

AGENT BASED SECURITY TESTING OF

WEB BASED APPLICATIONS

Muhammad Imran

A thesis submitted for the requirements of the degree of

Master of Science in Computer Science

Supervised By

Prof. Dr. Fathy Elbouraey Eassa

DEPARTMENT OF COMPUTER SCIENCE

FACULTY OF COMPUTING AND INFORMATION

TECHNOLOGY

KING ABDULAZIZ UNIVERSITY

JEDDAH – SAUDI ARABIA

Jumada II, 1435 H – April 2014 G

AGENT BASED SECURITY TESTING OF

WEB BASED APPLICATIONS

By

Muhammad Imran

This thesis has been approved and accepted in partial fulfillment of the

requirements for the degree of Master of Science in Computer Science

EXAMINATION COMMITTEE APPROVAL

Name Rank Field Signature

Internal

Examiner

External

Examiner

Supervisor

KING ABDULAZIZ UNIVERSITY

Jumada II, 1435 H – April 2014 G

DEDICATION

I would like to dedicate this work to my beloved parents (God's mercy be upon

them), my brother and my sisters for their deep love, high encouragement and

priceless prayers and support for my success throughout the study.

iv

ACKNOWLEDGMENT

First of all, thanks to Allah Almighty who kept his help with me granted me the

strength to accomplish this work. In completing this thesis, I have been fortunate to

receive help, support and encouragement from many people. I would like to

acknowledge them for their help.

I would like to thank Prof. Dr. Fathy Elbouraey Eassa, my thesis advisor, for guiding

me through each step of the process with practical knowledge and support. Thank you

for your advice, guidance and assistance.

I would also like to extend my gratitude towards my colleagues and friends,

Muhammad Aqib, Fahad Muhammad Bahazaq and Omer Farooqi who were the most

helpful during this difficult task. Also my roommates, Ali Ayaz Hussain Kazmi, Safi

Asim bin Asif, Mazhar-ullah Lodhi, and Haris Ahmed Khan were great supporters

throughout my research.

A very special thanks goes to my loving and supporting family and most respectfully

to my father and mother. Without their continuous motivation and prayers I would not

have been able to complete this task.

v

AGENT BASED SECURITY TESTING OF WEB BASED

APPLICATIONS

Muhammad Imran

ABSTRACT

With the advancement in technologies more and more services and operations are

being deployed in the World Wide Web. This is the reason of increased demand,

development and use of web applications so as the number of web attacks and web

application security vulnerabilities have been raised. Security plays an important role

in software and the field of web application security has been matured in the previous

years, whereas the vulnerabilities keep on evolving and attack methods keep on getting

refined getting benefit of bad programming practices. This creates a gap for more

optimized security testing technique and tool to detect and prevent the security attacks

from happening.

Among so many other classes and categories, a class of security vulnerabilities known

as input validation vulnerabilities exists which are caused because of improper user

input validation where the attack is initiated by the malicious input ending up executed

by a sensitive vulnerable function.

In this thesis, we introduce an optimized agent based integrated static and dynamic

analysis technique and tool for detecting and preventing such security vulnerabilities

in web applications written in Java. We start with the static taint analysis for tracking

the propagation of user input in the program which helps to detect the vulnerabilities

in the source code. In the next phase, the dynamic analysis is used for prevention of

attacks and reduction of false positives generated by the static analysis. Our technique

is extendable to the vulnerabilities in the similar class and source codes written in other

object oriented languages. Finally, we have also developed our proposed technique as

an agent based security testing tool called Java Web Application Security Tester.

vi

TABLE OF CONTENTS

Examination Committee Approval Sheet

Dedication

Acknowledgement .. iv

Abstract .. v

Table of Contents .. vi

List of Tables ... ix

List of Figures ... x

List of Symbols and Terminology ... xii

Chapter 1: Introduction .. 1

Motivation ... 3

Scope of the Thesis .. 6

The Objectives ... 6

The Methodology .. 7

Thesis Outline .. 8

Chapter 2: Background ... 9

Web Application Security Context .. 9

Web Application Security Testing Techniques ... 10

2.2.1 Intrusion Detection .. 10

2.2.2 Protecting the Client Side ... 11

2.2.3 System Design for Better Application Security .. 11

Static Analysis ... 12

Dynamic Analysis ... 13

Web Application Vulnerabilities ... 13

2.5.1 Ranking the Most Critical ... 14

2.5.2 Classification of Vulnerabilities .. 15

2.5.3 Input Validation Vulnerabilities .. 16

Mobile Agents ... 28

Agent Platforms ... 29

2.7.1 JADE Framework.. 29

Chapter 3: Related Work .. 31

Static Analysis ... 31

Dynamic Analysis ... 37

Integration of Static and Dynamic Analysis .. 39

vii

Other Security Techniques .. 41

Chapter 4: Java Web Application Security Tester ... 43

Rationale .. 43

The Testing Methodology ... 45

4.2.1 Static Analysis Technique ... 45

4.2.2 Dynamic Analysis Technique ... 46

Java Web Application Security Tester Architecture 47

The Architecture in Detail ... 49

4.4.1 Static Analysis Agent Architecture ... 49

4.4.2 Dynamic Analysis Agent Architecture ... 57

Chapter 5: Implementation and Testing .. 59

Implementation .. 59

5.1.1 Implementing Static Analysis ... 60

5.1.2 Implementing Dynamic Analysis .. 63

5.1.3 Other Modules ... 64

Testing the Java Web Application Security Tester 64

5.2.1 SQL Injection (Error Path with Vulnerable Code) 65

5.2.2 SQL Injection (Normal Path with Non-Vulnerable Code) 68

5.2.3 Cross-Site Scripting (Error Path with Vulnerable Code) 70

5.2.4 Cross-Site Scripting (Normal Path with Non-Vulnerable Code) 72

Chapter 6: Evaluation and Comaprative Study .. 75

Evaluation Metrics .. 75

Evaluation Results ... 77

Performance Evaluation .. 77

6.3.1 Platform Independence.. 78

6.3.2 Remote Testing ... 78

6.3.3 Concurrent Testing .. 78

6.3.4 Increased Throughput ... 78

6.3.5 Reduced Network Traffic .. 78

6.3.6 High Scalability ... 78

Java Web Application Security Tester Coverage Comparison 79

Java Web Application Security Tester Feature Comparison 80

Chapter 7: Conclusion and Future Work .. 82

Conclusion ... 82

Future Work .. 84

7.2.1 Performance Enhancements .. 84

7.2.2 More Vulnerabilities Classes Support ... 85

viii

7.2.3 Other Languages Support .. 85

List of References ... 86

Appendix: A ……………………………………………………………………..…92

ix

LIST OF TABLES

Table 2.1: Malicious Input Examples for Web Application Vulnerabilities 17

Table 3.1: Sampling of Static Analysis Tools .. 37

Table 6.1: Results of test run on Juliet Test Case version 1.1.1 and Version 1.2 77

Table 6.2: Coverage comparison of JWAST with other tools 79

Table 6.3: Feature comparison of JWAST with other tools....................................... 80

x

LIST OF FIGURES

Figure 1.1: Security Incidents by Attack Type, Time and Impact in 2011 [4] 2

Figure 1.2: Security Incidents by Attack Type, Time and Impact in 2012 [4] 3

Figure 1.3: Security Incidents by Attack Type, Time and Impact in 2013 [4] 3

Figure 1.4: Vulnerability disclosures growth by Year (2006 - 2013) [4] 5

Figure 2.1: Architecture of typical web based application .. 18

Figure 4.1: High Level Architecture of Java Web Application Security Tester 48

Figure 4.2: Static Analysis Agent Architecture ... 50

Figure 4.3: Lexical Analyzer Agent Architecture .. 52

Figure 4.4: Parser Agent Architecture ... 53

Figure 4.5: Imports Analyzer Agent Architecture ... 54

Figure 4.6: Taints Analyzer Agent Architecture .. 55

Figure 4.7: Dynamic Analysis Agent Architecture .. 57

Figure 5.1: JWAST test case design diagram .. 65

Figure 5.2: SQL Injection vulnerable source code... 66

Figure 5.3: The tokenized source code .. 67

Figure 5.4: Vulnerable Imports .. 67

Figure 5.5: The detected vulnerabilities with their details ... 68

Figure 5.6: The non-vulnerable code without SQL Injection 69

Figure 5.7: The tokenized source code .. 69

Figure 5.8: Vulnerable Imports .. 70

Figure 5.9: Final results generated by the analysis .. 70

Figure 5.10: The vulnerable code with XSS Vulnerability .. 71

Figure 5.11: The tokenized Source Code ... 71

Figure 5.12: Vulnerable Imports .. 72

xi

Figure 5.13: Final results generated by the analysis .. 72

Figure 5.14: The non-vulnerable code with XSS Vulnerability 73

Figure 5.15: The tokenized Source Code ... 74

Figure 5.16: Vulnerable Imports .. 74

Figure 5.17: Final results generated by the analysis .. 74

xii

LIST OF SYMBOLS AND TERMINOLOGY

OWASP Open Web Application Security Project

XSS Cross-Site Scripting

CSRF Cross-Site Request Forgery

RFI Remote File Inclusion

SQLI SQL Injection

LDAPI Lightweight Directory Access Protocol Injection

JavaCC Java Compiler Compiler

JIE Java Instrumentation Engine

EBNF Extended Backus-Naur Form

AST Abstract Syntax Tree

CFG Control Flow Graph

JWAST Java Web Application Security Tester

1

Chapter 1

Introduction

Web applications are the client/server applications in which web browser is used as a

client and interactive service is performed by connecting with the servers over the

internet [1]. Web applications have been evolved in their need and architecture since

the early days to of the internet. From banking to e-shopping and government

healthcare systems, huge amount of operations are done using web based applications

[2]. The use of web based applications has been growing as the speed and availability

of internet is increasing and more and more services are being deployed in the World

Wide Web and according to the reports and surveys, in 2013 hardly any organization

would not be making use of web based applications [3]. Web applications are naturally

completely exposed and are easy to access through the browsers, which is why they

are more prone to vulnerabilities and cyber-attacks and on the networks.

The diverse use of web applications has literally opened a can of bugs. This is due to

different number of reasons and one of them is the underlying communication protocol

i.e. HTTP, typically used by the web applications. The Hyper Text Transmission

Protocol (HTTP) is a stateless protocol and is itself vulnerable. Whereas, this protocol

is used to access all the data required from a web application. Also the web server,

2

where a web application is deployed and accessed by its users, also exhibits a

vulnerable nature where it is present at a public web hosting site which do not enforce

any type of quality assurance on the web applications that are hosted there. These

factors increases the chances for a web application to be attacked. The research shows

that the application level attacks are a focus for hackers as most of the attacks come

from the application level [2]. Whereas, the attack types, attack impacts and

vulnerabilities are rapidly changing by the passage of time as shown in Figure 1.1,

Figure 1.2 and Figure 1.3. Upon comparing these figures we can easily find out the

increasing number, type and impact of vulnerabilities over 3 years where the size of

circle estimates relative impact of incident in terms of cost to business.

Figure 1.1: Security Incidents by Attack Type, Time and Impact in 2011 [4]

3

Figure 1.2: Security Incidents by Attack Type, Time and Impact in 2012 [4]

Figure 1.3: Security Incidents by Attack Type, Time and Impact in 2013 [4]

 Motivation

In the research field of web applications security different authors have worked on

several mechanisms to make the web applications more secure. However the field of

security testing is not yet matured and there is need of testing methodologies,

techniques and tools [5]. The number of vulnerabilities that are detected every year are

4

on the increasing trend where each year the disclosed number of vulnerabilities are

more than the preceding year. Figure 1.1 shows the growth rate of vulnerabilities

disclosed where the total number of vulnerabilities disclosed have been increasing

since the beginning. Not only the number increases but also type of vulnerabilities are

increasing as the types of attacks are becoming more sophisticated by the passage of

time. Web applications being more complex than a traditional application needs

different approach for testing and among other non-functional requirements like

performance, scalability and usability and so on, security is also very important and

critical feature which needs to be tested [6].

5

Figure 1.4: Vulnerability disclosures growth by Year (2006 - 2013) [4]

Increase in the web application vulnerabilities and attacks are causing damage to the

web application layer and affecting the performance. On the internet, the network is

not enough to protect the web application layer and so we need to design the web

application security using new paradigms. In this thesis, we will be developing a

security solution using a non-conventional approach i.e. Mobile Agents. This project

will allow us to provide an integrated mechanism of testing the web applications using

the mobile agents, static analysis techniques and dynamic analysis techniques and the

use of mobile agents will power up our tool by providing their features like

asynchronous nature, dynamic instantiation, portability and platform independence,

enabling our tool to achieve several performance goals like reducing the network load,

performing concurrent testing and so on.

6

 Scope of the Thesis

This thesis is focused on building a technique and developing a tool to detect and

prevent the security vulnerabilities in the web based applications. Therefore, security

vulnerabilities to be tackled by this project, should be identified and prioritized.

Different vulnerability classes, categories and rankings already exist, which are

prepared and maintained by different projects and organizations like Open Web

Application Security Project (OWASP). Based on the target vulnerabilities set, the

next part should be concerned with the identification of suitable static analysis

technique followed by an appropriate dynamic analysis technique, using the

vulnerabilities knowledge gained in the first part. The identified techniques should be

optimized separately and should be further integrated forming an integrated static and

dynamic analysis technique. For making the solution more adaptable and powerful, an

agent based mechanism should be devised which could incorporate the already

developed integrated analysis technique. Afterwards the integrated analysis technique

should be implemented as an agent based tool to perform the evaluation of the

proposed solution. Later on, the developed tool needs to be tested for the validation

purposes making sure the target vulnerability classes are being detected and prevented.

 The Objectives

In this thesis the goal will be to develop an optimized technique based on integration

of static analysis and dynamic analysis for the detection and prevention of security

vulnerabilities in the web based applications.

For the achievement of our goal, following will be the objectives of our research:

1. Identifying and deciding the current Top 10 security vulnerabilities.

2. Developing mechanism for static analysis and dynamic analysis for the

identified vulnerabilities.

7

3. Agent-based integration mechanism for the static analysis and dynamic

analysis approaches to detect and prevent the vulnerabilities.

4. Building an agent based security testing tool to implement and evaluate our

technique.

5. Testing the developed security tool and comparing it with others.

 The Methodology

For the achievement of our goal and the objectives mentioned in the previous section,

we followed the methodology for our research as described below:

1. Doing the literature review for the related work and building the background

about Web Application Security.

2. Identifying the different types of web application security vulnerabilities (Top

Ten) and their features.

3. Building a mechanism for web application’s static analysis to detect some

vulnerabilities in the source code.

4. Building a mechanism for web application’s dynamic analysis for detecting

and preventing runtime security attacks.

5. Building and implementing an integration tool based on software agents to

integrate the two (static and dynamic) analysis mechanisms.

6. Evaluating our solution and tool for the web application security.

7. Comparing our tool with the already existing other tools used for the same

purpose.

8

 Thesis Outline

The rest of this thesis is organized into number of chapters where each chapter tries to

cover a specific part of the problem under consideration by dividing it into small

sections. Chapter 2 focuses on the required background knowledge that would be

helpful in solving the security problem. Specially, the web applications vulnerabilities

are the main focus of this chapter where the preliminary study about the web

application vulnerabilities has been presented and this study has been further applied

to the later chapters. We begin Chapter 3 by discussing the related works that have

been done on the same subject as of this thesis. A brief and comprehensive review on

the existing tools meant for security by static or dynamic or both analyses has been

added in this chapter. Chapter 4 describes our proposed solution with its details

including the detailed architecture of our security tool. The implementation details

related to the security tool presented in this thesis are provided in Chapter 5. The test

cases that were run for testing the tool are also added in this chapter. The evaluation

and comparisons of our tool with other already existing security tools are presented in

Chapter 6. Finally, Chapter 7 concludes this thesis and discusses some enhancements

and extensions that are kept for future additions as a future work.

.

9

Chapter 2

Background

In this chapter some topics that are important to be understood are described in detail.

First the context of web application security has been explained according to our

current study. Second some security testing techniques that are in practice are

described briefly and then an introduction to the static analysis and dynamic analysis

techniques is provided as a foundation for building our own integrated technique in

chapter 4. Later in the chapter a comprehensive study on the web application

vulnerabilities is presented for the understanding of vulnerabilities that are targeted by

our security testing tool.

 Web Application Security Context

The web application security has become a concern not only for individual people and

private organizations but also the government institutions have started researching

about it and discussing about major attacks. One of the reports by InfoSec [7] not only

stated the counter measures but also recommended running regular security tests.

Different works and projects target the web application security issue. A recent

vulnerability trends report by CENZIC presents the current vulnerabilities and risk

landscape. Out of all the applications tested by them, 99% had one or more serious

security vulnerabilities but they were also detectable, preventable and fixable. Among

10

other common vulnerabilities, Cross Site Scripting (XSS) topped the list of

vulnerabilities detected and not only it topped the list, its level was also on the rise

from 2011 to 2012 which was from 17% to 26% [3].

Also the importance of the web application security testing can be understood as in the

recent years, a large variety of tools has been proposed to be used for the security

testing of web applications among which both the commercial and free use tools are

available. Around 50 tools are list at the Software QA and Testing Resource Center

[8] for web application security testing. Like many others, CENZIC [3] also

recommends security testing and frequent scanning of web applications to anticipate

the future vulnerabilities in the application.

 Web Application Security Testing Techniques

The security problem of detecting the vulnerabilities can be addressed in different

possible ways. Depending on the security requirements, critical level and other

available resources, the testing approach can vary like Agile Security Testing [9],

Penetration Testing [10] and other approaches. The two commonly used broad

categories for security testing are static and dynamic analysis and each approach for

security testing can be related to these categories.

 Several testing techniques exist that cannot be considered in the boundary of static

analysis or dynamic analysis techniques. Some of these are explained in the following

sections.

2.2.1 Intrusion Detection

Intrusion detection systems can be used for the detection of attacks in web based

applications and the servers they are hosted on. Different techniques for detecting the

irregularities can be applied some of which like multi modal approach [11] and

11

anomaly detections of web based attacks [12] are already present in the literature. For

the intrusion detection, the client side queries are analyzed if they are referring the

server side program for example the use of access patterns of server side programs

which might be learned by getting training on some past data.

2.2.2 Protecting the Client Side

One of the techniques for securing the web application is to add protection to the web

application client. These techniques for web applications usually target the clients

which are the web browsers in typical scenarios. A proxy is placed between the

browser and those client requests and all the authentication credentials are filtered by

the application server which are identified as potential cross site request forgery

(CSRF) attacks. An example of such proxy based system is RequestRodeo [13]. Also

another browser based technology called Noxes [14] also provides protection against

the information leakage which is actually a side effect of cross site scripting (XSS)

attacks. Similarly, Paros [15] is a Java based HTTP/HTTPS proxy for assessing web

application vulnerability. It supports editing/viewing HTTP messages on-the-fly.

Other features include spiders, client certificate, proxy-chaining, and intelligent

scanning for XSS and SQL injections.

2.2.3 System Design for Better Application Security

One of the techniques that is used for securing the web and other software applications

include embedding the security into the design and architecture of the system. Several

works have followed this approach to design their frameworks like Tahoma [16]. One

example of a security measure that can be taken by using this framework is that the

publisher of web application can restrict a set of URLs for a particular application and

in this way a level of isolation will be provided between the web application and the

12

operating system. Another very similar approach is used in an architecture known as

Terra [17].

 Static Analysis

Static analysis which might also be known as static program analysis or static code

analysis is “the analysis of a computer software which is performed without actually

executing the software under testing” [18].The program’s text is statically examined

in this analysis and a possibility of applying the static analysis on the compiled form

of the program also exists but decoding can be a problem in this case. Manual auditing

and Code Review might also fall under the category of static analysis but this remains

ineffective until and unless this activity is automated making it faster and reliable [19].

The automated static analysis tools and techniques exist which evaluate the programs

more frequently. In addition, the static analysis can also be applied early in the

software development lifecycle before the completion and testing phase of the program

by analyzing the code fragments or modules giving feedback to the software

developers and enabling cheaper solutions. Security vulnerabilities are targeted by

some of the static analysis tools whereas rest of them are meant for other problems in

the programs. Static analysis has its application for multiple purposes including type

checking in programs, style and property checking, finding bugs, code beautification

(like code indentations), code inspection, Pattern based analysis, Metrics based

analysis (like checking the code complexity or total number of lines or methods) and

finding security vulnerabilities which is a growing use of this approach in response to

the growing number of vulnerable software systems. [20].

With the static analysis approach it cannot be guaranteed that all the vulnerabilities in

the program are detected which is due to the fact that in the worst case, static analysis

problems are undecidable and they tend to produce false negatives by not reporting the

13

bugs that program has or false positives by reporting the bugs that program does not

have [19].

 Dynamic Analysis

Runtime monitoring falls under the category of dynamic analysis and this refers to

monitoring the program under test during its execution. Further, different techniques

exist for achieving the runtime monitoring. However, the techniques of runtime

monitoring are more feasible for preventing the runtime attacks rather than their

detection. So, it cannot be used for detecting the location of vulnerabilities but it can

help in preventing the vulnerability to be exploited during the program execution.

Similarly, another set of techniques that also falls under the category of dynamic

analysis is known as penetration testing [10]. In penetration testing the system is

considered a blackbox. A set of input variables, whose values are set as some malicious

inputs, is composed manually or automatically and is given to the program under test.

And finally the behavior of the program as a result of that input is evaluated. However,

this technique depends on the set of input values that are given and setting these input

requires a significant security knowledge.

 Web Application Vulnerabilities

Any malicious or other potential occurrence which can damage the software execution,

operation and its use can be referred to as a threat. This threat is actually made possible

by a vulnerability, where this vulnerability can be a security flaw, defect, or mistake

in software that can be directly used by a by the attacker to gain access to a system or

network. Further, after the existence of the vulnerability in the software, if that

vulnerability is exploited by a malicious user, an attack is said to be attempted.

Several research studies has been carried out which can broadly be categorized into

qualitative and quantitative studies. As our research is based on the security testing of

14

web based applications, understating the web application vulnerabilities, prior to

proposing a security testing technique, is of great importance. In the following sub-

sections we have presented different ways used to understand, categorize and manage

the web application vulnerabilities.

We have narrowed down our target number and type of vulnerabilities by studying the

available rankings and categorizations in the literature. The vulnerabilities that are

targeted by our tool have been explained in detail including their behavior and

examples in the later sub-sections below.

2.5.1 Ranking the Most Critical

Based on the several factors like most occurrences, critical level, number of attacks

reported in certain period of time and so on, there exist several categorizations made

by different organization and projects that have been working on the web application

security problem. Some of these categorizations include OWASP Top 10 [21]. It is a

project managed under the Open Web Application Security Project (OWASP) [22], an

organization which is focused on improving the security of software. The OWASP

releases a yearly report which ranks the most critical web application vulnerabilities

for that year. OWASP Top 10 categorizes the “Injection (SQL, OS, and LDAP)” as

the most vulnerable in the Top 10 security risks. Other similar rankings, statistics and

reports are published by Imperva’s Web Application Attack Report, Cenzic

Application Vulnerability Trends Report, Context Information Security, and IBM X-

Force Threat Intelligence.

Attack report from Imperva [23] also presented the current state of web security

vulnerabilities and attach statistics mentioning the worst case attack incident lasted for

80 minutes and it happened on 80% of the days that at least one attack incident

occurred. The report focuses on specific attack types among which the SQL Injections

15

are with the highest incident magnitude and Remote File Inclusion (RFI) attacks are

the longest duration attacks to happen. Use of security solutions for detection and

prevention of security vulnerabilities has been recommended. Other projects and

organization are also working in this direction which can be used in targeting the most

vulnerable ones. A white paper from Context [24] documents a very detailed statistics

report categorizing the vulnerabilities into groups with server misconfiguration having

highest average.

2.5.2 Classification of Vulnerabilities

“A vulnerability class is a set of vulnerabilities that share some unifying commonality

pattern or concept that isolates a specific feature shared by several different software

flaws” [25].

The identified number of security vulnerabilities has been increasing and continue to

increase. To better understand and have an abstract overview of these vulnerabilities,

classifications in the form of taxonomies are introduced by different researchers. Also,

this distinction among the vulnerabilities in the form of classifications help in

examining the nature and extent of problem in a better way. The initial classification

was made by Landwehr [26]. This taxonomy divided the flaws on the basis of origin

of vulnerabilities, time of vulnerability origin, and the location of vulnerability in the

program.

Recently, a fair number of woks have tried to classify the vulnerabilities. “The 19

Deadly Sins of Software Security” [27] claims to cover 95% of all the security issues

and it mentioned a total of 19 common security defects. As a further addition this work

has been extended later on and where five more defects are added to the previously

mentioned 19 defects and classified as “24 Deadly Sins of Software Security” [28].

16

The taxonomy provided by the “Seven Pernicious Kingdoms” [29] also classifies the

vulnerabilities based on different criteria which may include the vulnerability

behavior, attacking pattern and attack targets that are achievable by exploiting a

vulnerability. This taxonomy classifies hierarchy into seven categories, where each

category is called as a kingdom. Also, the classification by this taxonomy have been

the main source for our study and we have targeted the “Input Validation and

Representation” vulnerability class to be tested for security in the web based

applications. Other classes that are included in this taxonomy are API Abuse, Security

Features, Time and State, Errors, Code Quality, and Encapsulation.

2.5.3 Input Validation Vulnerabilities

In this study, we have targeted one of the classes of web application vulnerabilities

known as “Input Validation Vulnerabilities”. Our developed security testing tool Java

Web Application Security Tester (JWAST) is cable of detecting such vulnerabilities

in the web based applications written in Java. The list of vulnerabilities that our tool

can detect are listed in Table 2.1. Also, the detailed explanation of these vulnerabilities

is given in this section. “Input validation vulnerabilities” lies among one of the groups

which are classified by Seven Pernicious Kingdom taxonomy [29] and OWASP [22].

This category also includes many top vulnerabilities listed by CWE/SANS [30] like

buffer overflows, Cross-site scripting, SQL injections, format string, integer overflow,

etc.

17

Vulnerability Type Malicious Input Example

SQL Injection ' or '1'='1

Cross-site scripting <script>alert(document.location);</script>

HTTP Response Splitting KAU Hacker\r\nHTTP/1.1 200 OK\r\n...

Path Traversal ../../../../../../../../../../../../boot.ini

Command Injection . & echo hello

XPath Injection blah' or 1=1 or 'a'='a

LDAP Injection (|(cn=*)%0A

Table 2.1: Malicious Input Examples for Web Application Vulnerabilities

An input validation vulnerability exists, if an attacker discovers that the application

makes unfounded assumptions about the type, length, format, or range of input data

and the input data is not validated. In this case, the attacker can then supply carefully

crafted input that compromises your application and by exploiting the specific

vulnerability a specific attack can be carried out on the web application.

To better understand how input validation vulnerability can act as a weak point in a

web application, the architecture of a typical web application is shown in Figure 2.1.

If a malicious input from the client, which is usually a web browser, is sent to the web

application and it is used without validation, it can access unauthorized resources like

database and files.

18

Figure 2.1: Architecture of typical web based application

2.5.3.1 SQL Injection

Constructing a dynamic SQL statement with user input and embedding it in the

source code may allow an attacker to modify the statement’s meaning or to

execute arbitrary SQL commands. SQL injection occurs when a specially crafted user

input is passed to sensitive SQL query execution functions without prior validation,

which results in change of semantics of the SQL query. By exploiting an SQL Injection

(SQLI) vulnerability a malicious individual can execute an arbitrary SQL query on the

server.

Example Source Code

Listing 2.1 shows an example Java source code that contains an SQLI vulnerability.

This code would allow an attacker to inject code into the query that would be executed

by the database. The variable “custID” at line no.2 is being used to compose a query

string at line no.5 and this query string is being executed at line no.11.

19

1 // Getting the customer ID
2 String custID = request.getParameter("id");
3
4 // Composing the query string.
5 String query = "SELECT * FROM accounts WHERE custID='" +
6 request.getParameter("id") + "'";
7
8 try {
9 // Executing the query.
10 Statement stmt = connection.createStatement ();
11 ResultSet resultSet = stmt.executeQuery(query);
12 }

Listing 2.1: Example of SQL Injection Vulnerable Code

Malicious Input

Listing 2.2 shows one of the possible malicious inputs. As the source code is taking

the customer id as an input from the user, the user can craft his input and provide it as

“’ or ‘1’ = ‘1” for carrying out an SQLI attack.

http://example.com/app/accountView?id=' or '1'='1

Listing 2.2: Example Malicious Input for SQL Injection Attack

Result

The above malicious input changes the meaning of SQL query to return all the records

from the accounts table. As the query will be rendered by SQL Server as shown in

Listing 2.3

SELECT * FROM accounts WHERE custID='' or '1' = '1'

Listing 2.3: Result of Malicious SQL Query Input

20

2.5.3.2 Cross-Site Scripting

“Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts

are injected into otherwise benign and trusted web sites. XSS attacks occur when an

attacker uses a web application to send malicious code, generally in the form of a

browser side script, to a different end user” [31]. Sending unvalidated data to a Web

browser can result in malicious code (usually scripts) execution in the victim’s

browser.

Example Source Code

Listing 2.4 shows an example Java source code that contains an XSS vulnerability.

This code would allow an attacker to perform an XSS attack. It is possible in the given

example source code to provide a crafted input to the parameter “CC” as this is being

read from the request object. Here for performing an XSS attack the user can easily

craft a malicious script and provide it as an input string.

....

(String) page += "<input name='creditcard' type='TEXT‘ value='"
 + request.getParameter("CC") + "'>";

....

Listing 2.4: Example of XSS Vulnerable Code

Malicious Input

Listing 2.5 shows a possibility of malicious input that can be crafted by the attacker.

In the example source code above, if the value of CC is given as shown in the example

malicious input below, the user will become the victim on an XSS attack. Here the

user has crafted his input as script which will executed in the web application.

21

CC='><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?foo='+document.cookie
</script>'

Listing 2.5: Example Malicious Input for XSS Attack

Result

The above malicious input causes the victim’s session ID to be sent to the attacker’s

website, allowing the attacker to hijack the user’s current session.

2.5.3.3 HTTP Response Splitting

There exist two conditions for an HTTP response splitting attack to occur in web

application [31]. The first one is for the data origin, if the data is originated from an

untrusted source which is most frequently and HTTP request and according to the

second condition, if it is used, replaced or added in an HTTP response header and then

sent to a web user without being validated for malicious characters. In this case

unvalidated data would be written into an HTTP header, which will allow an attacker

to specify the entirety of the HTTP response and it will be rendered by the browser to

complete the attack.

Example Source Code

Listing 2.6 shows an example Java source code that contains an XSS vulnerability.

This code would allow an attacker to perform an XSS attack. It is possible in the given

example source code to provide a crafted input to the parameter “CC” as this is being

read from the request object. Here for performing an XSS attack the user can easily

craft a malicious script and provide it as an input string.

22

1
2 String author = request.getParameter(AUTHOR_PARAM);
3 ...
4 Cookie cookie = new Cookie("author", author);
5 cookie.setMaxAge(cookieExpiration);
6 response.addCookie(cookie);
7

Listing 2.6: Example of HTTP Response Splitting Vulnerable Code

Malicious Input

As in the above example vulnerable code, the author parameter is being read from the

request, the attacker can craft the input to split the response as shown in Listing 2.7.

“KAU Hacker\r\nHTTP/1.1 200 OK\r\n...” (A string containing CR and
LF characters)

Listing 2.7: Example Malicious Input for HTTP Response Splitting Attack

Result

As a result, the HTTP response will be split into several lines as per the given input.

In the input, user include some carriage return and line feed characters that will actually

split the response as shown in the output in Listing 2.8. In the similar way, different

input can be crafted to achieve any other objective and attacking the HTTP response.

HTTP/1.1 200 OK
...
Set-Cookie: author=KAU Hacker
HTTP/1.1 200 OK
...

Listing 2.8: Result of HTTP Response Splitting Attack

23

2.5.3.4 Path Traversal

The path traversal vulnerability allows user to control paths used by the application.

By crafting a malicious input the attacker may access the files that are actually meant

to be protected. The files and directories outside the web root folder are the actual

target of a path traversal attack [31]. Thus, the attacker can then access the files that

are stored on a web server’s file system. These files may include web application

source code, configurations files and other system files.

Example Source Code

Listing 2.9 shows how the application deals with the resources in use. Typically, the

paths to the resources present on the web server are used by the web application in the

style shown in the listing below.

 http://some_site.com.br/get-files.jsp?file=report.pdf
 http://some_site.com.br/get-page.php?home=aaa.html
 http://some_site.com.br/some-page.asp?page=index.html

Listing 2.9: Example of Path Traversal Vulnerable Code

Malicious Input

For an attacker to execute a path traversal attack, he can insert a malicious string as

the variable parameter to access files located outside the web publish directory. The

possible malicious inputs are shown in the Listing 2.10.

24

http://some_site.com.br/get-files?file=../../../../some dir/some
file

or

http://some_site.com.br/../../../../some dir/some file

Listing 2.10: Example Malicious Input for Path Traversal Attack

Result

As a result, the attacker would be accessing the files located outside the web publish

directory. In the case shown in example the user will be able to access “some file” in

the directory “some dir”.

2.5.3.5 Command Injection

Command injection is similar in nature to the other injection vulnerabilities. If a source

code contains a command injection vulnerability, the attacker can exploit it execute

commands by injecting some malicious code through an unvalidated input source. By

exploiting this vulnerability, the attacker can inject and execute unwanted system

commands with the same privileges and environment as the application has.

Example Source Code

Listing 2.11 shows a Java source code that contains a command injection vulnerability

at line no.14 and line no.15. The source code is concatenating a user input from the

command arguments to a command string that is being executed using the current

runtime environment.

25

11 Runtime runtime = Runtime.getRuntime();
12 String[] cmd = new String[3];
13 cmd[0] = "cmd.exe" ;
14 cmd[1] = "/C"; cmd[2] = "dir " + args[0];
15 Process proc = runtime.exec(cmd);

Listing 2.11: Example of Command Injection Vulnerable Code

Malicious Input

For carrying out an attack, the attacker can provide any malicious input as command

arguments. For example in Listing 2.12, the user can give a string containing a system

command i.e. “echo”.

“. & echo hello”

Listing 2.12: Example Malicious Input for Command Injection Attack

Result

As a result, the dir command will list the contents of the current directory and the echo

command will print a friendly message. However, the user could have used any

command other than “echo” to execute it on the system.

2.5.3.6 XPath Injection

An XPath injection occurs when an XPath query is constructed from user input without

validating it. This vulnerability is similar to the SQL injection in nature, as the attack

can occur if the user supplied input is used to construct an XPath query to get the XML

data. This vulnerability enables the attacker to get the structure of XML data, or access

the data itself that is stored in the XML file, where in some cases this data can be some

authentication details.

26

Example Source Code

Listing 2.13 shows an example Java source code that contains an XPath Injection

vulnerable code. This code would allow an attacker to perform an XPath Injection

attack. It is possible in the given example source code to provide a crafted input to one

of the request parameters including “Username” or “Password”.

15 String FindUserXPath;
16 FindUserXPath = "//Employee[UserName/text()='"
17 + Request("Username") + "' And Password/text()='" + Re-
quest("Password") + "']";

Listing 2.13: Example of XPath Injection Vulnerable Code

Malicious Input

As in the above example vulnerable code, the author “Username” or “Password”

parameters can be sent in the request by crafting them maliciously. The Listing 2.14

shows one of the possible malicious string that can be passed to perform and XPath

injection attack.

Username: blah' or 1=1 or 'a'='a
Password: blah

Listing 2.14: Example Malicious Input for XPath Injection Attack

Result

As a result, the attacker gets an XML node selected without knowing the username or

password. The password part becomes irrelevant, and the UserName part will match

ALL employees because of the "1=1" part. The input given by the user will change the

meaning of the XPath query and it will be interpreted as shown in Listing 2.15.

27

//Employee[UserName/text()='blah' or 1=1 or 'a'='a' And Pass-
word/text()='blah']

Listing 2.15: Result of XPath Injection Attack

2.5.3.7 Lightweight Directory Access Protocol Injection

As it is obvious from the name, the Lightweight Directory Access Protocol Injection

(LDAPI), is an injection type vulnerability. This also depends on the unvalidated user

input and behaves like SQL injection vulnerabilities. So the techniques similar to SQLI

can also be applied for LDAPI. This attacks can be used to exploit web based

applications that construct LDAP statements based on user input.

Example Source Code

The source code in Listing 2.16 shows an example in Java that contains an LDAPI

vulnerability. This code would allow an attacker to inject code into the LDAP query

that is being printed on the console in this example. However, in other scenarios, this

is possible that some other sensitive operations are being carried out on the basis of

this constructed LDAP query.

25 <input type="text" size=20 name="userName">Insert the
username</input>
26 ………
27 String ldapSearchQuery = "(cn=" + $userName + ")";
28 System.out.println(ldapSearchQuery);

Listing 2.16: Example of SQL Injection Vulnerable Code

28

Malicious Input

For different possible attacks, different crafted inputs can be given to the parameter

“userName” in the above example source code. However, two of these possibilities

may include:

1. User inputs the userName as “*” in the input field.

2. User gives “imran9pk)(|(password=*))” as input in the input field.

Result

The result of the malicious inputs in each of two cases, as mentioned in the example

inputs would be as below:

1. The system may return all the usernames on the LDAP base.

2. It will generate the code revealing imran9pk’s password by generating the

code:

 (cn = imran9pk) (| (password = *))

 Mobile Agents

Mobile agents are actually software agents and can be easily defined by the help of

software agents. Mobile agents are programs that can move through a network under

their own control, migrated from host to host and interacting with other agents and

resources on each host [32]. However, from several years, the debate for defining the

software is continued and still the research community has not agreed upon a common

definition for software agents. There exists a common understanding about certain

minimal features for a software entity to be qualified as an agent. These features

include autonomy, social behavior, reactivity and proactivity [33].

29

Several works in the literature exist which are directed towards agent-based testing of

web applications. Each of them support different test types among which Huang et al.

[34] presents a framework that supports the security tests but is not based on the

distributed architecture. It takes two types of attacks into account namely SQL

Injection and Cross Site Scripting (XSS). Another work by Paydar et al. [35] supports

the security testing along with some other non-functional tests. Also the architecture

is distributed in nature which is based on the idea of mobile code i.e. Mobile Agents.

 Agent Platforms

An agent platform is an environment responsible for providing Multi-Agent Systems

(MAS) with necessary means for management, communication, negotiation and

coordination among the agents. There are two types of agent platforms, where one is

for the implementation and deployment of multi-agent systems which include JADE,

FIPA-OS and Zeus. Whereas, the other type supports the execution of agents and their

secure traveling on the network which include TACOMA, Tele-script and Aglets.

 For the implementation of our agent based security testing tool, we have used the

JADE [36] framework.

2.7.1 JADE Framework

JADE is a software development framework implemented fully in Java language

aiming at the development of multi-agent systems and applications which are designed

as agent based systems. JADE provides standard agent technologies and offers the

developer a number of features which simplify the development process. JADE is a

distributed agent platform which enables the agent communication through message

passing and it uses standard interaction protocols for carrying on the communication

30

with the software agents. Also, as being the platform for the agents, JADE is

responsible for managing the agent tasks and behaviors.

31

Chapter 3

Related Work

While detection and prevention of security errors in web based applications has taken

much attention in the last decade where static analysis has been used from long time,

applying dynamic analysis and integrating it with the static analysis in the form of

mobile agents is new. Different approaches exist to detect the security vulnerabilities

but these can be broadly classified into two categories namely static analysis and

dynamic analysis. Under these categories, several variants are used in the form of

different solution and tools which are reviewed in the rest of this chapter.

 Static Analysis

The static analysis technique has been used in the solutions requiring analysis from

long time, whereas using it to detect security problems through the source code was

introduced in ITS4 [37]. ITS4 is a static analysis tool that internally tokenizes the

target source code performs lexical analysis on that. The tool basically scans the source

code and look for syntactic matches where it uses a vulnerability database and reads it

at the runtime and compares the rules with the target source code. Whereas the

database containing the rules can be modified for enhancing the security knowledge

of the tool. Flawfinder [38] and RATS [39] works in the similar fashion as the ITS4.

The target source code is syntactically searched for a predefined set of vulnerable

methods. The difference between them is based on the language support where ITS4

and Flawfinder can work on C and C++ codes however, RATS can analyze languages

32

more than that including Python, PHP and Perl. These tools perform very simple but

sound static analysis as per their rules base but the number of false positives is very

high.

A little more advanced tools like LCLint [40] and SPLINT [41] where latter is the

extension of the earlier, are capable of performing several lightweight static analysis.

LCLint detects null pointer dereferences, dead storage, memory leaks, and other

programming issues by using the source code annotations that are provided by the user.

The SPLINT [41] focuses on the secure programming by setting up models for the

program control flow and using several lightweight static analysis.

BOON [42] targets the buffer overflow vulnerabilities in C which occur due to the use

of string manipulation function. It models all the standard library functions that are

used for string manipulation, with the amount of memory allocated and the number of

bytes currently used for performing an integer range analysis. For performing the

analysis integer range constrains are generated for each statement in the program and

after solving the constraint system warning is reported if a statement violates the

constraints.

A static analysis tool called ARCHER [43] is meant for checking memory access

errors. It does the interprocedural analysis using the call graph and actually operates

on the control flow graph. Another framework called cqual [44] uses user-defined type

qualifiers. Cqual checks the format string vulnerabilities in C programs by performing

type checking on the program.

Model checking approach is used in the tool UNO [45]. It is scans three commonly

occurring defects in C language programs which includes the use of uninitialized

variables, null pointer references and out of bounds array indexing.

33

Vulncheck [46] tracks the tainted data by using the data flow analysis and detects the

vulnerabilities like buffer overflows, format string vulnerabilities, memory leaks and

insecure C functions. The analysis performed by the Vulncheck is flow-sensitive and

follows the statements order in the program. The analysis performed by the Vulncheck

is intra-procedural only which means it do not look for the vulnerabilities that depend

on several functions.

Another model checking static analysis is performed in MOPS [47]. The rules are

defined as temporal safety properties and these rules can also be defined by the users

themselves. However, the users should be familiar with the finite state automata to

define these rules. These rules are then used to perform the analysis and check for the

order of security relevant operations in the source code by using a push down automata

model. It uses the model checking to determine whether a path to the state exists which

violates the security. The tool takes only the control flow into account and neglects the

data flow and performs inter procedural analysis. This tool can be used by the

developers and code reviewers to detect file access race conditions, vulnerable

statements and privilege management errors.

Another approach by Livshits [48] performs an interprocedural taint analysis and

detects the security vulnerabilities in Java programs. The order of the statements in the

program are not taken into account as the analysis performed by their approach is flow

insensitive. Their static analysis approach is based on the pointer analysis for finding

the security vulnerabilities in Java based Web Applications. The taints are propagated

in the program and the dataflow analysis is used to find sinks that uses the tainted

objects that are derived from the sources. The vulnerabilities targeted by their approach

include SQL injection, XSS, HTTP response splitting, path traversal, and command

injection attacks.

34

Another static analysis tool called Pixy [49] is developed for detecting the XSS

vulnerabilities in the PHP web applications. This tool uses a taints analysis based on

the data flow analysis. A control flow graph is constructed for doing the data flow

analysis. Once a taint is detected, a pointer analysis is used to find out if any other

variables pointing to the same memory locations. If this happens, these other variables

are also marked as tainted. So, such variables are marked as tainted which originate

from untrusted PHP functions and they reach critical PHP functions.

An approach for detecting the SQL injection vulnerabilities is introduced by Xie [50]

in the form of three tier architecture where intra-procedural and inter-procedural

information is computed by a backward dataflow analysis. One limitation that exists

is the missing support for the recursive calls as recursive function calls are not treated

as ops. Also the vulnerability results only give the source of tainted values which

actually slows down the process of manual human inspection and if any complex

vulnerability is encountered it becomes more complex to do the manual post

inspection.

Griffin software security project [51] introduced a plugin for eclipse called

Lightweight Analysis for Program Security in Eclipse (LAPSE). This tool also uses

the taint analysis approach and detects source and sink methods in the Java web based

applications. It first looks for all the possible sources where the sources are methods

that are used to take input form the untrusted sources. After the sources, all the sink

methods are found and then tool tries to find a path from source to any of the sink

methods. If any such path is found, a vulnerability is reported. All the source and sink

methods are placed in an XML data structure which can be modified and extended.

Checkstyle [52] is developed as a style checker and it checks the code against defined

patterns. This tool performs dataflow analysis on the AST for finding the problems in

35

the source code. The coding errors like security vulnerabilities cannot directly be

detected by it, but a Check class that is used for all the checks, can be extending

according the requirement and then this extended check class can be used for detecting

the security vulnerabilities in the source. The tool first builds an AST and then visits

the AST using the visitor design pattern and applying the custom check by calling it

while traversing the AST. This tool targets the source codes written in Java and

requires custom checks to be written for required errors by extending the already

available Check class.

Theorem proving has also been used for performing the static analysis on the Java

source code. One of the tool using such technique is called ESC / Java (Extended Static

Checker for Java) [53].

One of the static analysis tools which perform static analysis on the bytecode instead

of the source code directly, include a tool called FindBugs [54]. This tool checks the

code against numerous types of bug patterns, among which one of the category is

security. In this category, different rules exist for finding the security vulnerabilities in

Java applications. Also, for extending the scope of the tool, own rules can also be

defined for checking more vulnerabilities. FindBugs detects the vulnerabilities or other

bugs by comparing the binary codes against the error pattern detectors. It uses the

Bytecode Engineering Library (BCEL) for analyzing the Java bytecode statically. For

completing the static analysis, a symbol table is built and dataflow analysis is

performed in forward and backward directions on the control flow graph built from

the target bytecode.

SAFELI [55] is a proposed Static Analysis Framework in order to detect SQL Injection

Vulnerabilities. SAFELI framework aims at identifying the SQL Injection attacks

during the compile-time. It does a White-box Static Analysis and a Hybrid-Constraint

36

Solver are used in this framework. White box static analysis is done by considering

the byte-code and dealing mainly with strings. However, an efficient string analysis

tool is implemented to deal with the Boolean, integer and string variables for the

Hybrid Constraint Solver. The constraint solver serves two task which are to decide

satisfiability of path constraints and to find out the initial values of input variables that

lead to the breach of database security. The implementation of SAFELI was done on

ASP.NET web applications and it detected the vulnerabilities that were ignored by

other black box vulnerability scanners. Another work by Thomas [56] suggest an

automated prepared statement generation algorithm to remove SQL Injection

Vulnerabilities. Based on the experimental results, their prepared statement code was

able to successfully replace 94% of the SQLIVs in four open source projects. However,

the experiment was conducted using only Java with a limited number of projects.

Hence, the wide application of the same approach and tool for different settings still

remains an open research issue to investigate.

Another famous tool known as PMD [57] is a static analysis tool. It performs static

analysis on the Java source codes on the basis of predefined rules for finding the

vulnerabilities. The development purpose of this tool was to detect other programming

mistakes, whereas it can also be tailored for detecting security vulnerabilities [58]. The

rules known as bug patterns can be added to its rule base. These rules are applied by

the tool on the AST built from the source code using a plugin of JavaCC called JJTree.

Each of the new bug patterns are to be implemented as a class which extends the

abstract Java rule class. In this class the methods are provided which are called when

an AST is being traversed. The AST is traversed by using the visitor design pattern

like in many other tools.

In Table 3.1 a collection of tools has been listed along with their target language and

the static analysis technique they use.

37

Tool/Feature Target Language Static Analysis Technique

ITS4 C/C++ Lexical Analysis/Pattern Matching

Flawfinder C/C++ Lexical Analysis/Pattern Matching

RATS Multiple Lexical Analysis/Pattern Matching

Splint C/C++ Control Flow Analysis

BOON C Model Checking

ARCHER PHP Control Flow Analysis

cqual C/C++ Type Checking

Vulncheck C Data Flow Analysis

MOPS Multiple Model Checking

FindBugs JAVA
Lexical Analysis/Pattern Matching

+ Data Flow Analysis

Checkstyle JAVA Lexical Analysis/Pattern Matching

PMD JAVA Lexical Analysis/Pattern Matching

Jlint JAVA
Lexical Analysis/Pattern Matching

+ Data Flow Analysis

Parfait C/C++ Data Flow Analysis

Astree C/C++ Abstract Interpretation

Frama-C C/C++ Abstract Interpretation

UNO C/C++ Model Checking

Bandera JAVA Model Checking

Java Pathfinder JAVA Model Checking

ESC JAVA Theorem Proving

Table 3.1: Sampling of Static Analysis Tools

 Dynamic Analysis

In the literature several dynamic data flow analyses have been proposed, researched

and used in the software security solutions and tools. In a dynamic taint analysis, the

program is executed and those computations and method calls are searched which are

affected the unvalidated user input. Different works targeting the security

38

vulnerabilities problem follows this approach. One of these works include a dynamic

taint analysis approach by Haldar [59]. This approach targets the Java web applications

and looks for XSS, Cookies Poisoning and Command injection attacks at the runtime.

One of the approaches [60], prevents the SQL injection attacks during the runtime by

building a parse tree of the SQL statements before including the user input and after

including the user input in the SQL statement and comparing both of them. By

comparing the before and after user input parse trees, it is decided whether the structure

of the statement is same and attack is attempted or not. One other similar approach

based on the parse trees building at the runtime is used in the tool called CANDID

[61]. It uses its runtime analysis for preventing the SQL injection attacks. The attacks

are prevented by recording the sequence of SQL commands and replacing the inputs

in these commands with 1s and then building the parse tree. If the parse tree differs

from the original parse tree, the query is preventing from execution.

An approach from Boyd [62] uses a functionality provided by Java for preventing the

SQL injection attacks. They use the PreparedStatement API available in Java and

forces the SQL queries to be containing only string or numeric literals. Also the SQL

keywords are randomized, so that they could not be guessed by the users however, this

is the limitation in this approach also, as it would be compromised it user guesses the

randomization key successfully.

Another dynamic taint analysis approach by Chang et al. [63] is targets the C programs

and looks for the command injection attacks and format string attacks. In this

approach, a data flow analysis is integrated at the compile time using a small library

that tracks the taints throughout the program during execution for detecting the

vulnerabilities that are caused due to inputting the untrusted data.

39

The dynamic taint analysis is a common approach to follow for preventing the attacks

at the runtime time. Several works which include [64] and [65] used this form of

analysis. The dynamic taint analysis is actually influenced by the Perl’s taint mode.

Also, one other way to dynamically prevent the attacks from happening is the use of

wrappers [66]. The wrapper to the program will filter out the malicious input values

which will eventually prevent malicious input to reach the actual program and the

security vulnerabilities would not be exploited.

The dynamic taint analysis is not only used for Java, but Salvatore [67] also used it for

tracking the taints information at the character level in the PHP programs. In this

proposed technique, the SQL query is tokenized and checked for the existence of any

tainted values in it. Similarly, Wasp [68] uses tainting technique for Java by providing

the bytecode instrumentor and tainting the strings.

 Integration of Static and Dynamic Analysis

There are pros and cons for both the static and dynamic analysis techniques where the

static analysis is able to do high code coverage with low accuracy and dynamic

analysis is opposite to that. To neutralize their cons and maximize their pros, the

integration of these two techniques has been the subject of this project and similarly

several other researches in the past have used this concept in their solutions. A very

simple example for the integrated technique is the technique used to prevent the XSS

attacks on the client side, by combining the static and dynamic analysis in a web

browser [69].

The work by Lucca et al. [70] is based on identifying Cross-Site Scripting

vulnerabilities in web applications. It presents and approach which is combination of

Static and Dynamic analysis where static analysis is supposed to detect potential

vulnerabilities and then the dynamic analysis will help in detecting the actual

40

vulnerabilities. To prevent the XSS attack one of the recommended solution is to

disable the scripting languages in the bowser however this problem should be

addressed by the developers instead on end users. Another option suggests to use the

input validation functions after each input but this will result in an overhead as all the

inputs might not affect the output data which will not cause XSS. This work proposed

an approach to analyze only the input data which affects the output data for which it

exploits both static and dynamic analysis. They used some predicates to define some

rules by applying them to the Control Flow Graph (CFG) of the server page for

assessing its vulnerability. By using the predicates in some conditions the

vulnerabilities are characterized as Potentially Vulnerable (PV), Vulnerable with

respect to v (V) and not vulnerable (NV). For the dynamic analysis, output of the static

analysis is exploited by submitting only those pages which were found vulnerable in

the static analysis. For the dynamic analysis the author defines a set of XSS attack

strings and for each string it executes each vulnerable server page by giving the attack

string as input to each vulnerable field of that page, after which the attack

consequences are checked. To test the effects of the attack in the dynamic analysis it

might be difficult when the output/malicious data is not provided to the user but stored

in the database. Thus to observe the effects of XSS WATT (Web Application Testing

Tool) has been used which takes the input from the XSS test case generator module

and the results of test case execution are checked to assess the success of the attack.

An integrated technique is used in a tool Saner [71]. It detects the sanitization routines

in a program with a static analyzer based on the already existing tool called Pixy [49].

After the static analysis is done, the dynamic analysis is used making the tool more

sound and complete by checking if the detected sanitization is correct and complete.

41

Amnesia [72] integrates the static and dynamic analysis and used to prevent the SQL

injection attacks at the runtime. The static analysis is performed in this tool by building

a model of valid SQL queries and then in the dynamic analysis the queries generated

at the run time are checked against the statically built model that whether these runtime

queries comply with the statically built model.

One of the integrated techniques is proposed for detecting the security vulnerabilities

in the PHP based web applications. This technique is used by a tool known as

WebSSARI [73]. The static analysis of WebSSARI constructs the Abstract Syntax

Tree, Control Flow Graph and uses then to track the state of variable in the program

with the help of a symbol table. The path between the taint values and dangerous

functions is identified and the next part is done for the runtime prevention and

detection of attacks. Specific instrumentation code is inserted based on the static

analysis results and this code performs checks and prevents the security attacks during

the application runtime.

 Other Security Techniques

As per the need of security, different technologies got developed to address the

problem of web application vulnerabilities. As discussed in section 2.22.2 above, some

of the commonly used solutions for testing web application security include runtime

monitoring, penetration testing, intrusion detection, client-side protection and proper

system designing keeping security in mind. In addition to that manual code reviews,

code auditing and use of application firewalls can prove to be a good candidate for

tackling the security problem. Enforcing specific security policies through the use of

automated tools is also used as a security solution. SASI [74] implements the security

policies by the use of security automata to prevent the memory access outside the

allowed address space. JFLow [75] imposes the information flow policies by applying

42

the information flow analysis and it is made sure at the runtime that there is no

inadequate information flow.

43

Chapter 4

JAVA Web Application Security Tester

In this chapter we have explained the rationale for our developed technique and tool.

We have explained our developed technique for detection and prevention of security

vulnerabilities in web applications. Also, the architecture of our agent based security

testing tool i.e. Java Web Application Security Tester (JWAST) has been discussed,

where the high level architecture as well as the low level architecture of the proposed

tool is presented. The design of our static analysis and dynamic analysis technique and

their integration is also presented in this chapter.

 Rationale

The rationale behind the JWAST is precisely to develop an agent based security testing

tool based on the integrated technique that we built, so that we can test and compare

our technique with other existing techniques.

As discussed in Chapter 3, a number of other tools and techniques exist that are meant

for software security testing. However, we have tried to cover some gaps by designing

and developing our own technique and tool. Our work can be rationalized by

considering the following points:

1. A huge amount of services and operations are being deployed in the World

Wide Web which are typically communicated through web browsers and

people rely on this communication. Pressing need here is for a reliable web

application security testing tool.

44

2. Not only the use of web applications is increasing, but also the number of

attacks and attackers are increasing where the attack types are getting more and

more sophisticated. This requires the security testing tools to evolve and use

vast techniques for controlling these attacks.

3. The existing security testing tools are based on works ranging from commercial

to open source and academic to non-academic researches and each of these

tools target the security problem in a specific manner differing in the

underlying technology and techniques used. A new security testing tool can be

developed by making use of other technologies and techniques to detect and

prevent other or more number of vulnerabilities in different manner.

4. The two commonly used techniques for software security testing include static

analysis and dynamic analysis. The existing works make use of either static

analysis techniques or the dynamic analysis techniques in isolation. However,

only few of them integrate the two techniques in their proposed solutions. By

integrating a new optimized static analysis technique and a dynamic analysis

technique, a new technique can be built for developing a new security testing

tool.

5. Each of the current security testing tools target variable number of

vulnerabilities and also the classes or categories of vulnerabilities that they

target are different. In a new security testing tool more number of

vulnerabilities and different classifications of the vulnerabilities can be covered

for security testing.

6. One other difference for the existing techniques is the target language that they

operate on the form of input that they take for performing the test. A new

developed technique by targeting the source code of the JAVA language for

45

security testing can differentiate the solution with many other already existing

works.

 The Testing Methodology

As we have explained different security testing techniques that can be used to test the

software programs for known or unknown security vulnerabilities in Chapter 2. This

section presents the technique that we built for the purpose of security testing of web

based applications.

Our introduced tool called Java Web Application Security Tester (JWAST) is a static

and dynamic testing tool which is based on our integrated static and dynamic analysis

technique. The basic idea behind our technique is the use of static analysis technique

and integrating it with a dynamic analysis technique to increase the detection capability

of our tool and also enable our tool to prevent the attacks from happening at the run

time.

We implemented the tool JWAST which enable the programmer to test the web based

applications written in Java. This tool applies static and dynamic analysis techniques

on the source code sequentially and the details for these techniques are explained in

the next sections.

4.2.1 Static Analysis Technique

The tool starts by the code analysis process where at first the static analysis is

performed. The static analysis operates on the Java source code files where it analyzes

each file for detecting the specified vulnerabilities. The vulnerabilities are specified by

the security rules which behave as the security knowledge for our static analysis

technique. The static analysis starts by lexically analyzing the source code, for which

the source code is broken into tokens. This task is performed by the lexical analyzer

46

agent which gives the produced token stream to the parser agent as an input. The parser

agent consumes the input token streams and generates an Abstract Syntax Tree (AST).

This AST is actually used as a model, on which the actual static analysis is performed

by the imports analyzer agents and taints analyzer agents. The imports analyzer agent

is guided by the predefined security rules and the generated AST is given as an input

to it. The imports analyzer agent generates the vulnerable imports which further guide

the taints analyzer agents along with the same predefined security rules. The

vulnerable imports are passed on to the taints analyzer agent for completing the

analysis process. Finally, based on the generated AST, security rules and vulnerable

imports knowledge, a taints analysis is performed which propagate the taints from

source methods to sensitive sink methods and if a path is established between the taint

source method and a sensitive sink method, and no validation is performed between

this, a vulnerability is reported which contains the vulnerability type, location and

other required information which is further used by the dynamic analysis for

completing the security testing process.

4.2.2 Dynamic Analysis Technique

Once the static analysis is completed, the next step is to perform the dynamic analysis

on the web application. The dynamic analysis carries out the testing process by the use

of instrumentation technique. The instrumentation approach is based on the idea that,

the attacks occurring due to the input validation vulnerabilities can be handled by

adding the validation to the source code by instrumenting the original source code with

the pre-defined instrumentation templates. Therefore, the instrumentation code would

perform the validation on the input given at the runtime, as a result of which the attacks

would be stopped from being carried out and also the attempt for an attack can be

reported during the web application’s runtime.

47

To do this, an automated dynamic analyzer agent generates the instrumentation code

based on the instrumentation templates that contains the specified templates for each

target vulnerability type. Later on, the dynamic analyzer agent also inserts the

generated instrumentation code into the original web application code automatically.

For inserting the instrumentation code, the locations are extracted from the results

produced by the static analyzer agent. As, the instrumented source code, which is

actually combination of the original source code and the instrumentation code, is

executed the runtime attacks are prevented as well as reported to the user. The detailed

architecture of the dynamic analyzer agent is shown in Error! Reference source not

found..

 Java Web Application Security Tester Architecture

The architecture of our proposed tool, Java Web Application Security Tester

(JWAST), for the security testing of web based applications is based on several

independent analyzer agents, each of which is responsible for a part of the whole

analysis process. Each agent takes an input either from a specified external source or

from the output of another agent. All of these inputs and outputs have specified

formats, on the basis of which other agents perform the required steps to complete the

overall analysis meant for security testing. A high level architecture diagram of

JWAST has been shown in Error! Reference source not found..

48

Figure 4.1: High Level Architecture of Java Web Application Security Tester

Based on the architecture presented in the Figure 4.1, the JWAST operates on the

source code. An abstract flow during the testing process goes as described below:

1. Source code of the web based application written in Java is given as input to

the static analyzer agent.

2. The static analyzer agent performs a static analysis based on our technique and

outputs list of vulnerabilities containing the required information for the next

phase.

3. The list of vulnerabilities generated during the static analysis are inputted to

the dynamic analyzer agent. Also the instrumentation templates and the source

49

code that is to be instrumented for the runtime analysis is given to the dynamic

analyzer agent.

4. The dynamic analyzer agent instruments the source code of the web application

by inserting the instrumentation code in the original source code on the

locations reported by the static analyzer agent.

5. The instrumented web application is compiled and executed. During the

execution the runtime attacks are prevented and a list of runtime attacks is

generated and presented as a final output of the tool.

 The Architecture in Detail

As in the previous sections, we have presented the high level architecture of our tool.

This section presents the low level architecture of our tool in details where each agent’s

architecture is presented and described in detail.

4.4.1 Static Analysis Agent Architecture

Static analysis agent is the entry point of our testing process. The static analysis agent

is mainly responsible for performing the static analysis part of our technique. Our static

analysis technique is based on the taints analysis where the taints flow is tracked in the

program to check whether the taints i.e. the unvalidated inputs reach the predefined

sink methods. The static analysis agent takes the Java web application source code as

input and produces a list of vulnerabilities as the output. The static analysis agent

utilizes other agents to complete the analysis.

50

Figure 4.2: Static Analysis Agent Architecture

The detailed operation of the static analysis agent is shown in the Figure 4.2 and can

be understood by the following operations.

1. Java source code of the web application under test is provided to the lexical

analyzer, where it is tokenized and the tokens are passed on to the parser agent.

2. The source code tokens are consumed by the parser agent which parses them

to generate an abstract representation of the source code. As a result, an

Abstract Syntax Tree (AST) is generated.

51

3. The imports analyzer agent performs analysis on the AST to find vulnerable

imports in the given code. These vulnerable imports are generated on the basis

of the security rules that are also inputted to the imports analyzer agent.

4. The taints analyzer agent takes the vulnerable imports generated by the imports

analyzer agent and uses the already generated AST to perform the taints

analysis based on the predefined set of security rules.

5. The taints analysis performed by the taints analyzer agent finally produces the

list of vulnerabilities. This list of vulnerabilities contains detailed

vulnerabilities information including the locations and types of the

vulnerabilities and later on, this list is further consumed by the dynamic

analysis agent.

4.4.1.1 Lexical Analyzer Agent Architecture

The architecture of the lexical analyzer agent is shown in Figure 4.3. The lexical

analyzer agent performs the lexical analysis on the given source code and the source

code is tokenized. First the input source code file is converted into character stream

and then the token manager generates the token stream. The tokenizing of the Java

source code is performed on the pre-specified Java regular expression grammar. The

lexical analysis is actually inspired by the basic functionality provided by the

compilers. The compiles also perform a basic lexical analysis on the source code to

start the compilation.

52

Figure 4.3: Lexical Analyzer Agent Architecture

4.4.1.2 Parser Agent Architecture

The next step after the lexical analysis in compilers is parsing. The token stream is

used to parse the source code. The token stream produced by the lexical analyzer is

consumed by the parser agent which is shown in Figure 4.4. The parser agent is

responsible for parsing the input tokens stream which is done by the use of a context

free grammar that is given in a predefined format written for parsing the Java

programs. The parser agent matches the tokens in token stream with the production

rules in the grammar. If the symbols represented by each token match, the parse tree

is formed incrementally. By abstracting the details of the grammar, the Abstract

Syntax Tree (AST) is formed.

53

Figure 4.4: Parser Agent Architecture

4.4.1.3 Imports Analyzer Agent Architecture

Imports analyzer agent takes the input in the form of AST. The imports extractor agent

simply extract the imports from the AST nodes and passes on to the vulnerable imports

scanner agent. The scanner agent scans all the imports using the knowledge gained

from the security rules and list of vulnerable imports along with the source code file is

reported to the next agent. The architecture diagram for imports analyzer agent is

shown in Figure 4.5.

54

Figure 4.5: Imports Analyzer Agent Architecture

4.4.1.4 Taints Analyzer Agent Architecture

The static analysis agent mainly depends on the taints analyzer agent. The outputs

generated by the previous agents are used by the taints analyzer agent for completing

the analysis. The taints analyzer agent is based on the data flow analysis. The taints

analysis performed by the taints analyzer agent is based on the data flow analysis

which is used to find out the way how data moves through a program. The generated

AST is visited (traversed) to detect the generation and use of taints (vulnerable inputs)

in the program.

55

Figure 4.6: Taints Analyzer Agent Architecture

As we have shown in Figure 4.6, the tree visitor agent consumes the AST and

vulnerable imports and visits the whole AST guided by the vulnerable imports. As a

result of tree visiting, Java statements are generated, which are then given to the taints

scanner agent. The taints scanner agent is guided by the security knowledge in the

security rules to identify the vulnerable statements. Once the vulnerable statements are

identified, the results generator produces the list of vulnerabilities by confirming the

flow of taints from the source methods to the vulnerable sensitive sink methods.

4.4.1.5 Security Rules

Different tools have their own definitions for the security rules in differently specified

formats. In our tool, JWAST, we have defined the rules in an XML format where these

are divided into source rules and sink rules. Snippets of the source rules and sink rules

are shown in Listing 4.1 and Listing 4.2 respectively. The source rules define the

methods and sources that can be used in Java for taking the input from the user. These

56

rules help us identify and mark the user inputs as taints. Further, the sink rules specify

sensitive sink methods. Sink methods are the methods which if given an unvalidated

user input i.e. a taint, then vulnerability is created and possibility of attacks execution

is created. The security rules drive the imports and taints analysis performed by the

static analysis agent. The security rules can also be stored in a database and then used

by the tool, but the main reasons for using and XML data files include, simplicity of

managing and storing the rules, scalability provided by the XML files and the small

size that an XML file takes as compared to any database file.

<source id="java.lang.System.getEnv(String)">
 <package>java.lang</package>
 <class>System</class>
 <method>getEnv</method>
 <category>Untrusted Source</category>
</source>

Listing 4.1: A Source Rule from the Security Rules

<sink id="java.sql.Statement.executeUpdate(String)">
 <package>java.sql</package>
 <class>Statement</class>
 <method>executeUpdate</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

Listing 4.2: A Sink Rule from the Security Rules

The security rules are defined on the bases of the literature survey and by studying the

documentations available for the methods in Java. The major sources for defining the

security rules for JWAST include an already existing tool LAPSE [51], Christian Gotz

57

[76] and Cheng [77]. The collection of Source and Sink rules used by our tool can be

found separately in the Appendix at the end.

4.4.2 Dynamic Analysis Agent Architecture

The dynamic analysis agent is responsible for carrying out the dynamic part of our

testing tool. Similar to other analysis agents involved in the testing process, the

dynamic analysis agent also takes several inputs that are consumed by different agents

acting as sub agents for the dynamic analysis agent.

Figure 4.7: Dynamic Analysis Agent Architecture

The architecture diagram of the dynamic analysis agent is shown in Figure 4.7. The

operations performed by the dynamic analysis agent are described in the points below:

1. The list of vulnerabilities is given as an input, along with the predefined

instrumentation templates, to the instrument code generation agent.

2. The instrument code generation agent generates appropriate instrumentation

code based on the vulnerabilities information provided by the vulnerabilities

list. This information mainly includes the types of potential vulnerabilities, the

58

location of vulnerabilities in the source code and the vulnerable method along

with the vulnerable parameter of that method.

3. The instrumentation code is passed on to the source code instrumentor agent.

This agent also takes the source code of the web application under test and then

instruments that code by adding the instrumentation code at appropriate

locations.

4. The instrumented source code generated by the source code instrumentor agent

is given to the Java compiler which compiles it and produces the bytecode.

5. Bytecode is taken as input by the Java Virtual Machine (JVM), and machine

code is produced, which further goes through the execution phase.

6. When the web application which has already been instrumented, runs during

the execution, the runtime attacks are detected, prevented and a list of these

attacks is generated as a final output of the tool.

59

Chapter 5

Implementation and Testing

This chapter presents the implementation details followed by the testing that we have

performed on our security testing tool called JWAST. The implementation of the tool

is presented in details consisting of explanations and discussions of the technologies

that we used in implementation. Later in the chapter, various test cases that were run

for the tool are presented. The test cases details consist of test inputs, intermediate

results produced by the tool and the final outputs in the form of test results

 Implementation

The integrated analysis technique proposed in this thesis and the security testing tool

based on the agent architecture presented in Chapter 4 is implemented as a prototype.

The implementation of the tool is done in the Java language in the form of independent

agent based subsystems as depicted in the architecture of the tool earlier. All the agents

of JWAST are written in the Java programming language and for developing,

managing and running the agents, JADE framework version 4.3.2 [36] is used as a

middleware. The implementation of the tool is done in two phases based on the idea

used in the proposed integrated static and dynamic analysis technique. In the first

phase, the static analysis is implemented which further consists of subsystems that

interact with each other and take the output of one or more subsystems as their input.

In the second phase of implementation the dynamic analysis has been implemented

based on the results and their format produced during the static analysis. While

60

implementing the static and dynamic analysis modules, a specific mobile agent

framework is used. More details about implementation of the complete tool are

discussed in the rest of this chapter.

5.1.1 Implementing Static Analysis

For implementing any static code analysis technique, like the one discussed in

section 4.2.1, the preprocessing (performing lexical analysis and parsing) is typically

required and generally the manual construction of lexers and parsers is rare. Thus a

single or a set of tools, depending on the technique under development, are used for

automating the lexer and parser construction.

Similarly, before carrying out our static analysis, the source code needs to be

preprocessed. Our static analysis technique involves initial phases of a compiler and

for this purpose we needed to develop a Java precompiler for lexically analyzing the

source code and then parsing it for generating a model. For this purpose there exist

multiple tools for Java, known as parser generators. A parser generator can be used to

develop your own Java precompiler and then integrate it into your tool for performing

required preprocessing the static analysis.

Several parser generators exist and each of them has its own unique set of characteristic

features, advantages and disadvantages. We selected Java Compiler Compiler

(JavaCC) [78] to be used for generating our parser. Some other parser generator tools

include CUP [79], SableCC [80] and ANTLR [81]. Section 5.1.2 explains the process

of lexical analyzer and parser generation that we have used for implementing our

lexical analyzer and parser using JavaCC.

61

5.1.1.1 JavaCC

As mentioned earlier, JavaCC is a parser generator that generates lexical analyzer and

parser for the Java language. It can only generate a parser in the Java language whereas

other tools exist that can generate parsers in different languages. However, we selected

JavaCC as our technique detects vulnerabilities in web applications developed in Java

only. JavaCC takes an Extended Backus-Naur Form (EBNF) form of language

grammar as an input and produces the parser in Java, where the input grammar is not

necessarily in Java. The parsers that are generated by the JavaCC are of type LL (k).

The generated parser consists of a set of functions and each function has the

responsibility to parse individual productions that are given as an input in the EBNF

grammar.

5.1.1.2 Lexical Analyzer and Parser Generation

For generating the parser the language grammar with some additional information

including Java driver class which is responsible for initiating and starting the generated

parser is given to the JavaCC parser generator and it automatically produces the

programs capable of analyzing the language described by the input grammar. For

implementing our static analysis, we generated our parser using one of the online freely

available grammars. We used Java 1.5 grammar [82] which is maintained in an online

repository and provided by JavaCC.

5.1.1.3 Building the Abstract Syntax Tree

As we are performing the static analysis on the Abstract Syntax Trees (AST), we need

to parse our source code into that model. One of the advantage of using JavaCC to us

is that it also generates the AST of the source. However, it does not produce the AST

automatically by itself, but we need use a JavaCC based tools called JJTree. So, by the

use of JavaCC we create a multiple pass parser and make use of the JJTree, which

62

actually takes a “.jjt” file as an input along with the language grammar file, and

generate the AST of the source code under the test.

5.1.1.4 Imports Analysis and Taints Analysis Implementation

Imports analysis and the taints analysis are the heart of static analysis module. Both of

the modules perform analysis on the generated abstract syntax tree based on the

security rules that are also given as input to these modules. The security rules are

written in the XML format which consists of sensitive source and sink methods

specifications. The AST generated by the parser is used by imports analyzer and after

extracting the imports from the AST, they are analyzed using the defined security

rules. If an import matches one of the imports listed in the rules, it is marked as a

vulnerable import. Further, for the taints analysis, the AST is visited node by node to

find the methods that are marked by the security rules as sensitive sinks. If a sensitive

sink method is encountered, more details for that sink are extracted from the security

rules. These details mainly include the vulnerable parameter and the vulnerable

parameter number. Now, to satisfy the condition for a parameter to be taint, we track

the flow of that method parameter from a source method to that identified sink method.

The input parameter containing the user input that is taken by the source method is

called a taint. Now, if the taint flows from a source method to the sensitive sink method

without being validated we mark that statement, containing the sensitive sink method

call as a vulnerable statement and then the taints results are return after performing this

analysis for the whole AST. The results include the source code file location, line

number in the source code, vulnerability type, vulnerable argument and the vulnerable

method call.

63

5.1.2 Implementing Dynamic Analysis

Once the static analysis is completed and the vulnerabilities along with all the details

are produced as a result, the dynamic analyzer agent takes control. The implementation

of the dynamic analysis is further divided into two modules as in the JWAST

architecture presented in section 4.3. The instrument code generation agent

implements the traversing and analysis logic. The traversing part implements the logic

for visiting the instrumentation templates that are input to the dynamic analysis

module. This traversing is performed on the basis of analysis that runs over each

vulnerability to identify the vulnerability type and extracts the required parameters like

vulnerability location in the source code. Once the vulnerability is identified, the

specific instrumentation template is selected and instrumentation method from the

source code instrumentor agent is called where it is provided with the instrumentation

code and the source code where this is instrumentation code is to be inserted. For

instrumenting the source code, the source code processor called Java Instrumentation

Engine (JIE) version 1.01 [83] , meant for source code instrumentation, is used. “The

Java Instrumentation Engine (JIE) is a generic Java source code processor which

inserts instrumentation code at specified locations in a given source code. In its basic

mode of operation, JIE receives a Java source file and instrumentation instructions,

and emits appropriately transformed Java source code” [83]. Once the source code is

instrumented, it is converted to byte code by the Java compiler and then into the

machine code by the Java Virtual Machine (JVM) and in the execution phase the

instrumentation code gets executed where the runtime attacks are then detected and

prevented.

64

5.1.3 Other Modules

Several modules other than the static and dynamic analysis have been added in the

implementation of the tool. This is done to support the tool in performing the security

testing. These modules have been added on purpose and they include the modules like

configuration, helpers and resources. These are responsible for performing several

tasks which may include GUI resources initializations, input source code files filtering,

traversing and loading, static analysis rules loading, handling the source code file input

streams and other required inter-modules information passing.

One of the important parts in the implementation of static analysis is the XML parser.

As the security rules are input to the static analysis in the XML format, a separate

Document Object Model (DOM) based XML parser is written in Java which is also

the part of implementation.

 Testing the Java Web Application Security Tester

In this section we discuss the importance of testing during and after the development

of our tool and we show how the testing is performed. Different testing techniques are

applied to ensure the reliability of the developed tool.

Software testing is the process used to help identify the correctness, completeness,

security & quality of developed computer software. Finding an error is thus considered

a success rather than failure. On finding an error efforts are made to correct it.

For the testing the functionality of our designed tool i.e. JWAST, we have used White-

box and Black-box testing techniques. In white box testing, internal code written in

every component was tested and it was checked that the code written is efficient in

utilizing the resources of the system like memory, band width or the utilization of

input/output. To perform Black-box testing on the tool we prepared several formal test

case pairs for each type of the vulnerabilities in the class that we have targeted and

65

mentioned in Chapter 2. Each pair in the formal test cases consisted of negative and

positive tests where, a negative test is to be performed on the non-vulnerable code and

positive test is to be run on the vulnerable code known in advance. The test cases that

we have run are designed for different vulnerabilities and are according to the Figure

5.1. The tests that were run are presented in the following sub sections.

Figure 5.1: JWAST test case design diagram

5.2.1 SQL Injection (Error Path with Vulnerable Code)

This test case is performed to check whether the tool can detect the SQL Injection

vulnerability in the given source. The test is presented below where the input is given

as vulnerable source code. Then further intermediate states are given as the analysis

progresses and until the final test results are produced by the analysis.

5.2.1.1 User Source Code

Figure 5.2 shows the source code that is under test and given to the JWAST as an input.

The source code exhibits a known SQL Injection vulnerability in the prepareStatement

function call. Whereas, the prepareStatement is a sensitive method as per our rules

66

definition. And this vulnerability can be attacked by providing a carefully crafted input

value for the variable “id” that is used as an argument to that sensitive function call.

void loginByIdInsecure() throws Exception {

 System.out.println("Half Secure Systems Inc. - login by

id");

 String id = input("User ID?");

 String password = input("Password?");

 try {

 PreparedStatement prep = conn.prepareStatement(

 "SELECT * FROM USERS WHERE " +

 "ID=" + id + " AND PASSWORD=?");

 prep.setString(1, password);

 ResultSet rs = prep.executeQuery();

 if (rs.next()) {

 System.out.println("Welcome!");

 } else {

 System.out.println("Access denied!");

 }

 rs.close();

 prep.close();

 } catch (SQLException e) {

 System.out.println(e);

 }

 }

Figure 5.2: SQL Injection vulnerable source code

5.2.1.2 Tokens

Upon taking the vulnerable source code the lexical analyzer agent will convert the

source code to tokens (Figure 5.3) and pass it to the parser agent where the parser agent

will further generate an Abstract Syntax Tree (AST) by parsing the tokens, as shown

in Figure 5.1.

67

Figure 5.3: The tokenized source code

5.2.1.3 Imports Analysis Results

The AST that is generated by the parser agent is used by the Imports analyzer agent

which produces the output as shown in Figure 5.4.

Figure 5.4: Vulnerable Imports

5.2.1.4 Taints Analysis Results

By using the output produced by the imports analyzer agent and the AST generated by

the parser agent, the taints analyzer agent will perform the taint analysis and then

produce the final results as the vulnerable statements which are shown in Figure 5.5.

java.sql.Connection, java.sql.Statement

68

D:\Imran KAU\Semester 4\WORKING Folder\Static
Analysis TestCases\SQLInjection.java: Line: 234,
Detected: SQL Injection, Argument: "SELECT * FROM
USERS WHERE " + "ID=" + id + " AND PASSWORD=?",
MethodCall: conn.prepareStatement("SELECT * FROM
USERS WHERE " + "ID=" + id + " AND PASSWORD=?")

Figure 5.5: The detected vulnerabilities with their details

5.2.2 SQL Injection (Normal Path with Non-Vulnerable Code)

By running this test case we have checked whether the tool generates the false positives

or false negatives. The input, test result and intermediate states are presented below.

5.2.2.1 User Source Code

Figure 5.6 shows the source code under test which is given to the JWAST as an input.

The source code executes an SQL query and takes the input “id” from user but do not

directly passes it to any sensitive sink method. Therefore, there will not be any security

vulnerability detected in this source code.

69

void loginByIdSecure() throws Exception {

 System.out.println("Secure Systems Inc. - login by id");

 String id = input("User ID?");

 String password = input("Password?");

 try {

 PreparedStatement prep = conn.prepareStatement(

 "SELECT * FROM USERS WHERE " +

 "ID=? AND PASSWORD=?");

 prep.setInt(1, Integer.parseInt(id));

 prep.setString(2, password);

 ResultSet rs = prep.executeQuery();

 if (rs.next()) {

 System.out.println("Welcome!");

 } else {

 System.out.println("Access denied!");

 }

 rs.close();

 prep.close();

 } catch (Exception e) {

 System.out.println(e);

 }

 }

Figure 5.6: The non-vulnerable code without SQL Injection

5.2.2.2 Tokens

The lexical analyzer agent has converted the source code into tokens that are presented

in the Figure 5.7.

Figure 5.7: The tokenized source code

void, loginByIdSecure, (,), throws, Exception, {,
System, ., out, ., println, (, "Secure Systems Inc. -
login by id",), ;, String, id, =, input, (, "User
ID?",), ;, String, password, =, input, (,
"Password?",), ;, try, {, PreparedStatement, prep,
=, conn, ., prepareStatement, (, "SELECT * FROM USERS
WHERE ", +, "ID=? AND PASSWORD=?",), ;, prep, .,
setInt, (, 1, ,, Integer, ., parseInt, (, id,),),
;, prep, ., setString, (, 2, ,, password,), ;,
ResultSet, rs, =, prep, ., executeQuery, (,), ;, if,
(, rs, ., next, (,),), {, System, ., out, .,
println, (, "Welcome!",), ;, }, else, {, System, .,
out, ., println, (, "Access denied!",), ;, }, rs, .,
close, (,), ;, prep, ., close, (,), ;, }, catch, (,
Exception, e,), {, System, ., out, ., println, (, e,
), ;, }, },

70

5.2.2.3 Imports Analysis Results

As the input source code is trying to execute an SQL query, vulnerable import

statements will be presented and are detected by the imports analysis as presented in

the Figure 5.8

Figure 5.8: Vulnerable Imports

5.2.2.4 Taints Analysis Results

The taints analysis is performed by the taints analyzer agent, after the vulnerable

imports analysis and the final test results are presented in the Figure 5.9.

Figure 5.9: Final results generated by the analysis

5.2.3Cross-Site Scripting (Error Path with Vulnerable Code)

By running this test case we have checked whether the tool generates the false positives

or false negatives in case of the Cross-site Scripting vulnerabilities. The input, test

result and intermediate states are presented below.

5.2.3.1 User Source Code

Figure 5.10 shows the source code under test which is given to the JWAST as an input.

In this source code the XSS vulnerability exists as the input is being taken from the

request header and being passed to sensitive sink method of the PrintWriter class. So,

java.sql.Connection, java.sql.Statement

The Static Analysis has detected no Vulnerabilities.

71

as the input is used unvalidated and exactly in the format in which the user inputted it,

there can be an XSS attack if the malicious input is provided.

import java.io.PrintWriter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.*;

public class HelloServlet extends HttpServlet {

public void doGet (HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

 {

 String input = req.getHeader("USERINPUT");

 PrintWriter out = res.getWriter();

 out.println(input);

 out.close();

 }

}

Figure 5.10: The vulnerable code with XSS Vulnerability

5.2.3.2 Tokens

The lexical analyzer agent has converted the source code into tokens that are presented

in the Figure 5.11.

Figure 5.11: The tokenized Source Code

import, java, ., io, ., *, ;, import, javax, ., servlet, .,

http, ., *, ;, import, javax, ., servlet, ., *, ;, public,

class, HelloServlet, extends, HttpServlet, {, public, void,

doGet, (, HttpServletRequest, req, ,, HttpServletResponse, res,

), throws, ServletException, ,, IOException, {, String, input,

=, req, ., getHeader, (, "USERINPUT",), ;, PrintWriter, out, =,

res, ., getWriter, (,), ;, out, ., println, (, input,), ;,

out, ., close, (,), ;, }, },

72

5.2.3.3 Imports Analysis Results

The imports analyzer agent detected the vulnerable imports in the source code. As we

know, the code is vulnerable is vulnerable to the XSS attacks, the imports analyzer

agent returned the import statements that are XSS vulnerable. The results for the

imports analysis are shown in Figure 5.12.

Figure 5.12: Vulnerable Imports

5.2.3.4 Taints Analysis Results

The taints analysis is performed by the taints analyzer agent, after the vulnerable

imports analysis and the final test results are presented in the Figure 5.13.

The Static Analysis has detected the Following Vulnerabilities:

D:\Imran KAU\Semester 4\WORKING Folder\Static Analysis TestCases\New

folder\XSS.java: Line: 13, Detected: Cross-site Scripting, Argument:

input, MethodCall: out.println(input)

Figure 5.13: Final results generated by the analysis

5.2.4 Cross-Site Scripting (Normal Path with Non-Vulnerable Code)

After testing the correctness of our tool for the XSS vulnerable code, we also tested it

with the non XSS vulnerable code. The results showed that our tool did not report any

false positive as we run this test case. The intermediate and final results are shown in

the following sub sections.

Vulnerable Import: java.io.PrintWriter

73

5.2.4.1 User Source Code

Figure 5.14 shows the source code which performs the validation and encodes the input

for removing any possible html characters or scripts from the user input before passing

it to the XSS sensitive sink method. As a result, the XSS vulnerability is removed from

this code and the XSS attacks would not be possible. We have given this source code

as an input to our tool, and our tool did not report any vulnerabilities, which proves

the correctness of our tool.

import java.io.PrintWriter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.*;

public class HelloServlet extends HttpServlet {

 public void doGet (HttpServletRequest req,

 HttpServletResponse res)

 throws ServletException, IOException

 {

 String input = req.getHeader("USERINPUT");

 PrintWriter out = res.getWriter();

 String encodedInput = TextUtils.htmlEncode(input);

 out.println(encodedInput);

 out.close();

 }

}

Figure 5.14: The non-vulnerable code with XSS Vulnerability

5.2.4.2 Tokens

The lexical analyzer agent has converted the source code into tokens that are presented

in the Figure 5.15.

74

Figure 5.15: The tokenized Source Code

5.2.4.3 Imports Analysis Results

In this case the imports analyzer detected the vulnerable import as similar to the

vulnerable code. But this does not mean that there is a vulnerability in the source code.

The final decision about the presence of vulnerability will be made by the taints

analyzer agent. The vulnerable imports reported by the tool are shown in Figure 5.16.

Figure 5.16: Vulnerable Imports

5.2.4.4 Taints Analysis Results

The taints analysis is performed by the taints analyzer agent, and as there was no

unvalidated input being used in the sensitive sink method, the tool does not report any

vulnerability. The result is shown in the Figure 5.17.

Figure 5.17: Final results generated by the analysis

import, java, ., io, ., PrintWriter, ;, import, javax, .,

servlet, ., http, ., HttpServletRequest, ;, import, javax, .,

servlet, ., *, ;, public, class, HelloServlet, extends,

HttpServlet, {, public, void, doGet, (, HttpServletRequest, req,

,, HttpServletResponse, res,), throws, ServletException, ,,

IOException, {, String, input, =, req, ., getHeader, (,

"USERINPUT",), ;, PrintWriter, out, =, res, ., getWriter, (,),

;, String, encodedInput, =, TextUtils, ., htmlEncode, (, input,

), ;, out, ., println, (, encodedInput,), ;, out, ., close, (,

), ;, }, },

Vulnerable Import: java.io.PrintWriter

The Static Analysis has detected no Vulnerabilities.

75

Chapter 6

Evaluation and Comparative Study

This chapter describes the assessment criteria used for evaluation as we evaluated our

tool for its performance and features that it provides. For the evaluation we have used

specific metrics that are also discussed in this chapter. Also, in this chapter we have

showed the comparison of our tool with some of the other tools targeting the security

problem.

 Evaluation Metrics

For evaluating the performance of our tool, we have used some performance metrics

which makes use of the data based on total number of True Positives (TP), True

Negatives (TN), False Positives (FP) and False Negatives (FN).

In our case these terms can be further defined as:

True Positive

The source code has a vulnerability and the tool reports that vulnerability.

True Negative

 The source code does not have a vulnerability and the tool does not

report that vulnerability.

.False Positive

 The source code does not have a vulnerability and the tool reports that

vulnerability.

76

False Negative

 The source code has a vulnerability and the tool does not report that

vulnerability.

For evaluation of our tool we calculated true positives, true negatives, false positives

and false negatives. Later with the help of these, we calculated the metrics including

precision, accuracy and recall. For calculating these metrics the values gained from the

true positives, false positives, true negatives and false negatives are used in a defined

formula made for calculating the precision, accuracy and recall. The precision

describes how well a tool does identify bugs whereas, the accuracy shows the ability

of tool to differentiate between vulnerable and non-vulnerable code and the recall

value tells the soundness or sensitivity of the tool. The maximum value of the recall

can be 1 and the minimum value can be 0. Where, if the recall is 1, it means the tool

can detect all the vulnerabilities [18].

For calculating the metrics described above, following formula [84] is used:

77

 Evaluation Results

For evaluating the JWAST, we used tests suites provided by Software Assurance

Metrics And Tool Evaluation (SAMATE) [85]. They provide several test suites for

performing security tools evaluation and we have used the Juliet Test Suite for Java

version 1.1.1 and Juliet Test Suite for Java version 1.2. Table 6.1 shows the summary

of the results that we have obtained by running JWAST on the Juliet Test Suite version

1.1.1 and the Table 6.2 shows the results that are obtained by the Juliet Test Suite

version 1.2.

Juliet Test

Case

Total

Test

Cases

 Precision Accuracy Recall

Version

1.1.1
6330

True Positives 1250

0.13 0.6 0.2
False Positives 8421

True Negatives 18892

False Negatives 5062

Version

1.2
9731

True Positives 2008

0.4 0.8 0.2
False Positives 3180

True Negatives 40932

False Negatives 7723

Table 6.1: Results of test run on Juliet Test Case version 1.1.1 and Version 1.2

 Performance Evaluation

As we have implemented our tool as an agent based testing tool, we have gained

several advantages inherent in the mobile agents. We have evaluated our agent based

security testing tool JWAST, on the basis of following points.

78

6.3.1 Platform Independence

As our tool is an agent based tool, it is completely platform independent and can be

run on any platform by sending the agent instances to perform testing.

6.3.2 Remote Testing

Unlike the tools that are implementing using conventional desktop based technologies,

we can send instances of JWAST agent to the remote site of target web application for

remote testing.

6.3.3 Concurrent Testing

Our tool enables the users to perform concurrent testing. This can be achieved by

creating multiple instances of JWAST agent and use each instance to test different web

application at the same time.

6.3.4 Increased Throughput

As the JWAST provides concurrency in the testing, the total throughput can be

increased by testing more number of web application in a specific time period.

6.3.5 Reduced Network Traffic

The use of JWAST will help in reducing the network load. This can be achieved by

sending a mobile agent instance of the JWAST to remote site location where web

application source code is deployed, instead of downloading the source code for testing

on the local machine.

6.3.6 High Scalability

JWAST is highly scalable in nature and it can be scaled up to test any number of web

applications. This is due to the fact that any number of instances of JWAST can be

created and used for testing the web applications.

79

 Java Web Application Security Tester Coverage Comparison

As there exist several tools that are meant for security testing, presented in the Chapter

3. Here, we present a coverage comparison of our tool with some of the other tools

built for the web application security testing.

Table 6.2: Coverage comparison of JWAST with other tools

Table 6.3 shows the difference in the vulnerability coverage that exists between our

tool and other tools. As it shown in the table, our tool JWAST covers all the listed

vulnerabilities. JWAST is capable of detecting and preventing the SQL injection, XSS,

Http response splitting, path traversal, command injection, XPath injection and LDAP

injection vulnerabilities and runtime attacks. However, the other tools that we have

compared with, cover only few of these vulnerabilities where path traversal, XPath

injection and LDAP injection vulnerabilities and attacks can only be detected using

our tool, JWAST.

80

 Java Web Application Security Tester Feature Comparison

This sections presents the comparative study that we have made for our tool with the

other existing tools. In the Table 6.4 we have shown the differences in the implemented

features of our tool with other tools. This comparison shows that our tool has

contributed in terms of several improvements in the features that current tools offer.

Features/Tools JWAST PMD
Find

Bugs
RIPS Dytan

Underlying

Technology

Agent

Based

Conventio

nal

Desktop

Based

Conventio

nal

Desktop

Based

Conventio

nal

Desktop

Based

Desktop

Based

Techniques

Used

Static +

Dynamic

Analysis

Static

Analysis

Static

Analysis

Static

Analysis

Dynamic

Analysis

Target

Language
JAVA JAVA JAVA PhP binaries

Input Format
Source

Code

Source

Code

Byte

Code

Source

Code

x86

binaries

Extensibility Yes Yes Yes No Yes

Table 6.3: Feature comparison of JWAST with other tools

As it can be seen in the Table 6.4, our tool JWAST differs in the underlying

technology, where we have introduced an agent based security testing tool as

compared to the other existing tools which developed as a conventional desktop based

tools. Also, the technique that we have introduced and used in our tool is an integrated

static and dynamic analysis based technique which is in contrast to the other tools that

use either only static or only dynamic analysis techniques for the testing. One other

81

obvious advantage of our tool over the other tools is the input format used for

performing the security testing, which is the source code instead of the binaries or the

bytecode. This enable the users to perform the security testing even if the application

is under development and the bytecode or binaries are not available yet.

82

Chapter 7

Conclusion and Future Work

This chapter highlights the main points and concludes the work that has been done in

this thesis and the achievements that have been made are discussed. Furthermore, the

thoughts and suggestions of potential future work and improvements, which could not

be included, are also presented in this chapter.

 Conclusion

The demand of web applications has been boosted up in the last decade as more and

more services are shifted on the World Wide Web. Whereas, the web applications are

highly exposed and vulnerable in nature and in addition these are poorly programmed

with respect to the security. Various testing techniques and tools for software are well

developed and are in place. However, the software security problem is neglected by

not performing the security testing of the applications. By the passage of time, the

number of vulnerabilities and attacks are increasing in the web based applications and

among them the input validation vulnerabilities are the most common problem. One

of the key security measures that needs to be taken in order to mitigate the increasing

number of vulnerabilities in web applications, is to automate the security testing

process as much as possible.

In this research, we have introduced an optimized taints based static analysis technique

that has developed keeping in view the ability for this technique to be integrated with

83

a dynamic analysis technique. A set of security rules has been defined to support our

static taints analysis. These rules enable the static analysis to identify the potential

vulnerability sources in the given web application source code. A dynamic analysis

technique has also been developed and optimized to work in combination with the

static analysis technique. The dynamic analysis technique plays the role of double

checker in detection and also helps in the prevention of web application attacks which

might be possible due to the present vulnerabilities. A set of instrumentation templates

has been introduced to be used with the dynamic analysis empower, the web

application under test, to stop the web attacks from happening. On the basis of our

integrated static and dynamic analysis technique we built a web application security

testing tool called JWAST. JWAST enables the programmers and software testers to

perform security testing on web based applications written in Java.

For proving our technique as reliable and efficient, we have implemented our tool in

Java as an agent based security testing tool for testing the web based applications

written in Java. We have conducted several experiments to test the ability of JWAST

to detect input validation vulnerabilities. We designed and run several positive and

negative test cases for each type of vulnerability in the input validation vulnerabilities

class. The results have shown that our tool detects and prevents the input validation

vulnerabilities and is sound with respect to its rule base.

We also compared our tool with other existing tools and the comparative study

revealed that our tool performs better than the other tools we compared to. Our tool

provides improved coverage in terms of support for number and types of security

vulnerabilities as compared to the other tools. Also, the features that are provided by

our tool are better than the other tools we compared to. Namely, the underlying

84

technology, the integrated testing technique and the input format as a source code are

the features where our tool takes an edge over other tools.

 Future Work

Although we have shown that our integrated static and dynamic analysis technique

enable our security testing tool more efficient than other closely related works, but

future evaluations of the JWAST should be focused on detection and prevention of

more vulnerabilities in a more efficient way and for other languages also.

7.2.1 Performance Enhancements

For future work, we will investigate further the applicability of integrating such a

technique that can reduce the source code size. This will help our security testing tool

to compete the testing and generate results in less time. One of the possibility for

achieving this goal can be to integrate code slicing in the current technique. Code

slicing is a technique that is used to eliminate the code that is never used. Performing

code slicing will result in the code reduction and our overall testing technique will be

improved.

The security rules used by the static analyzer agent can be enhanced. We can include

the support of cleanse rules in our technique. Cleanse rules are the rules that explicitly

specify the user defined validation functions that can be called as cleanse methods.

While performing the static taint analysis, the cleanse rule can help our analysis know

about the user defined validation functions and in this way the static analysis will not

report a vulnerability and the taint will be removed, if in case a cleanse method is

encountered.

85

7.2.2 More Vulnerabilities Classes Support

Current static taint analysis technique is based on data flow analysis. Using this

technique we are able to detect taint style vulnerabilities which are also known as input

validation vulnerabilities. However, as a future work we will extend our tool coverage

and support the detection of more vulnerabilities of input validation class and other

classes as well. To achieve this goal we will integrate more advanced static analysis

technique into our tool. Some of the advanced static analysis techniques which can be

used include symbolic analysis and abstract interpretation [86].

7.2.3 Other Languages Support

Current form of the JWAST can only be used to test the web based applications

developed in Java. However, in the future we will be extending the implementation of

our technique to other languages which will enable our tool to test the applications

written in languages other than Java. The current proposal for the extension of static

analysis implementation is to generate parsers for other languages and perform taint

analysis. And for the extension of dynamic analysis, the language specific

instrumentor implementation, for example for .NET by the use of CLR Profiler [87],

will be provided so that the application source code written in other languages can also

be instrumented for the dynamic analysis.

86

LIST OF REFERENCES

[1] L. Shklar and R. Rosen, Web application architecture: Principles, protocols

and practices. John Wiley & Sons, 2004.

[2] N. Teodoro and C. Serrao, “Web application security: Improving critical web-

based applications quality through in-depth security analysis,” in Information

Society (i-Society), 2011 International Conference, 2011, pp. 457–462.

[3] Cenzic, “Application Vulnerability Trends Report:2013,” Dec. 2013.

[4] I. S. Systems, “IBM X-Force Threat Intelligence Quarterly 2014,” 2014.

[5] H. Herbert and others, “Why security testing is hard,” IEEE Secur. Priv.,

2003.

[6] G. a. Di Lucca and A. R. Fasolino, “Testing Web-based applications: The state

of the art and future trends,” Inf. Softw. Technol., vol. 48, no. 12, pp. 1172–

1186, Dec. 2006.

[7] G. of the HKSAR, “WEB ATTACKS AND COUNTERMEASURES,” 2008.

[8] R. Hower, “Software QA and Testing Resource Center.” [Online]. Available:

http://www.softwareqatest.com/. [Accessed: 15-Nov-2013].

[9] A. Tappenden, P. Beatty, J. Miller, A. Geras, and M. Smith, “Agile security

testing of web-based systems via httpunit,” in Agile Conference, 2005.

Proceedings, 2005, pp. 29–38.

[10] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,” IEEE

Secur. Priv., vol. 3, no. 1, pp. 84–87, 2005.

[11] C. Kruegel, G. Vigna, and W. Robertson, “A multi-model approach to the

detection of web-based attacks,” Comput. Networks, vol. 48, no. 5, pp. 717–

738, 2005.

[12] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,” in

Proceedings of the 10th ACM conference on Computer and communications

security, 2003, pp. 251–261.

[13] M. Johns and J. Winter, “RequestRodeo: Client side protection against session

riding,” in Proceedings of the OWASP Europe 2006 Conference, 2006.

[14] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: a client-side

solution for mitigating cross-site scripting attacks,” in Proceedings of the 2006

ACM symposium on Applied computing, 2006, pp. 330–337.

87

[15] Paros and Yukusan, “Paros.” [Online]. Available:

http://www.parosproxy.org/index.shtml. [Accessed: 15-Nov-2013].

[16] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy, “A safety-oriented

platform for web applications,” in Security and Privacy, 2006 IEEE

Symposium on, 2006, p. 15–pp.

[17] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A

virtual machine-based platform for trusted computing,” in ACM SIGOPS

Operating Systems Review, 2003, vol. 37, no. 5, pp. 193–206.

[18] J. Shrestha, “Static Program Analysis,” 2013.

[19] G. McGraw, “Static Analysis for Security, Building Security In,” IEEE Secur.

Priv., vol. 2, no. 6, pp. 76–79, 2000.

[20] A. Hicken, “.NET Static Analysis and Parasoft dotTEST.” 2011.

[21] OWASP, “OWASP Top 10 - 2013 The Ten Most Critical Web Application

Security Risks,” 2013.

[22] “Open Web Application Security Project (OWASP).” [Online]. Available:

https://www.owasp.org/index.php/Main_Page. [Accessed: 10-Oct-2013].

[23] Imperva, “White Paper Imperva ’ s Web Application Attack Report Ed.3,”

2012.

[24] J. Tudor, “Web Application Vulnerability Statistics 2013,” 2013.

[25] M. Dowd, J. McDonald, and J. Schuh, The Art of Software Security

Assessment - Identifying and Preventing Software Vulnerabilities. Addison

Wesley Professional, 2006, p. 1200.

[26] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, “A taxonomy

of computer program security flaws,” ACM Comput. Surv., vol. 26, no. 3, pp.

211–254, 1994.

[27] M. Howard, D. LeBlanc, and J. Viega, 19 deadly sins of software security.

McGraw-Hill/Osborne California, 2005.

[28] M. Howard, D. LeBlanc, and J. Viega, “24 Deadly Sins of Software Security,”

Sin, vol. 11, p. 183, 2009.

[29] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven Pernicious Kingdoms : A

Taxonomy of Software Security Errors,” Secur. Privacy, IEEE, pp. 81–85,

2005.

[30] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011 CWE/SANS

Top 25 Most Dangerous Software Errors,” Common Weakness Enumer., vol.

7515, 2011.

88

[31] OWASP, “Web Application Attacks.” [Online]. Available:

https://www.owasp.org/index.php/Attacks. [Accessed: 01-Oct-2013].

[32] R. Gray, D. Kotz, S. Nog, D. Rus, and G. Cybenko, “Mobile agents: the next

generation in distributed computing,” Proc. IEEE Int. Symp. Parallel

Algorithms Archit. Synth., pp. 8–24, 1997.

[33] P. Braun and W. R. Rossak, Mobile agents: Basic concepts, mobility models,

and the tracy toolkit. Elsevier, 2005.

[34] Y.-W. Huang, C.-H. Tsai, T.-P. Lin, S.-K. Huang, D. T. Lee, and S.-Y. Kuo,

“A testing framework for Web application security assessment,” Comput.

Networks, vol. 48, no. 5, pp. 739–761, Aug. 2005.

[35] S. Paydar, “An Agent-Based Framework for Automated Testing of Web-

Based Systems,” J. Softw. Eng. Appl., vol. 04, no. 02, pp. 86–94, 2011.

[36] T. I. S.p.A., “JADE.” [Online]. Available: http://jade.tilab.com/. [Accessed:

10-Jan-2014].

[37] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw, “ITS4: A static vulnerability

scanner for C and C++ code,” in 16th Annual Computer Security Applications

Conference, 2000.

[38] D. A. Wheeler, “Flawfinder.” [Online]. Available:

http://www.dwheeler.com/flawfinder/. [Accessed: 02-Jan-2014].

[39] I. Secure Software, “Rough auditing tool for security (RATS),” 2001.

[Online]. Available: https://www.fortify.com/ssa-elements/threat-

intelligence/rats.html. [Accessed: 15-Dec-2013].

[40] D. Evans, J. Guttag, J. Horning, and Y. M. Tan, “LCLint: A tool for using

specifications to check code,” in 2nd ACM SIGSOFT Symposium on

Foundations of Software Engineering, 1994.

[41] D. Larochelle and D. Evans, “Statically detecting likely bu er overflow vul-

nerabilities,” in 10th USENIX Security Symposium, 2001.

[42] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A first step towards

automated detection of bu er overrun vulnerabilities,” in 7th Networking and

Distributed System Security Symposium, 2000.

[43] Y. Xie, A. Chou, and D. Engler, “ARCHER: Using symbolic, path- sensitive

analysis to detect memory access errors,” in n Proceedings of the 9th

European Software Engineering Conference 10th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering, 2003.

[44] J. S. Foster, M. Fähndrich, and A. Aiken, “A Theory of Type Qualifiers,” in

ACM SIGPLAN 1999 Conference on Programming Language Design and

Implementation, 1999.

89

[45] G. Holzmann, “Static Source Code Checking for User-defined Properties,” in

Pasadena, CA, USA, 2002.

[46] A. I. SOTIROV, “AUTOMATIC VULNERABILITY DETECTION USING

STATIC SOURCE CODE ANALYSIS,” 2005.

[47] H. Chen and D. Wagner, “MOPS: an infrastructure for examining security

properties of software,” in 9th ACM Conference on Computer and

Communications Security, 2002.

[48] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in Java

Applications with Static Analysis,” in Usenix Security Symposium, 2005.

[49] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy : A Static Analysis Tool for

Detecting Web Application Vulnerabilities (Short Paper),” 2006.

[50] Y. Xie and A. Aiken, “Static Detection of Security Vulnerabilities in Scripting

Languages,” in Usenix Security Symposium, 2006.

[51] B. Livshits, “Griffin Software Security Project.” .

[52] “Checkstyle 5.7.” [Online]. Available: http://checkstyle.sourceforge.net/.

[Accessed: 01-Dec-2013].

[53] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R.

Stata, “Extended static checking for Java,” ACM SIGPLAN Not., vol. 37, no.

5, p. 234, May 2002.

[54] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM SIGPLAN Not.,

vol. 39, no. 12, p. 92, Dec. 2004.

[55] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A Static Analysis

Framework For Detecting SQL Injection Vulnerabilities,” 31st Annu. Int.

Comput. Softw. Appl. Conf. - Vol. 1- (COMPSAC 2007), pp. 87–96, Jul. 2007.

[56] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement

generation to remove SQL injection vulnerabilities,” Inf. Softw. Technol., vol.

51, no. 3, pp. 589–598, Mar. 2009.

[57] “PMD.” [Online]. Available: http://pmd.sourceforge.net/. [Accessed: 10-Jan-

2014].

[58] M. Aderhold, “Tailoring PMD to Secure Coding,” 2013.

[59] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation for Java,”

in Computer Security Applications Conference, 21st Annual, 2005, p. 9–pp.

[60] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using Parse Tree

Validation to Prevent SQL Injection Attacks,” in International Workshop on

Software Engineering and Middleware (SEM) at Joint FSE and ESEC, 2005.

90

[61] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,

“CANDID: preventing sql injection attacks using dynamic candidate

evaluations,” in Proceedings of the 14th ACM conference on Computer and

communications security, 2007, pp. 12–24.

[62] S. Boyd and A. D. Keromytis, “SQLrand: preventing SQL injection attacks,”

in Applied Cryptog- raphy and Network Security Conference, 2004.

[63] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security

enforcement using dynamic data flow analysis,” in Proceedings of the 15th

ACM conference on Computer and communications security, 2008, pp. 39–50.

[64] W. Xu, S. Bhatkar, and R. Sekar, “Practical Dynamic Taint Analysis for

Countering Input Validation Attacks on Web Applications,” pp. 1–15.

[65] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software,” 2005.

[66] D. Scott and R. Sharp, “Abstracting application-level web security,” in

Proceedings of the 11th international conference on World Wide Web, 2002,

pp. 396–407.

[67] A. N. Salvatore, G. Doug, and G. David, “Automatically Hardening Web

Applications Using Precise Tainting,” no. December, 2004.

[68] William G. J. Halfond Alessandro Orso and P. Manolios, “Using Positive

Tainting and Syntax-Aware Evaluation to Counter SQL Injection Attacks,” in

ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE

2006), 2006.

[69] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,

“Cross-Site Scripting Prevention with Dynamic Data Tainting and Static

Analysis,” 2007.

[70] G. A. Di Lucca, A. R. Fasolino, M.Mastroianni, and P.Tramontana,

“Identifying Cross Site Scripting Vulnerabilities in Web Applications,” 2004.

[71] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, and C. K. G.

Vigna, “Saner: Composing Static and Dynamic Analysis to Validate

Sanitization in Web Applications,” IEEE Secur. Priv., 2008.

[72] Halfond, W. GJ, and A. Orso, “AMNESIA : Analysis and Monitoring for

NEutralizing SQL-Injection Attacks,” in 20th IEEE/ACM international

Conference on Automated software engineering, 2005.

[73] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo,

“Securing web application code by static analysis and runtime protection,”

Proc. 13th Conf. World Wide Web - WWW ’04, p. 40, 2004.

91

[74] U. Erlingsson and F. Schneider, “SASI enforcement of security policies: a

retrospective,” in New Security Paradigms Workshop, 2000.

[75] A. C. Myers, “JFlow: Practical Mostly-Static Information Fow Control,” in

Symposium on Principles of Programming Languages, 1999.

[76] C. Gotz, “Vulnerability identification in web applications through static

analysis,” 2013.

[77] G. L. Cheng, “Java Security Vulnerabilities Detection with Static Analysis,”

2007.

[78] S. Microsystems, “JavaCC.” [Online]. Available: https://javacc.java.net/.

[Accessed: 17-Nov-2013].

[79] S. E. Hudson, “CUP User’s Manual.” Usability Center, Georgia Institute of

Technology, 1999.

[80] E. M. Gagnon and L. J. Hendren, “SableCC, an object-oriented compiler

framework,” in Technology of Object-Oriented Languages, 1998. TOOLS 26.

Proceedings, 1998, pp. 140–154.

[81] T. J. Parr, “Language translation using PCCTS and C++(a reference guide),”

Parr Res. Corp., 1995.

[82] “JavaCC Grammars Repository.” [Online]. Available:

https://java.net/projects/javacc/downloads/directory/contrib/grammars.

[Accessed: 15-Dec-2013].

[83] E. Tromer, “Java Instrumentation Engine.” [Online]. Available:

http://cs.tau.ac.il/~tromer/jie/. [Accessed: 05-Feb-2014].

[84] Wikipedia, “Precison, Accuracy and Recall.” [Online]. Available:

http://en.wikipedia.org/wiki/Precision_and_recall. [Accessed: 01-Mar-2014].

[85] NIST, “SAMATE.” [Online]. Available:

http://samate.nist.gov/Main_Page.html. [Accessed: 07-Feb-2014].

[86] W. Wolfgang, “A Survey of Static Program Analysis Techniques,” Vienna

Univ. Technol., pp. 1–16, 2005.

[87] Microsoft, “CLR Profiler for .NET Framework 4.” [Online]. Available:

http://www.microsoft.com/en-us/download/details.aspx?id=16273. [Accessed:

10-Mar-2014].

92

APPENDIX: A

Source Rules and Sink Rules

93

Source Rules

<?xml version="1.0" encoding="UTF-8"?>

<sources>
 <!-- Parameter Tampering-->
 <source id="javax.servlet.ServletRequest.getParameter(String)">
 <package>javax.servlet</package>
 <class>ServletRequest</class>
 <method>getParameter</method>
 <category>Untrusted Source</category>
 </source>

 <source id="javax.servlet.ServletRequest.getParameterValues(String)">
 <category>Parameter Tampering</category>
 </source>

 <source id="javax.servlet.ServletRequest.getParameterMap()">
 <category>Parameter Tampering</category>
 </source>

 <source id="javax.servlet.ServletRequest.getParameterNames()">
 <category>Parameter Tampering</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getRequestedSes-
sionId()">
 <category>Parameter Tampering</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getQueryString()">
 <category>Parameter Tampering</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getRemoteUser()">
 <category>Parameter Tampering</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getCookies()">
 <category>Parameter Tampering</category>
 </source>

 <!-- Header Manipulation -->
 <source id="javax.servlet.ServletRequest.getScheme()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getProtocol()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getContentType()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getServerName()">
 <category>Header Manipulation</category>
 </source>

94

 <source id="javax.servlet.ServletRequest.getRemoteAddr()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getRemoteHost()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getRealPath()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getLocalName()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getLocalAddr()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getAuthType()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getRequestURI()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.ServletRequest.getRequestDis-
patcher(String)">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getMethod()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getContentType()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getCon-
tentLength()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getRemoteUser()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getQueryString()">
 <category>Header Manipulation</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getPathInfo()">
 <category>Header Manipulation</category>
 </source>
 <source id="javax.servlet.http.HttpServletRequest.getHeader()">
 <category>Header Manipulation</category>
 </source>

95

 <source id="javax.servlet.http.HttpServletRequest.getHeaders()">
 <category>Header Manipulation</category>
 </source>

 <!-- URL Tampering -->
 <source id="javax.servlet.http.HttpServletRequest.getRequestURL()">
 <category>URL Tampering</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getRequestURI()">
 <category>URL Tampering</category>
 </source>

 <!-- Cookie Poisoning -->
 <source id="javax.servlet.http.Cookie.getValue()">
 <category>Cookie Poisoning</category>
 </source>

 <source id="javax.servlet.http.Cookie.getPath()">
 <category>Cookie Poisoning</category>
 </source>

 <source id="javax.servlet.http.Cookie.getComment()">
 <category>Cookie Poisoning</category>
 </source>

 <source id="javax.servlet.http.Cookie.getDomain()">
 <category>Cookie Poisoning</category>
 </source>

 <source id="javax.servlet.http.Cookie.getName()">
 <category>Cookie Poisoning</category>
 </source>

 <!-- Information Leakage -->

 <source id="java.sql.ResultSet.getString(int)">
 <category>Information Leakage</category>
 </source>

 <source id="java.sql.ResultSet.getString(String)">
 <category>Information Leakage</category>
 </source>

 <source id="java.sql.ResultSet.getObject(int)">
 <category>Information Leakage</category>
 </source>

 <source id="java.sql.ResultSet.getObject(String)">
 <category>Information Leakage</category>
 </source>

96

 <!-- Untrusted Source -->

 <source id="javax.swing.text.TextComponent.getText()">
 <package>javax.swing.text</package>
 <class>JTextComponent</class>
 <method>getText</method>
 <category>Untrusted Source</category>
 </source>

 <source id="javax.swing.text.TextComponent.getSelectedText()">
 <package>javax.swing.text</package>
 <class>JTextComponent</class>
 <method>getSelectedText</method>
 <category>Untrusted Source</category>
 </source>

 <source id="java.io.BufferedReader.readLine()">
 <package>java.io</package>
 <class>BufferedReader</class>
 <method>readLine</method>
 <category>Untrusted Source</category>
 </source>

 <source id="java.io.Reader.read()">
 <package>java.io</package>
 <class>Reader</class>
 <method>read</method>
 <category>Untrusted Source</category>
 </source>

 <source id="javax.servlet.http.Cookie.getValue()">
 <package>javax.servlet.http</package>
 <class>Cookie</class>
 <method>getValue</method>
 <category>Untrusted Source</category>
 </source>

 <source id="javax.servlet.http.HttpServletRequest.getParame-
ter(String)">
 <package>javax.servlet.http</package>
 <class>HttpServletRequest</class>
 <method>getParameter</method>
 <category>Untrusted Source</category>
 </source>

 <source id="java.io.FileInputStream.read()">
 <package>java.io</package>
 <class>FileInputStream</class>
 <method>read</method>
 <category>Untrusted Source</category>
 </source>

 <source id="java.io.InputStreamReader.read()">
 <package>java.io</package>
 <class>InputStreamReader</class>
 <method>read</method>
 <category>Untrusted Source</category>
 </source>

97

 <source id="java.io.BufferedReader.read()">
 <package>java.io</package>
 <class>BufferedReader</class>
 <method>read</method>
 <category>Untrusted Source</category>
 </source>

 <source id="java.util.Properties.getProperty(String)">
 <package>java.util</package>
 <class>Properties</class>
 <method>getProperty</method>
 <category>Untrusted Source</category>
 </source>

 <source id="java.lang.System.getProperty(String)">
 <package>java.lang</package>
 <class>System</class>
 <method>getProperty</method>
 <category>Untrusted Source</category>
 </source>

 <source id="java.lang.System.getEnv(String)">
 <package>java.lang</package>
 <class>System</class>
 <method>getEnv</method>
 <category>Untrusted Source</category>
 </source>
</sources>

98

Sink Rules

<?xml version="1.0" encoding="UTF-8"?>

<sinks>
 <!-- SQL Injections -->
 <sink id="java.sql.Statement.executeUpdate(String)">
 <package>java.sql</package>
 <class>Statement</class>
 <method>executeUpdate</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.executeUpdate(String,int)">
 <package>java.sql</package>
 <class>Statement</class>
 <method>executeUpdate</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.executeUpdate(String sql, int[])">
 <package>java.sql</package>
 <class>Statement</class>
 <method>executeUpdate</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.executeUpdate(String sql, String[])">
 <package>java.sql</package>
 <class>Statement</class>
 <method>executeUpdate</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.executeQuery(String)">
 <package>java.sql</package>
 <class>Statement</class>
 <method>executeQuery</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.execute(String)">
 <package>java.sql</package>
 <class>Statement</class>
 <method>execute</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

99

 <sink id="java.sql.Statement.execute(String,int)">
 <package>java.sql</package>
 <class>Statement</class>
 <method>execute</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.execute(String,String[])">
 <package>java.sql</package>
 <class>Statement</class>
 <method>execute</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.execute(String,int[])">
 <package>java.sql</package>
 <class>Statement</class>
 <method>execute</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Statement.addBatch(String)">
 <package>java.sql</package>
 <class>Statement</class>
 <method>addBatch</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.prepareStatement(String)">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareStatement</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.prepareStatement(String,int)">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareStatement</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.prepareStatement(String,int[])">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareStatement</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

100

 <sink id="java.sql.Connection.prepareStatement(String,int,int)">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareStatement</method>
 <paramCount>3</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.prepareStatement(String,int,int,int)">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareStatement</method>
 <paramCount>4</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.prepareStatement(String,String[])">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareStatement</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.prepareCall(String)">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareCall</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.prepareCall(String,int,int)">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareCall</method>
 <paramCount>3</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

 <sink id="java.sql.Connection.javax.servlet(String,int,int,int)">
 <package>java.sql</package>
 <class>Connection</class>
 <method>prepareCall</method>
 <paramCount>4</paramCount>
 <vulnParam>0</vulnParam>
 <category>SQL Injection</category>
 </sink>

101

<!-- HTTP Response splitting -->

 <sink id="javax.servlet.http.HttpServletResponse.sendRedi-
rect(String)">
 <package>javax.servlet.http</package>
 <class>HttpServletResponse</class>
 <method>sendRedirect</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>HTTP Response Splitting</category>
 </sink>

 <sink id="javax.servlet.http.HttpServletResponse.setHeader(String,
String)">
 <package>javax.servlet.http</package>
 <class>HttpServletResponse</class>
 <method>setHeader</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>HTTP Response Splitting</category>
 </sink>

 <!-- Cross-site Scripting -->
 <sink id="javax.servlet.ServletOutputStream.print(String)">
 <package>javax.servlet</package>
 <class>ServletOutputStream</class>
 <method>print</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

 <sink id="javax.servlet.ServletOutputStream.println(String)">
 <package>javax.servlet</package>
 <class>ServletOutputStream</class>
 <method>println</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

 <sink id="javax.servlet.jsp.JspWriter.print(String)">
 <package>javax.servlet.jsp</package>
 <class>JspWriter</class>
 <method>print</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

 <sink id="javax.servlet.jsp.JspWriter.println(String)">
 <package>javax.servlet.jsp</package>
 <class>JspWriter</class>
 <method>println</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

102

<sink id="java.io.PrintWriter.print(String)">
 <package>java.io</package>
 <class>PrintWriter</class>
 <method>print</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

 <sink id="java.io.PrintWriter.println(String)">
 <package>java.io</package>
 <class>PrintWriter</class>
 <method>println</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

 <sink id="javax.servlet.http.HttpServletResponse.sendError(int,
String)">
 <package>javax.servlet.http</package>
 <class>HttpServletResponse</class>
 <method>sendError</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

 <sink id="javax.servlet.jsp.JspWriter.write(String)">
 <package>javax.servlet.jsp</package>
 <class>JspWriter</class>
 <method>write</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Cross-site Scripting</category>
 </sink>

 <!-- Path Traversal -->

 <sink id="java.io.File(String)">
 <package>java.io</package>
 <class>File</class>
 <method>File</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Path Traversal</category>
 </sink>

 <sink id="java.io.RandomAccessFile(String,String)">
 <package>java.io</package>
 <class>RandomAccessFile</class>
 <method>RandomAccessFile</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>Path Traversal</category>
 </sink>

103

 <sink id="java.io.FileReader(String)">
 <package>java.io</package>
 <class>FileReader</class>
 <method>FileReader</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Path Traversal</category>
 </sink>

 <sink id="java.io.FileInputStream(String)">
 <package>java.io</package>
 <class>FileInputStream</class>
 <method>FileInputStream</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Path Traversal</category>
 </sink>

 <sink id="java.io.FileWriter(String)">
 <package>java.io</package>
 <class>FileWriter</class>
 <method>FileWriter</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Path Traversal</category>
 </sink>

 <sink id="java.io.FileOutputStream(String)">
 <package>java.io</package>
 <class>FileOutputStream</class>
 <method>FileOutputStream</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Path Traversal</category>
 </sink>

 <!-- Reflection Injection -->

 <sink id="java.lang.Class.forName(String)">
 <package>java.lang</package>
 <class>Class</class>
 <method>forName</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Reflection Injection</category>
 </sink>

 <!-- Command Injection -->

 <sink id="java.lang.Runtime.exec(String)">
 <package>java.lang</package>
 <class>Runtime</class>
 <method>exec</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Command Injection</category>
 </sink>

104

 <sink id="java.lang.Runtime.exec(String[])">
 <package>java.lang</package>
 <class>Runtime</class>
 <method>exec</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Command Injection</category>
 </sink>

 <sink id="java.lang.Runtime.exec(String,String[])">
 <package>java.lang</package>
 <class>Runtime</class>
 <method>exec</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>Command Injection</category>
 </sink>

 <sink id="java.lang.Runtime.exec(String[],String[])">
 <package>java.lang</package>
 <class>Runtime</class>
 <method>exec</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>Command Injection</category>
 </sink>

 <sink id="java.lang.Runtime.exec(String[],String[],File)">
 <package>java.lang</package>
 <class>Runtime</class>
 <method>exec</method>
 <paramCount>3</paramCount>
 <vulnParam>0</vulnParam>
 <category>Command Injection</category>
 </sink>

 <sink id="java.lang.System.load(String)">
 <package>java.lang</package>
 <class>System</class>
 <method>load</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Command Injection</category>
 </sink>

 <sink id="java.lang.System.loadLibrary(String)">
 <package>java.lang</package>
 <class>System</class>
 <method>loadLibrary</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>Command Injection</category>
 </sink>

105

 <!-- XPath Injection -->

 <sink id="javax.xml.xpath.XPath.compile(String)">
 <package>javax.xml.xpath</package>
 <class>XPath</class>
 <method>compile</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>XPath Injection</category>
 </sink>

 <sink id="javax.xml.xpath.XPath.evaluate(String,InputSource)">
 <package>javax.xml.xpath</package>
 <class>XPath</class>
 <method>evaluate</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>XPath Injection</category>
 </sink>

 <sink id="javax.xml.xpath.XPath.evaluate(String,InputSource,QName)">
 <package>javax.xml.xpath</package>
 <class>XPath</class>
 <method>evaluate</method>
 <paramCount>3</paramCount>
 <vulnParam>0</vulnParam>
 <category>XPath Injection</category>
 </sink>
 <sink id="javax.xml.xpath.XPath. evaluate(String,Object)">
 <package>javax.xml.xpath</package>
 <class>XPath</class>
 <method>evaluate</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>XPath Injection</category>
 </sink>

 <sink id="javax.xml.xpath.XPath.evaluate(String,Object,QName)">
 <package>javax.xml.xpath</package>
 <class>XPath</class>
 <method>evaluate</method>
 <paramCount>3</paramCount>
 <vulnParam>0</vulnParam>
 <category>XPath Injection</category>
 </sink>

 <sink id="org.apache.xpath.XPath(String,SourceLocator,PrefixRe-
solver,int)">
 <package>org.apache.xpath</package>
 <class>XPath</class>
 <method>XPath</method>
 <paramCount>4</paramCount>
 <vulnParam>0</vulnParam>
 <category>XPath Injection</category>
 </sink>

106

 <!-- LDAP Injection -->

 <sink id="com.novell.ldap.LDAPConnection.connect(String,int)">
 <package>com.novell.ldap</package>
 <class>LDAPConnection</class>
 <method>connect</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>LDAP Injection</category>
 </sink>

 <sink id="com.novell.ldap.LDAPConnec-
tion.search(String,int,String,String[],boolean)">
 <package>com.novell.ldap</package>
 <class>LDAPConnection</class>
 <method>search</method>
 <paramCount>5</paramCount>
 <vulnParam>0</vulnParam>
 <category>LDAP Injection</category>
 </sink>

 <sink id="com.novell.ldap.LDAPConnec-
tion.search(String,int,String,String[],boolean,LDAPSearchQueue)">
 <package>com.novell.ldap</package>
 <class>LDAPConnection</class>
 <method>search</method>
 <paramCount>6</paramCount>
 <vulnParam>0</vulnParam>
 <category>LDAP Injection</category>
 </sink>

 <sink id="com.novell.ldap.LDAPConnec-
tion.search(String,int,String,String[],boolean,LDAPSearchQueue)">
 <package>com.novell.ldap</package>
 <class>LDAPConnection</class>
 <method>search</method>
 <paramCount>6</paramCount>
 <vulnParam>2</vulnParam>
 <category>LDAP Injection</category>
 </sink>

 <sink id="javax.naming.directory.DirContext.search(String name, At-
tributes matchingAttributes)">
 <package>javax.naming.directory</package>
 <class>DirContext</class>
 <method>search</method>
 <paramCount>2</paramCount>
 <vulnParam>0</vulnParam>
 <category>LDAP Injection</category>
 </sink>

 <sink id="javax.naming.directory.DirContext.getSchema(String name)">
 <package>javax.naming.directory</package>
 <class>DirContext</class>
 <method>getSchema</method>
 <paramCount>1</paramCount>
 <vulnParam>0</vulnParam>
 <category>LDAP Injection</category>
 </sink>

