilizing the grid cloud IaaS resources using the integration between

system’s modules and clouds’ APIs.

68

The research of this thesis can be beneficial to research centers to solve real-world

complex problems that need high computing capabilities, such as Bioinformatics

applications, engineering simulations and mathematical analysis.

AMGCS manages jobs and resources with good performance by selecting the proper

resource for the job, and utilizes available executer nodes in an efficient way.

7.2 Future Work

Future work includes developing a system to run a job on multiple executer nodes at

the same time by decomposing the job into a set of tasks, where each task runs on a

different machine or uses different resources. In addition, we want to design a tool that

is used to read source code of a job and divides it to multiple sub-jobs depending on job

nature.

We would also like to support and execute parallel applications on the system. We want

to add more services to increase security in the system such as applying security

principles in sending and executing job files.

We want to investigate other strategies to distribute framework components and balance

load over available resources considering factors such as locality of resources and

runtime metrics.

69

LIST OF REFERENCES

[1] Vladislav Falfushinsky, Olena Skarlat, Vadim Tulchinsky, "Cloud computing
platform within Grid Infrastructure", Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS), 2013 IEEE 7th International
Conference on (Volume:02), Sept. 2013.

[2] Eugen Feller, Louis Rilling, Christine Morin, "Snooze: A Scalable and
Autonomic Virtual Machine Management Framework for Private Clouds",
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, May 2012.

[3] Guan Le, Ke Xu and Junde Song, "Dynamic Resource Provisioning and
Scheduling with Deadline Constraint in Elastic Cloud", Service Sciences
(ICSS), 2013 International Conference on, April 2013.

[4] Java Agent DEvelopment Framework. [online] Available at:
http://jade.tilab.com/ [Accessed: 1 May 2014].

[5] Baker, M. Buyya, R. and Laforenza, D. (2002), “Grid and grid technologies
for wide-area distributed computing,” Software: Practice and Experience,
vol. 32, no. 15, pp. 1437 – 1466.

[6] Foster, L. and Kesselman, C. (2003), "The grid: blueprint for a new
computing infrastructure", chapter 2, pages 15–52. Series in Computer
Architecture and Design. Morgan Kaufmann, 2nd edition, December 2003.

[7] Buyya, R. Chapin, S. and DiNucci, D. (2000), “Architectural Models for
Resource Management in the Grid”, Grid 2000, Bangalore, India.

[8] ML, B. YA, D. and Gómez, E., "Grid characteristics and uses: a grid
definition", First European across grids conference, Santiago de Compostela,
Spain, February 2004.

[9] Foster, Ian, and Carl Kesselman. "Computational grids." Cern European
Organization for Nuclear Research-Reports-Cern (1998): pp. 15–52.

[10] Chervenak, A. et al. (2001), “The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific Datasets”, Journal
of Network and Computer Applications, Vol. 23, 2001, pp. 187-200.

70

[11] Mowbray and Miranda, “How web community organization can help grid
computing”, International Journal of Web Based Communities, 2007, v3, PP.
44-54.

[12] Berman F, Hey T (2004) The scientific imperative, Chapter 2. In: Foster I,
Kesselman C (eds) “The Grid: Blueprint for a New Computing
Infrastructure”, 2nd ed. Morgan Kaufman, San Francisco, CA.

[13] Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G,
Patterson DA, Rabkin A, Stoica I, Zaharia M, “Above the Clouds – A
Berkeley View of Cloud”, Technical report UCB/EECS-2009-28, EECS
Department, University of Berkeley, California, 10 February 2009.

[14] Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud Computing and Grid
Computing 360-Degree Compared. In: Grid Computing Environments
Workshop (GCE’08). doi:10.1109/GCE.2008.4738445.

[15] Miller M (2008) Cloud Computing: Web-Based Applications That Change
the Way You Work and Collaborate Online. Que Publishing, Indianapolis.

[16] Menken I (2008) Cloud Computing – The Complete Cornerstone Guide to
Cloud Computing Best Practices, Emereo.

[17] Reese G (2009) Cloud Application Architectures. O’Reilly Media,
Sebastopol, CA.

[18] Zhang, Miranda and others, (2013) "Investigating Techniques for Automating
the Selection of Cloud Infrastructure Services." INTERNATIONAL
JOURNAL OF NEXT-GENERATION COMPUTING 4.3.

[19] Stanoevska-Slabeva, Katarina; Wozniak, Thomas; Ristol, Santi, "Grid and
cloud computing: a business perspective on technology and applications",
Springer, 2010.

[20] Beaty, Donald, "Cloud computing 101", ASHRAE Journal, ISSN 0001-2491,
Oct. 2013, Volume 55, Issue 10, p. 88.

[21] Jha S, Merzky A, Fox G, “Clouds Provide Grids with Higher-Levels of
Abstraction and Explicit Support for Usage Modes”. Presentation for Open
Grid Forum (OFG) 2008.
http://www.ogf.org/OGF23/materials/1272/grids_hla_cloud.pdf. Accessed 1
May 2014.

[22] José C. Cunha and Omer F. Rana, "Grid Computing: Software Environments
and Tools", ISBN: 978-1-84628-339-0, Springer 2006.

[23] Gopal S. and Sachin U., “A Survey of Software Agent and Ontology”,
International Journal of Computer Applications, ISSN 0975-8887,
02/01/2010, Volume 1, Issue 7, pp. 18 – 23.

71

[24] M. Wooldridge, “An Introduction to Multiagent Systems”, second ed. John
Wiley & Sons, 2009.

[25] Gopal S. and N.M. Shelke “A New classification Scheme for Autonomous
Software Agent”, IAMA’09, 2009, IEEE Int. Conf., India.

[26] K. M. Sim, "Agent-Based Cloud Computing", IEEE Transactions On
Services Computing, VOL. 5, NO. 4, December 2012.

[27] A. Lonea, D. Popescu, and O. Prostean, “A survey of management interfaces
for eucalyptus cloud,” in Applied Computational Intelligence and Informatics
(SACI), 2012 7th IEEE International Symposium on, May 2012, pp. 261 –
266.

[28] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, “Comparison of open-source
cloud management platforms: Openstack and opennebula,” in Fuzzy Systems
and Knowledge Discovery (FSKD), 2012 9th International Conference on,
May 2012, pp. 2457 –2461.

[29] L. Xu and J. Yang, “A management platform for eucalyptusbased iaas,” in
Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE International
Conference on, Sept. 2011, pp. 193 –197.

[30] C. Baun, M. Kunze, and V. Mauch, “The koala cloud manager: Cloud service
management the easy way,” in Cloud Computing (CLOUD), 2011 IEEE
International Conference on, July 2011, pp. 744 –745.

[31] C. Baun and M. Kunze, “The KOALA cloud management service: a modern
approach for cloud infrastructure management,” in Proceedings of the First
International Workshop on Cloud Computing Platforms, ser. CloudCP ’11.
New York, NY, USA: ACM, 2011, p. 1:1–1:6.

[32] “Scalr,” [online] Available at: http://github.com/Scalr/. [Accessed: 1 May
2014].

[33] “Apache libcloud,” [online] Available at: http://libcloud.apache.org/.
[Accessed: 1 May 2014].

[34] “jcloud,” [online] Available at: http://www.jclouds.org/. [Accessed: 1 May
2014].

[35] “Apache deltacloud,” [online] Available at: http://deltacloud.apache.org/.
[Accessed: 1 May 2014].

[36] Yi Wei and M. Brian Blake, "Adaptive Service Workflow Configuration and
Agent-based Virtual Resource Management in the Cloud", Cloud
Engineering (IC2E), 2013 IEEE International Conference on, March 2013.

[37] Jung G and Sim K. M., “Agent-based Adaptive Resource Allocation on the
Cloud Computing Environment”, 2011 International Conference on Parallel
Processing Workshops.

72

[38] Metsch T., Edmonds. A., et al. Open Cloud Computing Interface Core and
Models, Standards Track, no. GFD-R in The Open Grid Forum Document
Series, Open Cloud Computing Interface (OCCI) Working Group, Muncie
(IN) 2011.

[39] Venticinque S., Tasquier L., Di Martino B., “Agents based Cloud Computing
Interface for Resource Provisioning and Management”, 2012 Sixth
International Conference on Complex, Intelligent, and Software Intensive
Systems.

[40] Kang J. and Sim K. M., “Towards Agents and Ontology for Cloud Service
Discovery”, International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery, 2011.

[41] Domenico Talia, “Cloud Computing and Software Agents: Towards Cloud
Intelligent Services”, WOA, volume 741 of CEUR Workshop Proceedings,
page 2-6. CEUR-WS.org, (2011).

[42] ZJ Li, Chen C. and Wang K., “Cloud Computing for Agent-Based Urban
Transportation Systems”, IEEE Computer Society, 2011.

[43] Haresh M V, Saidalavi Kalady and Govindan V K, “Agent Based Dynamic
Resource Allocation on Federated Clouds”, in Recent Advances in Intelligent
Computational Systems (RAICS), 2011 IEEE.

[44] Del Castillo, Lorenzo and others, 2013. "OpenStack Federation in
Experimentation Multi-cloud Testbeds." HP Laboratories.

[45] Kurze, Tobias, et al. "Cloud federation." CLOUD COMPUTING 2011, The
Second International Conference on Cloud Computing, GRIDs, and
Virtualization. 2011.

[46] Rawat, S. and Rajamani, L. (2009), "Experiments with CPU Scheduling
Algorithm on a Computational Grid ", IEEE International Advance
Computing Conference (IACC 2009), PP. 71-75.

[47] Chunlin, L. Xiu, Z . and Layuan, L. (2009), "Resource scheduling with
conflicting objectives in grid environments : Model and evaluation " ,
Journal of Network and Computer Applications 32 , PP. 760 – 769.

[48] Schopf, Jennifer M. “Ten actions when grid scheduling” Grid resource
management. Springer US, 2004. 15-23.

[49] Sumathi, G. and Gopalan, N. (2006), “Status Monitoring System for
Heterogeneous Grid Environments”, Proc. of 14th IEEE Int. Conf. on
Advanced Computing and Communication (ADCOM 2006), 2006.

[50] Huang , K. et al (2009), " Adaptive Processor Allocation with Estimated Job
Execution Time in Heterogeneous Computing Grid " , 2009 IEEE
International Symposium on Parallel and Distributed Processing with
Applications , PP.664-665.

73

[51] R. Buyya et al., “Cloud Computing and Emerging IT Platforms: Vision,
Hype, and Reality for Delivering Computing as the 5th Utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599- 616, June 2009.

[52] K.M. Sim, “Towards Complex Negotiation for Cloud Economy,” Proc. Int’l
Conf. Advances in Grid and Pervasive Computing (GPC ’10), R.S. Chang et
al., eds., pp. 395-406, 2010.

[53] K.M. Sim, “Towards Agent-Based Cloud Markets (Position Paper),” Proc.
Int’l Conf. E-CASE, and E-Technology, pp. 2571-2573, Jan. 2010.

74

	Acknowledgement
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	List of Abbreviations
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

