

ACCESS CONTROL POLICY VALIDATION

METHOD

By (Muhammad Aqib)

A thesis submitted for the requirements of the degree

of Master of Science in Computer Science

 Supervised By

Dr. Riaz Ahmed Shaikh

COMPUTER SCIENCE DEPARTMENT

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

KING ABDULAZIZ UNIVERSITY

JEDDAH – SAUDI ARABIA

Jumada Al-Awwal 1435H – March 2014G

ACCESS CONTROL POLICY VALIDATION

METHOD

By

Muhammad Aqib

This thesis has been approved and accepted in partial fulfillment of the

requirements for the degree of Master of Science in Computer Science

EXAMINATION COMMITTEE

 Name Rank Field Signature

Internal

Examiner

External

Examiner

Advisor

KING ABDULAZIZ UNIVERSITY

Jumada Al-Awwal 1435H – March 2014G

Dedication

To my beloved parents and teachers, who taught me to be ambitious…

To all who supported me to complete this work….

iv

ACKNOWLEDGEMENT

 First of all, I am thankful to Allah for giving me the opportunity to study for

my master degree, for giving me the strength to complete this thesis, and for his endless

blessing that kept me feeling all the time that he is organizing everything for me.

 I would like to express my deepest sense of gratitude to my supervisor Dr. Riaz

Ahmed Shaikh for his patient guidance, encouragement and excellent advice

throughout this study. I appreciate his assistance in writing this thesis. Without his

help, this work would not be possible.

 I admire the help of many people who offered me valuable support throughout

my study. I would like to express my special thanks to Dr. Ahmed Saeed Alzaharani,

the head of the Computer Science Department, for his encouragement and support.

 I express my deepest thanks to my colleagues who offered me valuable

comments and provided me with the essence of their experience during this study.

 I would also like to thank my family for the support they provided me through

my entire life and in particular, I must acknowledge my parents and other family

members, without whose love, encouragement, support and assistance, I would not

have finished this work.

v

Access Control Policy Validation Method

Muhammad Aqib

Abstract

 Inconsistency in access control policies exists when two or more than two rules

defined in the policy set lead to the contradictory decisions. It makes it difficult for the

system to decide which rule is applicable to the current scenario and hence make the

system vulnerable to the unauthorized use. Different inconsistency detection methods

have been proposed by researchers. However, those suffer from various limitations,

such as, inefficient handling of continuous attribute values, unable to handle Boolean

expressions and the ignorance of contextual attribute values such as date, time etc. In

order to overcome these limitations, a new algorithm is proposed that detects the

inconsistencies in the policies using multi-terminal decision trees.

 A comprehensive state-of-the-art survey is also provided in this work on the

existing access control policy validation techniques, which is currently not available

in the literature. This survey includes taxonomy and qualitative comparison.

Taxonomy is used to identify the current trends and qualitative comparison is used to

identify the pros and cons of the existing schemes in an extensive manner.

 Based on the proposed algorithm, a software tool named “ACP Validation

Suite” is developed. This tool first takes the access control policies defined in the

XML. After that it displays them in multi-terminal decision tree form. On this decision

tree, the tool will execute the proposed policy validation algorithm and display all

inconsistent rules present in the policy set.

vi

TABLE OF CONTENTS

Examination Committee Approval

Dedication

Acknowledgement.. iv

Abstract... v

Table of Contents... vi

List of Figures... viii

List of Tables.. ix

Chapter I: Introduction ... 1

1.1.Background .. 1

1.1.1. An Overview of Access Control Policies ... 1

1.1.2. Types of Access Control Policies ... 2

1.1.2.1.Discretionary Access Control (DAC) ... 2

1.1.2.2.Mandatory Access Control (MAC) ... 2

1.1.2.3.Role-Based Access Control (RBAC) .. 3

1.2.Motivation and Problem Statement .. 3

1.3.Research Objectives .. 4

1.4.Contribution ... 4

1.5.Thesis Organization .. 5

Chapter II: Review of Literature.. 7

2.1. Decision Diagram Techniques .. 9

2.1.1. Data Classification Techniques .. 9

2.1.2. Binary Decision Diagram Technique ... 11

2.2. Mining Techniques .. 12

2.3. Modal Checking .. 16

2.4. Formal Methods ... 22

2.5. Matrix-Based Approach .. 27

2.6. Mutation Testing Approach ... 30

2.7. Other Techniques ... 35

vii

2.8. Trend Analysis ... 39

Chapter III: Proposed Solution .. 42

3.1. Inconsistency and Related Concepts .. 42

3.2. What is Inconsistency? .. 43

3.3. Example of Inconsistency .. 43

3.4. Inconsistency Detection Algorithm ... 45

3.4.1. Decision Tree Hierarchy ... 45

3.4.2. Inconsistency Detection Process .. 46

Chapter IV: Proposed Method Implementation ... 52

4.1. ACPs Validation Suite ... 52

4.2. System Architecture .. 54

4.3. Modules of ACPs Validation Suite ... 55

4.3.1. Load / Read Data From Input File .. 56

4.3.2. Build Decision Tree .. 56

4.3.3. Application of Proposed Algorithm.. 56

4.3.4. Collection of Results / Inconsistent Rules .. 57

4.3.5. Display Output .. 57

4.4. Development Tool ... 57

Chapter V: Analysis and Evaluation .. 58

5.1. Complexity Analysis of Proposed Algorithm .. 58

5.2. Qualitative Comparison .. 62

Chapter VI: Conclusion and Future Work ... 67

6.1. Discussion .. 67

6.2. Conclusion ... 68

6.3. Future Work ... 69

 List of References .. 70

viii

List of Figures

Figure Page

2.1 Classification of Different Approaches for Validation of ACPs 8

2.2 Trend Graph for Different Proposed Techniques 39

2.3 Percentage Distribution of Different Types of Proposed Techniques 40

2.4 Percentages of Issues Addressed in Compared Techniques 41

3.1. Sample Hierarchy of the Decision Tree 46

3.2. Proposed Algorithm to Detect Inconsistencies in ACPs 47

3.3. Sub-Trees Generated With Decision Attribute Node as Root Node 48

3.4. Sub-Trees Generated With Action Attribute Node as Root Node 48

3.5. Sub-Trees Generated With Object Attribute Node as Root Node 49

3.6. Sub-Trees Generated With Subject Attribute Node as Root Node 50

3.7. Rules with Contradictory Decision Attribute Values Identified 51

4.1. Sample XML File to Detect Inconsistencies in ACPs 53

4.2. ACPs Validation Suite 54

4.3. Modules of ACPs Validation Suite 55

5.1. Complexity Analysis of Proposed Algorithm for Case I 61

5.2. Complexity Analysis of Proposed Algorithm for Case II 62

ix

List of Tables

Table Page

3.1. Access Rights Defined for Different Roles 44

3.2. Access Rights Delegated by One Role to Other 45

5.1. Complexity Analysis for Two Decision Attribute Values 60

5.2. Complexity Analysis for Three Decision Attribute Values 61

5.3. Comparison of Different Approaches to Validate the ACPs 65

1

Chapter 1

Introduction

1.1. Background

1.1.1. An Overview of Access Control Policies

Access to resources in enterprise environments is restricted by applying

different mechanism and every user is not allowed to access each and every resource

or information present in those systems. For example, in a university, students can

access the system to view their attendance, marks, grades and courses available for

registration etc., but they are not allowed to mark their attendance, change their marks

and to add more courses in the list available for registration. All this is done by

applying a mechanism to control the access of users to the different resources of the

system. For this purpose, different rules are defined by the system administrators to

restrict the users' access to resources. These rules are defined under different kind of

policies which are applied for this purpose and are known as the access control

policies.

2

1.1.2. Types of Access Control Policies

There are many types of access control models but mainly they can be categorized into

three main classes [1]: 1) Discretionary Access Control (DAC), 2) Mandatory Access

Control (MAC) and 3) Role-Based Access Control (RBAC). In this section we will

briefly describe these models. Other types of these policies include Attribute Based

Control (ABAC) [62], Workflow Based Access Control [63] and Chinese Wall [64],

but in the following paragraphs we will discuss the above three types in detail.

1.1.2.1 Discretionary Access Control (DAC)

In DAC, the access to any resource in the system is granted on the basis of the

identity of the user. For example, the user is supposed to enter user name and

password. It is known as discretionary because in this model a user may transfer his

ownership to some other user. The access matrix model is a common example of the

DAC which was first proposed by the Lampson [39] in which the authorizations

holding by the user at different states are represented as a matrix. This idea was further

refined by Graham and Denning [40] and later on by Harrison, Ruzzo and Ullmann

[41].

1.1.2.2. Mandatory Access Control (MAC)

In MAC, certain rules are defined by the administrators of the system and access

to different resources is granted on the basis of those rules. Multilevel security (MLS)

policy is the most common form of MAC and it is based on the security clearance level

3

of subjects and objects in the system [1] [42]. Bell-Lapadula model [43] (for

confidentiality) and Biba model [49] (for integrity) are the two common examples of

MLS models.

1.1.2.3. Role-Based Access Control (RBAC)

RBAC is an alternative to both DAC and MAC and is commonly used to define

the access control policies. It divides the privileges amongst different roles and every

user is granted access to resources according to its role in the system. For example,

student in a university can access his attendance record of a student but he cannot

modify it. Similarly, he can see his grades list of different courses but cannot make

any changes in it. Only teacher can enter the attendance of the students and can enter

and update student’s grade. So the access is granted to the users according to their

responsibilities in the system [44] [45] [46].

1.2. Motivation and Problem Statement

Access control policies play an important role in security of enterprise

applications. With the use of this concept, the system administrators can define the

rules to grant access to users to access the specific resources if they fulfil the

requirements defined in the policy rules. So the idea works fine if the rules are clear

and error free. Problem arises when administrators are supposed to define rules for

large number of users and when the access conditions may also change dynamically.

There may be overlapping conditions in the defined rules and some of the defined rules

may contradict with each other in result of those conditions. The existence of such

contradictory rules is considered as inconsistency problem. In order to remove

inconsistencies in defined rules, the rules should be validated before implementation.

4

For this purpose, researchers have proposed different validation mechanisms [2] [3]

[6] [7] [8] [9] etc. but they suffer from various limitations. These limitations include

inefficient handling of continuous attribute values, unable to handle Boolean

expressions and the ignorance of contextual attribute values such as date, time etc. So

there is a need of a validation method which could handle inconsistency problem by

focusing all these limitations as well.

1.3. Research Objectives:

The objective of this research is to develop a new inconsistency detection

method for access control policy sets that overcome the above-mentioned limitations

of existing policy validation methods.

1.4. Contribution

In this thesis, first, we have provided comprehensive survey on access control

policy validation techniques. To the best of our knowledge, this is the first

comprehensive survey on policy validation techniques. This survey contains

taxonomy for access control policy validation techniques, qualitative comparison of

the existing policy validation techniques, and trend analysis, which identifies most

common and new emerging techniques used for the policy validation.

After the comprehensive analysis of the existing schemes a new access control

policy validation method is proposed. The proposed method not only detect

inconsistencies in access control policies but it also provides resolution mechanism.

5

The proposed method contains the following unique features:

 It provides support for both continuous and discrete attribute values.

 It can detect inconsistencies in both static and dynamic policies.

 It can handle Boolean expressions defined in the rules.

 It can also handle contextual attributes like date, time etc.

In this thesis, theoretical and implementation evaluation is also performed for

the proposed policy validation algorithm. Results show that the proposed algorithm is

not only efficient but also it is easy to implement.

1.5. Thesis organisation

This thesis is organised as follows:

Chapter 1 introduces the research subject, providing a simple overview of the

problem, and addressing the objectives and motivation of this research.

Chapter 2 provides the review of literature in seven main sections. Validation

techniques taxonomy has been given in this section and all the techniques proposed by

researchers have been categorized according to the approach used for validation. Trend

analysis has also been given to present the trend of researchers in using different

techniques for validation purpose.

Chapter 3 presents the proposed solution for the detection and resolution of

inconsistency in access control policies. It also provides the definition of inconsistency

and explains it with the help of detailed example.

6

Chapter 4 provides the implementation details of the proposed algorithm. The tool

developed for this purpose has been discussed in detail. This include the architectural

design details and all the relevant informations.

Chapter 5 presents the analysis of the proposed algorithm. This chapter has two main

sections. In first section we have given the qualitative comparison of the proposed

technique with the other techniques proposed by other researchers. In the other part of

this chapter, the complexity analysis of the proposed algorithm has been discussed in

detail.

Chapter 6 concludes the work that has been done in this study and proposes

recommendations for the future.

7

Chapter 2

Review of Literature

Different approaches have been adopted by the researchers to address the ACPs

verification and validation issues. In this section, we have presented some of the

methods and frameworks proposed for policy validation. We have classified the

proposed methods into the following six categories.

 Decision Diagram Techniques

 Mining Techniques

 Model Checking Techniques

 Formal Methods

 Matrix-based Approaches

 Mutation Testing Approaches

 Other Techniques

8

Access Control Policies

Validation Frameworks

Modal Checking

Matrix based

Approach

Data Classification

Decision Trees

Mining Techniques

Formal Methods

Inconsistencies

detection

Alloy, XACML

Combining algos

M. Mankai and

L. Logrippo

Inconsistency

detection and

resolution using

Alloy, SAT

Solver

V.R. Karimi and

D.D. Cowan

General

verification of

ACPs using

NuSMV

Hwang et al.

Inconsistencies

and

Incompleteness

detection using

LTL, SPIN,

PROMELA

Ma et al.

Inconsistency

detection

algorithm

Shaikh et al.

Incompleteness

detection

algorithm

Shaikh et al.

Conflicts

detection

Matrix based

algorithm

Bei et al.

Inconsistency

detection

Matrix based

algorithm + tool

‘SAVES’

Huang et al.

Others

IP based

approach used

to draw policy

graphs

Shafiq et al.

Inconsistency

and

Incompleteness

detection using

algorithm and

Usr graph resp.

R. Abbasi and

S.G.E. Fatmi

Inconsistency

detection using

algorithms in

Java tool

Jin-hua et al.

Conflict

detection and

resolution by

using proposed

Purpose based

ACP algorithms

Sun et al.

Inconsistency

detection and

resolution in

XML-write

access policies

(only) using

DTDs and

proposed

algorithm

Bravo et al.

Inconsistency

detection using

XACML and

Prolog

Stepien et al.

Incompleteness

detection and

resolution using

PrT Nets, test

modals and

mutation testing

Xu et al.

Inconsistency

detection and

resolution for

taxonomy based

policies using

algorithms

Mohan et al.

General faults

detection using

XACML ACPs as

input and then

applying

mutation testing

approach

E. Martin and T.

Xie

Conflicts

detection by

assigning priority

approach

Wang et al.

General

verification of

ACPs with multi

agent system

using XACML

framework

Tekbacak et al.

Mutation Testing

Technique

Decision Diagram

Technique

Binary Decision

Diagrams

Inconsistency

detection suite

Margrave

Fisler et al.

Misconfiguration

Detection for

RBAC using

role-mining

approach

Mukkamala et al.

Misconfiguration

detection and

resolution using

association-rule

mining approach

Bauer et al.

Identify

Inconsistent

Policies using

Data Mining

Machine

Learning

Algorithms

Evan Martin and

Tao Xie

Detection of

Inconsistencies,

Incompleteness,

Applicability and

Minimality using

logical modeling

Framework

Remi Delmas

and Thomas

Polacsek

Figure 2.1. Classification of different approaches for validation of

ACP

2.1. Decision Diagram Technique

Decision diagrams are the tree like structures having multiple decision and

terminal nodes. These diagrams are useful to validate the access control policies

because these can be used to separate the data on the basis of their attribute values. In

this article we have divided the work done by different researchers in this area in the

following two subcategories.

9

2.1.1. Data Classification Techniques

Some authors have used data classification techniques to identify the

inconsistency and incompleteness problems in the ACPs. They have used different

algorithms like ID3 [27], C4.5 [28], and ASSISTANT 86 [29].

Shaikh et al. in [3] have discussed the inconsistency issue in detail and have

proposed an efficient mechanism to detect inconsistency in ACPs. In presence of

different data mining techniques like ID3 [27], C4.5 [28] and ASSISTANT 86 [29],

the authors have selected C4.5 data classification technique for this purpose and have

made some modifications to make it more progressive and effective for consistency

detection. According to authors the access control policies or rules are collection of

attributes. Attributes are classified as non-category which is decision making attribute

like subject, role, action etc. and category attributes which defines the class of rule

which it belongs e.g. allowed, denied.

The authors have categorize the inconsistency into two types: a direct

inconsistency which occurs when two or more rules present in the same policy set lead

to contradictory conclusions and the indirect consistency where two or more rules

belonging to different policy sets lead to contradictory conclusions.

There are two main steps of the inconsistency detection strategy adopted by the

authors. In first step they need to create a complete decision tree. The C4.5 algorithm

has been used to create decision trees, but the original algorithm creates optimize tree

in which all the attributes may not present. For inconsistency detection, a decision tree

must contain all attributes. So authors have made some changed in the C4.5 algorithm

that ensures that all attributes must be present in the decision tree. After creation

11

of the decision tree, an algorithm is used to detect the inconsistencies. This algorithm

first checks the terminal or leaf nodes of each branch. If any leaf node contains more

than one category attributes, it means that inconsistency exists in rules represented by

that branch. So all the attributes of that particular branch are fetched and by searching

the attribute values in the policy set, all the rules in the policy set containing those

attribute values are highlighted as inconsistent. If all the terminal nodes contain only

one category attribute value, then the policy is considered to be consistent.

The authors have provided different examples of both direct and indirect

inconsistencies which shows that the proposed solution can efficiently detect

inconsistencies in both cases. Another important feature of the proposed system is its

linear computational complexity whereas the many other methods, based on formal

logic have exponential computational complexity.

Shaikh et al. in [4] have provided a mechanism to detect incompleteness in

ACPs using data classification techniques. According to them, completeness checks

are generally performed manually by the administrators and completeness is

sometimes achieved by adding negative authorizations and sometimes access is denied

in unspecified cases. Data classification algorithms used by authors for incompleteness

detection are Limited Search Induction Algorithm (LSIA) [32], C4.5 [28] and

ASSISTANT'86 [29] with some modifications.

The incompleteness detection mechanism proposed by the authors consists of

five steps. Initially in the first step, rules in the ACPs are classified according to

different resources. This separates the rules defined for different resources to avoid

conflict in rules defined for different resources. Secondly, define non-category

attributes for each resource. The values for different attributes which are present in the

rules for different resources are fetched in the third step. In step four, different data

11

classification algorithms are used to create decision trees for each resource. In step

five, Incompleteness algorithm is applied on the decision tree. This algorithm checks

the terminal nodes of the decision tree. If the terminal node does not contain any

category attribute value it means there is incompleteness in the policy set.

The authors have applied these techniques on two different scenarios and have

concluded that all the data mining algorithms are not suitable for incompleteness

detection in ACPs. They have proved that the modified (extended) form of C4.5

algorithms is best for this purpose. Furthermore the modified version has reduced

ordered complexity as compared to the original algorithm.

The proposed method detects only the incompleteness in ACPs and it does not

provide any solution to remove the incompleteness problem. It deals with discrete

values and not useful in the case of continuous attribute values neither it deals with

Boolean attribute values.

2.1.2. Binary Decision Diagram Technique

Different tools have been developed by researchers to validate access control

policies using binary decision diagrams, like Fisler et al. [30] have developed a tool to

analyze the role-based access control policies.

In [30], Fisler et al. have used multi terminal binary decision diagrams for the

verification and validation of access control policies. They have presented a software

Margrave, which can be used for the validation of the access control policies. A verifier

has been used in Margrave to analyze the policies. This component takes access control

policies written in XACML as input and generates different types of decision

diagrams, which are further used in the verification process.

12

Margrave basically is divided into two components. It has a verifier, as

discussed above and the other component is used for the change-impact analysis. It

compares two policies changed due to some reasons and provides a summary also

provides the facility to verify the changed properties of compared policies.

Margrave supports the XACML rule-combining algorithms which include:

first-applicable, permit-override and deny-override. These are used to combine rules

from different policies. According to the authors, Margrave can also use EPAL [47],

which is another access-control language by IBM. It uses multi-terminal binary

decision diagrams (MTBDD) to represent the access control policies and the outcomes

of these policies (permit, deny, not-applicable) are represented by the terminal nodes.

CUDD [48] has been used to implement MTBDDs.

To test the performance of this tool, the authors have evaluated the access

control policies of a research paper submission website. They translated its policies in

XACML and verified using Margrave. Both of its phases; policy querying and

verification, and change-impact analysis were completed in very short time and it was

scalable with respect to the memory usage as well. It also pointed out the lapse in

security policies. But it has some limitations as well. It is useful to detect the

inconsistencies in discrete and static data. It is not helpful in case of dynamic data

neither it supports the contextual attributes. It also deals with the inconsistency

problem only and the incompleteness problem has not been addressed in it.

2.2. Mining Techniques

Data mining techniques are the techniques used to extract different data

patterns from a large amount of data and to convert them into the required format to

13

make them useful in different environments. In the context of access control policies

validation mechanisms, these techniques have been used by different researchers and

different tools have been developed using these techniques.

In [51], Mukkamala et al. have proposed a method to detect and resolve the

misconfigurations in RBAC policies. They have used the following two terms to

discuss the misconfigurations in the access control polices: under-privileges and over-

privileges. Furthermore two approaches are discussed by the authors that are normally

used to address these problems: top-down approach and bottom-up approach. The

authors have used the bottom-up approach, also called role-mining problem.

Authors have used a tiling approach proposed in [52] to discover roles by using

privileges. Their work is the solution to the role mining problem described in [52]. In

this approach two algorithms are applied which use a matrix to represent users and

privileges in rows and columns respectively. The intersection of rows and columns is

represented by 1 if a user has a corresponding privilege and by 0 if it is not. Rectangular

areas in that matrix with contiguous 1s are the tiles and represents different roles. Two

algorithms are applied to get the minimum number of tiles (roles). According to the

authors, there are four possible cases which arise from this situation and different

solutions have been provided by the authors for those four cases to avoid

misconfigurations in policies.

In that paper all the four possible cases to deal with under-privileges and over-

privileges have been discussed and to test their results, forward-engineering and

reverse-engineering approaches have been used. They are confident that their proposed

role-mining approach can effectively use to deal with misconfiguration in RBAC

policies. However, their approach has a very limited scope and it only deals with

14

simple policies without the involvement of conditions or contextual attributes like

time, date etc.

Bauer et al. in [53] have proposed a method to handle the misconfigurations

in access control policies. They have used the association rule mining approach and

have provided the way to first detect and then to resolve those misconfigurations. Their

approach mainly relies on the inference mechanism and uses if-then-else rules

structure. Their approach tries to identify the misconfigurations in the policies in

advance before they could create any trouble for the users and then tries to eliminate

them in a second step.

In association rule mining technique, mainly attribute values which are

normally set to true or false are used to identify the attributes which exists in multiple

records. The attributes in this technique represent the resources and their values

represent their existence or absence in a particular record. Subsets of these attributes

are further used to construct the rules which describe that if first attribute (premises)

of a record is present in a record, then the last attribute (conclusion) should also be

present in that record. For the evaluation of this method they have used a system which

was already implemented in their office for the last two years.

Apriori algorithm [54] has been implemented by the authors to apply

association rule mining approach. If a user accesses some resources of a record, the

attribute values to those records are set to true. The concept of premises and conclusion

describes that if a user can access the premises of a record but the conclusion is not

present then this is a misconfiguration. Furthermore a feedback system has also been

developed which counts the number of correct or incorrect predictions. For every

correct prediction, 1 is added to the count and it is decremented in case of a wrong

prediction.

15

To evaluate the performance of the system, policies are divided into four

categories: implemented policy, intended policy, exercised policy and unexercised

policy and the performance of the system has been evaluated according to these four

types. After the detection of misconfigurations, techniques to repair them have also

been discussed in detail which states that any other authorized member may correct

that, instead of only the administrators.

This technique is useful in detecting and resolving the inconsistencies in access

control policies but its scope is very limited. It only takes the policies into account

having multiple attributes with only Boolean values. Although it is dynamic in the

sense that any user can delegate his rights to any other user but it depends on the

inference mechanism. Contextual attributes like time, date etc. also seem beyond the

scope of this approach.

Evan Martin and Tao Xie in [55] also have presented data mining approach

for the verification of access control policies. They have tried to find out the

differences between the policy specifications and their functionalities. For instance,

they have given an example of the access control policies defined to grant access to

the users in the university in such a manner that students should not be able to edit

their grades. However, due to some specification problems students are allowed to edit

the grades. Authors want to identify these problems using some requests which could

expose those sort of bugs in the policies.

They have developed a tool which generates requests to be sent to the system.

This tool supports two techniques: first one is to simply identify the XACML request

documents and the other one constructs a request factory by inspection which then

generates the requests on demand. Sun’s XACML implementation [57] is used for the

16

evaluation of the generated requests. Weka[56] is used to apply machine learning

algorithms for data mining tasks.

The solution proposed by the authors is applicable if all the attributes have

limited values. For example, if a policy has three attributes like subject, object and

action then the values of all these attributes should be finite. Furthermore, it generates

possible combinations during request generation. Moreover, it is limited to the discrete

values only and no contextual attributes are supposed to be included in the policies.

2.3. Modal Checking

In many approaches, the authors have used some modeling tools to validate the

ACPs. These tools have their own validation criterion and use specific language like

XACML [50], [60] for policy specifications. In this section we will discuss all those

mechanisms which use modal checking tools.

In [5], Hwang et al. have addressed the important and challenging task of

defining Access Control Policies to gain access to different resources in enterprise

applications. Due to the existence of a large number of rules and complexity of the

access policies, it is very important for the policy authors to conduct policy verification

and validation to ensure the correctness of policies according to policy specifications.

Access Control Policies Testing (ACPT) is a tool developed by the authors to address

the problems of the policy authors. This tool helps the policy authors in policy

modeling, implementation and verification. ACPT not only generates enforceable

policies in XACML format using policy requirements but also performs the static and

dynamic verification of these policies to reduce conflicts and faults in these policies.

17

There are four main components of this tool, named as policy modeling, static

verification, dynamic verification and policy implementation. Policy modeling is the

first component of this system not only helps the policy authors to create policies based

on Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC)

and Multi-Level Security, but also helps them to add, delete and modify the existing

policies and their attributes. It generates a policy in the form of XACML and maps the

input policy to the corresponding XACML attributes and includes conditions in the

form of Boolean functions. It also performs static and dynamic verification on these

policies. SMV specification language is used to represent the policies and their

properties as a corresponding finite state machine (FSM). A symbolic model checker

NuSMV [33] can check whether a policy is true or false. In this way it identifies the

problems in the policies but does not provide any solution for them. It takes three

attributes subject, action and object to perform combinatorial tests during dynamic

testing which is a process to assure the correctness of a policy.

This tool helps the policy authors to specify policies based on different access

control policy models using the graphical interfaces. It also allows them to modify or

delete the existing policies using editors.

This tool is very helpful in generating policies based upon the policy

requirements but its scope is very limited. It does not identify an inconsistency or

incompleteness problems. Although it allows conditions (Boolean expressions) but its

testing mechanism only verifies the simple policies which does not involve any

contextual attributes like time, location.

M. Mankai and L. Logrippo in [7] have proposed a system to detect

inconsistencies and conflicts in the access control policies. They have used a standard

18

logic model checking tool Alloy [34] [35] [36] for this purpose where the Access

Control Policies (ACPs) have been written in XACML.

A logical model of XACML has been given in this paper which further has

been translated into Alloy for inconsistency detection. In a brief discussion of logical

model of XACML, policy modeling structure (functions and relations) and access

control constraints have been discussed in detail. Modeling structure includes the

definition and mapping of attributes, values, subjects, resources, actions, requests,

targets, effects, combining algorithms, policies and policy sets. In PDP, every request

to access some resources has to obey the constraints imposed by targets and conditions.

Evaluation of targets against request and response of rules and policies include the

target verification, rule response, policy response and policy set response.

In the proposed system the logical model is translated into the Alloy which is

structural and declarative language. They have used the Alloy Analyzer [37] for the

analysis and verification of Alloy model. The alloy structure uses the concept of

signatures (a type in Alloy, same like a class in other languages) and relations (relates

signatures and their instances). Functions are used for mapping of one signature to

only one instance of the other signature. Every set in XACML is defined by a signature

which is related by relations and functions. Signatures are declared to define the set of

policies and the set of subject, object and action. These signatures contain different

functions and facts to map different relations defined in the logical model. Predicates

which are used to return true or false (if some target's subject, object and action

matches or not to the corresponding values in a request) are also defined for the target

verification purpose. If a target matches a request, the response defined in logical

model is returned.

19

The authors of this paper have proposed a logical model which defines the

policies in XACML and this logical model is translated into Alloy for inconsistency

detection. This model has some limitations. It does not include any type of conditions

and contextual variables. Further it deals with the static data and no dynamic change

has been handled in this system. It has a high computational complexity and authors

are not sure whether it will always complete in reasonable time or not.

V.R. Karimi and D. D. Cowan in [9] have specified ACPs related to

Resource-Event-Agent (REA) business processes and the verification of these policies

in conjunction with REA is the main purpose of this work. According to them, ACPs

are not same for all the organizations and within the organization in different time

slots. It is difficult to analyze all the policies because of their complexity.

The REA model contains two groups of business process, exchange and

conversion. Sales and loans are the examples of these two exchange processes.

The alloy has been used for specification and verification of ACPs. Alloy Analyzer

translates the rule into the Boolean formula and SAT solver produces the solution for

this formula. SAT solution is further translated into the Alloy language by Alloy

Analyzer [37]. The authors have created the directed graphs using the Alloy's meta-

model option. They have examined an example which includes the ACPs in addition

to a REA business process.

The proposed solution is suitable for the specific scenarios of same kind.

Furthermore only one process has been used in this process. It seems to be a complex

model because undesired results have been obtained by adding only one policy. It may

work in small scope and with the increase in scope the chances to find errors decrease.

Ma et al. in [10] have proposed a model checking based method for the validation and

verification of security policies. For this purpose they have used linear temporal logic

21

(LTL) to describe the properties and the model checker SPIN has been used for the

verification and validation of security policies.

In model checking, the properties are described using temporal logic formula

and the system behaviour is represented as the transfer structure.

To represent the system behavior, the finite-state reachability graph is used

which is described as Kripke structure. The LTL formula, used to describe the

properties is converted to Buchi automaton. The system behaviour is represented by

infinite strings of state labels and the LTL property automaton accepts only those state

labels which are models of the formula.

The SPIN model checker has been used in this method which supports the

design and validation of asynchronous systems. It accepts the design specifications

written in PROMELA and LTL syntax is used for correctness claims. In model

checking the result either validates the property or it returns a counterexample for any

violation occurred.

In the proposed system the authors have indicated that for the security of the

information systems, it is needed to validate the security requirements, security

policies and the security solution for the requirements. Consistency and completeness

should be ensured for all these areas. Security validation and verification includes the

Kripke structure and LTL formula which are converted to Buchi automaton by SPIN

model. Validate sequences are also generated for the security verification and

validation purposes and a framework for this purpose has been presented by them.

Verification criteria have been set for the validity and reliability of the model

checking to test the completeness and consistency problems. It has also been

mentioned that in case the system does not match the property, a counter example is

provided.

21

Bravo et al. in [16] have discussed a consistency detection and resolution

method called ACCOn. According to them, they can use this method to detect

inconsistencies in the XML write-access control policies defined using document type

definition (DTD). Further, they have modified an existing algorithm to remove the

inconsistencies form the policies.

As a DTD can be represented as a directed acyclic graph called a DTD graph.

They have used this graph to represent different security policies and have defined

some rules to represent the security policies using these graphs. In ACCOn model the

authors have considered the delete, replace and insert update operations. To perform

all these actions they have defined some rules which allow the user to update the tree

as desired according to the access rights to perform an action. They have set different

notations for different policies allowing an operation or disallowing it. If a policy

defined over the DTD does not allow a forbidden update operation through a sequence

of allowed operations then it is considered as consistent.

To test a given policy for insert or delete inconsistencies, a marked graph of

XML DTD has been built. By applying the rules defined by the authors we can detect

the insert/delete inconsistencies in that policy. To detect the inconsistencies in the

replace operation another graph is used.

To resolve the inconsistencies they have proposed an algorithm that takes the

replace graph as an input for a graph and runs a modified version of the Floyd-Warshall

algorithm. The alternative algorithm for this purpose is named as Set Cover algorithm

and uses Floyd-Warshall algorithm.

This paper focuses on detecting inconsistencies of specific type which are

related to the XML Write-Access security policies. It is static and is applicable for

discrete data only. No contextual attributes have been considered in this case.

22

2.4. Formal Methods

Methods for the validation of access control policies involving mathematical

concepts and techniques are considered as formal methods. Some techniques include

algorithms, based upon different types of mathematical concepts are usually

considered as the formal methods for access control policy validation mechanisms.

Many researchers have used different mathematical concepts in their proposed access

control policy validation mechanism. Some of those techniques are discussed below.

In [2] Wang et al. have discussed the conflicts in ACPs which according to

them occur when a set of policies is satisfied simultaneously and the system cannot

take decision. The components of the information system described here are subjects,

groups, objects, types, roles and actions. Every subject is related to a group, an object

is related to a type. A group has some privileges and a subject belonging to this group

can perform an action on an object or type of object using these privileges and the roles

assigned to it. This model supports the triple tuple policy specification i.e. (subject,

action, and object). Authors have categorised the conflicts into three types: modality

conflicts, redundancy conflicts and potential conflicts. According to the authors,

modality conflicts are the inconsistencies which may arise when two or more policies

with opposite modalities refer to the same authentication subjects, authentication

actions and authentication objects. Redundancy conflicts occur when we try to resolve

modality conflicts and assign priorities to other policies in the set. In contrast to these

two conflicts, potential conflicts occur when two policies have overlapping conditions.

In this case two policies have no modality and redundancy conflicts, but when

simultaneous satisfaction of their associated conditions cause modality or redundancy

conflict. To resolve the modality conflicts, the conflicting policies are assigned

23

priorities so that the policy with the higher priority takes precedence. Global

assignment of priorities to prioritized ACPs can also resolve the modality conflicts

effectively. On the other hand, principle of specific take precedence is used to resolve

redundancy conflicts. If a policy is a redundant policy, it is assigned a higher priority.

For any two policies 𝑃𝑖 and 𝑃𝑗, 𝑃𝑖 should be assigned higher priority according to

principle of specific take precedence. According to this work, priorities will be

swapped between 𝑃𝑖 and 𝑃𝑗 and then check 𝐴𝐶𝑃𝑗, which points out any kind of

redundancy and hence this way the redundancy conflicts can be removed. Potential

conflicts are the conflict between the conditions of two policies, so system security

officers (SSO) add permissions or prohibition to the associated conditions. Now

according to the proposed method, if there is no potential conflict in PACPs, then the

PACPs cannot derive any actual conflict. The author hopes that resolving these three

types of conflicts by using the proposed solution ensures the error-prone

implementation of ACPs.

Mohan et al. in [11] have discussed taxonomy-based ACPs for biomedical

databases. In this paper the authors have discussed about the detection of

inconsistencies in ACPs and information inference vulnerability detection and also

have provided their solution. They have proposed dynamic conflict detection and

resolution strategies for hierarchical data. In their work, an algorithm has been

proposed to detect the inconsistencies in the taxonomy based data and another

algorithm has been proposed to detect and resolve the inference attacks.

According to a tree structure, the authors have divided the nodes in that tree

into class-subclass hierarchies. According to them e.g., suppose flu is a disease and all

the types of "flu" are the subclasses of the class flu and are represented as the child

24

nodes in that tree. So the policy applied to a class or parent node will be applicable to

the subclass or child nodes as well.

In taxonomy based authorization policies, the authors have addressed the

conflicts among the different hierarchical levels in the resource tree and the detection

of inconsistencies in authorization policies for inference related nodes. Their approach

does not resolve these inconsistencies but provides a mechanism to detect them.

Two algorithms have been designed to detect inconsistencies and inference

conflicts. Both these algorithms have been implemented using Java language and

XACML has been used for policies. Furthermore, real data obtained from the NIH

sponsored i2b2 project [22] has been used for evaluation. The performance of the

system has been measured by measuring the time spent to run the algorithms for

different sizes of the trees used as the input trees. It has observed that the total conflict

handling time for a node is directly proportional to the number of nodes in the sub-

tree.

The scope of this research is limited to the taxonomy based authorization

policies only. It deals with the discrete data and the contextual attributes (e.g time)

have not been considered in the proposed solution. It only detects inconsistencies but

do not resolve them. The incompleteness problem is also not addressed.

Sun et al. in [13], think that access control is an important topic but the

importance of privacy yet has not recognized in the traditional access models. In this

paper they have tried to bridge the gap between the private information protecting

technology and access control models. In this paper they have discussed the Usage

Access Control (UAC) model which consists of eight components: subjects, subject

attributes, objects, object attributes, rights, authorizations, obligations and conditions.

As compared to UAC they have designed an extended PAC model to protect the

25

important information from unauthorized use. PAC is a purpose based access control

technology for the challenges of privacy violations which is an important issue

nowadays.

This paper focuses exclusively on how to specify and enforce policies for

authorizing purpose-based access management using a rule-based language. For this

purpose a framework has been proposed. This framework deals with purpose and data

management purposes have been organized in a hierarchy and each data element is

associated with a set of purposes.

For purpose based access control policy the authors have divided the purpose

(a reason for data collection and data access) into two categories: Intended purpose

which is related to data and regulate data accesses and Access purpose which is related

to access the data. Intended purpose has further been divided into the Allowed Intended

Purpose (AIP) and Prohibited Intended Purpose (PIP). In the proposed framework a

policy (rule) is a tuple of the form (Subject, Action, Resources, Purpose, Condition,

Obligation) where purposes are applied to achieve fine-grained policies. Purposes have

been represented in a hierarchical structure and it is possible that conflicts may occur

in the purposes of two different policies. To detect the conflicting purposes and

conflicting policies, two algorithms also have been presented where first algorithm

detects the conflicts in purposes of different policies and based on the first algorithm,

the second algorithm detects the conflicts in the access control policies.

R. Abbasi and S. G. E. Fatmi in [15] have discussed different approaches

followed by different authors in the field of information security by implementing

different access control policies to restrict the users from unauthorized access of

resources. In this paper, they have proposed a solution to detect the inconsistencies,

incompleteness and preservation of safety and aliveness problems in the access control

26

policies by using the reasoning method which is used in software engineering. They

have defined a security policy by using formal specifications and has validated this

policy by using the executable specification method.

The concept of executable security policy (ESP) has been introduced by the

authors for the validation of security policies. It uses a specification language and this

proposed model uses PROMELA as a source of inspiration. The proposed validation

process consists of three steps which are: (1) consistency proof, (2) completeness proof

and (3) the SP properties preservation.

The authors have described some concepts regarding the consistency security

policies and have provided an algorithm which uses those concepts and tests the

security policies for inconsistencies. To test the SP for the completeness, the

reachability analysis of the state model has been used and two reachability graphs have

been used for this purpose. Furthermore, lifeness property and safety property have

been discussed in detail. The concepts of exhaustive set, uniformity hypothesis and

regularity hypothesis have been introduced to derive a finite SP reachability graph.

This paper deals with the security policies related to the firewall only. It has

used the reachability graph for this purpose and security model is inspired by

PROMELA. This model can be used for the detection of inconsistency,

incompleteness and SP preservation verification.

Rémi Delmas and Thomas Polacsek [58] have proposed a logical modelling

framework to find the inconsistencies and incompleteness in the access control

policies. Providing a mechanism for the detection of these two properties, they have

introduced two new properties, applicability and minimality and their proposed

technique is capable to detect these two properties as well.

27

In the proposed framework, authors have used the MSFOL (many-sorted first

order logic) [59] logical framework for this purpose. They have derived another logical

framework from the MSFOL named PEPS (Peps for Exchange Policy Specification).

So according to them, the PEPS signature is basically a MSFOL signature and is

capable to satisfy some extra requirements.

By using the concepts of signatures, formula and predicates, they have defined

some rules for the logical framework. The PEPS is the extension of the MSFOL which

works for limited or finite data so their rules are also applicable to the finite data. They

also mentioned that the MSFOL formula should be converted to a pseudo-Boolean

logic formula to analyse it. Furthermore any compatible solver could be used for this

purpose.

The PEPS implementation in the proposed tool is a three steps procedure where

grounding operation gives the grounded formula in the first step which is converted to

a bit-vector expression using the bit-vector encoding in the second step of this process.

In the last step of this procedure, the bit-vector expressions are converted into clauses

which are in pseudo-Boolean form and give us the pseudo-Boolean formula.

Using the formulas defined in the proposed logical framework, authors have

provided a mechanism to detect the inconsistency, incompleteness, applicability and

minimality. It provides the reliable solution because it is based on the logical solvers

which themselves are stable. But it is limited to the discrete and limited data without

the involvement of contextual attributes in the expressions.

2.5. Matrix-Based Approach

28

In mathematics, the matrices are usually used for the representation of linear functions

and are also used to find the solution for a set of linear equations. In computer science,

matrices are commonly used in computer graphics, where they are used to project an

image in n-dimensional image in some other m-dimensional co-ordinate system. In the

context of access control policy validation, some researchers have used these matrices

in collaboration with other tools to find out the problems with access control policies.

Some of those methods will be discussed in this section.

Bei et al. in [8] have discussed about the existence of many conflict detection

algorithms to detect conflicts in ACPs. But according to them, these algorithms are

application and policy specification dependent. So these algorithms cannot be reused

neither extended to meet some extra requirements.

Authors, in this paper have proposed a solution for this problem and have

developed a matrix based algorithm which is independent of application domain. They

consider that all kinds of policies like package filter policies, authorization policies

and obligation policies belong to ACPs.

Authors have defined the ACP and its different components. The components

of a policy rule are modality, event, condition, action, subject and target. These

components are called policy field. According to them, to detect a conflict in policies,

it is important to define the relativity of their rules. Authors have defined different

types of relationships between each policy field. Depending upon these policy fields,

six policy field matrices have been created to denote the modality, subject, event,

condition, target and action fields of any two rules. Existence of relationship between

two rules is denoted by "1" and "0" is used when there is no relation between two fields

of different rules. For the purpose of policy rule modelling, another matrix named

policy rule matrix is created which is further used to create a policy conflict matrix.

29

Based upon the matrices created before (relation matrix and conflict matrix) an

extensible algorithm (MGCD) has been defined to detect the conflicts. This algorithm

has been divided into two phases and it does not describe the policy conflict in the

algorithm. Conflict is described in the conflict matrix.

Authors have used the matrix approach to detect the policy conflicts. They

claim that their algorithm is extendable and can be applied for different applications

but its time complexity is very high when it has to detect conflicts from large number

of rules. Its time is directly proportional to the square of the number of rules. i.e.. 𝑡 =

𝑘 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠)2.

Huang et al. in [14] have addressed RBAC model and have proposed a

mechanism to detect conflicts or inconsistencies in access control policies. According

to them, it is more complicated task to detect the inconsistencies in this model because

of advance constraints supported by this model.

This paper discusses all the elements of the RBAC policy model which

includes role hierarchies, separation of duty constraint and cardinality constraints. The

authors have presented an inconsistency detection algorithm which includes the above

mentioned elements of the RBAC policy model and based on another algorithm

(Tarjan's SCC algorithm [38]) mentioned in the paper.

According to the authors, RBAC policy is a 7 tuple rule which includes (U, R,

P, RH, RP, UR, C) which represents user, role, permission, role hierarchy, role

permission, user role and constraints respectively. In this paper they have discussed

static constraints only and discussion of dynamic constraints is beyond the scope of

this paper.

Mainly they have focused on separation of duty (SOD) technique and have

discussed three types of SOD in RBAC, which are permission separation SOD-P, role

31

separation SOD-R and user separation SOD-U. Furthermore two types of cardinality

constraints also have been discussed which include cardinality constraint on

permissions (CC-P) and on the role (CC-R). All these are the important part of the

author's inconsistency detection algorithm.

The authors have presented a seven-step mechanism which is followed while

developing an access control system using the RBAC model. RBAC Policy is the core

component of this model. They have presented the concept of Boolean matrices which

further have been used in their proposed algorithm. They also have discussed six types

of inconsistency problems which are: inconsistency between RH, inconsistency

between RH and SOD-R, inconsistency between RP and SOD-P, inconsistency

between UR and SOD-R, inconsistency between UR and CD-R and inconsistency

between RP and CD-P. Their algorithm is based upon the Tarjan's algorithm which

uses the concept of strong connected components (SCC) in role graph (RG) and based

on the DFS algorithm. Time complexity of the algorithm is 𝑂(𝑙𝑚2) where 𝑙 = |𝑈|

and 𝑚 = |𝑅| .

2.6. Mutation Testing Approach

Mutation testing is a testing approach and is used for the software testing. In

this technique the code of the existing program is modified in some ways to produce

different output of the original program. The modified versions of the original

programs are called mutants and their output is compared with the output of the

original program. If the two outputs are different, then the mutant is said to be killed

and the original output is tested against the other mutant. Higher mutant killing

percentage represents the high reliability of the original program. In access control

31

policy validation case, some researchers have used this technique for the validation

purpose. In this section, we will discuss those methods.

E. Martin and T. Xie in [19] have presented a framework to detect the faults

in the ACPs which includes a fault model for automated mutation testing of access

control policies and it also includes the mutation operators used for this fault model,

evaluates the coverage criteria for test generation and selection and also describes the

relationship between the structural coverage and effectiveness of fault-detection.

Furthermore a tool Margrave [30] has been used for the verification of access control

policies which also performs the change-impact analysis on two versions of a policy

to reveal the semantic differences between them.

The authors have applied the software testing techniques to detect the defects

in the access control policies. In software testing test inputs are passed to the software

program to generate test outputs and which are compared with the original outputs.

Similarly test requests are passed to the Policy Decision Point (PDP) and the returned

responses are compared with the expected responses for verification.

In this work they have used previously defined policy coverage criteria and

also a policy coverage measurement tool to know the quality of tests performed on the

policies.

Five elements of the XACML policies have been considered for mutant

generation, which are: PolicySet, Policy, Rule, Target and Condition. Different

combining algorithms to combine different decisions into one decision have been used,

e.g. first-applicable, deny-overrides, permit-overrides and only-one-applicable.

Policy coverage, rule coverage and condition coverage are the three types of

policy structural coverage used for coverage measurement. Previously developed tool

has been used for the random test generation and different tools like Cirg which uses

32

Margrave have been used for random test generation. To select the reasonable number

of tests generated by the test generators, the idea of the minimal representative set has

been used.

Different mutation operators defined in this framework have also been

discussed in details which are used to generate mutant policies for a given policy.

Techniques to detect the equal mutants have also been discussed.

An experiment has been conducted on different policies by using three types

of request sets: Cirg based change-impact analysis, randomly generated and subset of

randomly generated. The Cirg was supposed to be a good one by killing 59% of

mutants.

This framework discusses the general faults present in the policies defined

using XACML and it does not focus in depth on inconsistency and incompleteness

issue.

E. Martin [6] has discussed the mechanism for effective testing of ACPs.

Testing procedure has been divided into three phases where the first phase is named

as fault model and mutation testing, second phase deals with the criteria for structural

coverage and third phase is the test generation.

Fault models have been used to improve different testing techniques for ACPs

and their effectiveness against different faults. Faults have been divided into two

categories. i) Semantic faults which are considered as logical faults in ACPs. These

faults may present in condition functions, policy generation algorithms and policy

evaluation order and may not be detected during static analysis. ii) Syntactic faults

which lead to syntactically incorrect policies and can easily be detected. Author aims

to develop a policy editing tool to detect and log the faults. It will help to improve

policy language design and tools and will reduce fault occurrences.

33

Structural coverage is further divided into basic coverage criteria and improved

coverage criteria. For basic coverage criteria, it is ensured that maximum number of

rules, policies, conditions etc. should be tested to test different kind of faults. For this

purpose, at least one request should be generated that includes a large number of rules.

Policy, rules for a policy and conditions for a rule are three main entities to be

considered for testing. In case of improved coverage criteria, policy and rule

combination and their ordering is also considered for testing. To test the effectiveness

of these coverage criteria, a prototype has been implemented by the author. This

prototype shows the less number of requests and relatively low loss in fault detection

capability in case of basic coverage criteria and even lower loss in fault detection

capability is expected in improved coverage criteria.

Three different techniques have been used in test generation phase. These

techniques are i) random test generation, ii) test generation based on solving single-

rule constraints and iii) test generation based on solving multiple-rule constraints. In

case of random test generation requests in a policy under consideration are randomly

generated from the set of requests in that policy. To generate tests based on basic

coverage criteria, a rule in a policy and all constrains are tested in ii. In the third

technique specific tests are generated to satisfy the improved coverage criteria.

This paper deals with the criteria to test ACPs for fault prevention. It does not

provide a solution to remove faults found during this process. It discusses the general

faults in the ACPs whether static or logical but gives no idea about inconsistency and

incompleteness problems.

Xu et al. in [18] have proposed a model based approach to test the access

control policies for incompleteness problem. It supports the automated testing and test

sets are generated by integrating the access control rules and conditions associated

34

with the activities. A test automation framework has been used for the test code in

various languages like Java, C, C++, C# and HTML/Selenium IDE, but in that paper

two java based systems have been used as the test cases.

The authors in this work have followed the software testing approach where

test cases are generated for the testing of software to find errors. Similarly, in this

model test cases are generated for individual access control rules to detect the

incompleteness in those rules. It uses the models of the software under test (SUT) to

generate test cases. The proposed model generates executable access control tests from

the specifications of the model-implementation description (MID). MID specification

consists of model-implementation mapping description. The proposed model has been

implemented using MISTA (formerly known as ISTA) framework [25] [26] which

automatically generated the test code in many languages mentioned above. It is

represented by a Predicate/Transition (PrT) net. It is constructed from the access

control rules and functional requirements of the SUT. In addition to this, mutation

analysis of access control implementation has been applied to test the fault detection

capability of the proposed model. Mutants are created by using the MutaX tool by

using faulty rules and as a result of test execution; they are killed if a failure is reported

by the system.

The access control rule defined and used for this model is a five tuple which

consists of role/subject, object, action/activity, context which represents the Boolean

expression and a set of authorization types. Three types of authorization types have

been used which include: Permission, Prohibition and Undefined.

To analyze and debug the specifications of the test models constructed using

PrT nets [23] [24] [25], three approaches are used: verification of transition

reachability, verification of state reachability and model simulation. In the proposed

35

model test cases are generated from the test models. MISTA supports automated test

generation for different coverage criteria like reachability tree coverage, state coverage

and transition coverage. It also provides partial ordering and pairwise combination

technique to reduce the number of tests generated.

According to the authors, the proposed model can efficiently detect and resolve

the incompleteness problem in access control policies but it does not address the

inconsistency or redundancy problems. Due to the large number of test cases, it is not

feasible to use this model for large programs but it can be used by dividing the large

system into smaller components or modules.

2.7. Other Techniques

Shafiq et al. in [20] have addressed the event-driven access control policies

and have proposed a framework to detect and resolve the inconsistencies in those

policies. An integer programming approached has been used by them for the detection

and resolution of inconsistencies.

Two types of hierarchies have been used in the RBAC model which are:

inheritance hierarchy and activation hierarchy. A separation of duty (SoD) constraints

is also the main part of the RBAC model and Role-specific SoD and User-specific SoD

are the basic constraints used for this purpose. SoD constraints identified in this paper

also have been composed from these constraints. Furthermore two types of

dependency constraints have been defined to show the relations between nodes in the

type graph used by the authors: strong dependency and weak dependency. Users, roles

and permissions have been represented as nodes in the graph and the edges represent

the association and constraints between different nodes.

36

Integer programming (IP) technique has been used to detect and resolve

inconsistencies. For this purpose IP constraint transformation rules have been defined.

For users, these rules have been divided into four main categories: Hierarchy and

assignment, role enabling, SoD, Dependency triggers. The idea of proxy users has also

been used and active proxy and passive proxy are the two terms used for the proxy

users. After all an algorithm has been developed that takes an event-driven policy

graph as the input and returns the consistent and fault-free graph.

Jin-hua et al. in [17] have presented a policy-based firewall management

framework to manage different kind of firewalls. In this framework it also provides a

mechanism to detect inconsistencies in the rules defined by the administrators. The

approach used in this paper is based on the IETF policy framework and it can manage

hybrid firewalls and application layer firewalls.

The architecture of this framework consists of the four main components which

are: Policy Repository (PR), Policy Management Tool (PMT), Policy Decision Point

(PDP) and Policy Enforcement Point (PEP). It also includes Policy Analyze tool and

a Monitor and Post-test Analyze tool. It also includes an Enforcement Validation

Engine. From these components the Policy Analyze tool analyzes policies for

inconsistency problems and provides a mechanism to detect the inconsistencies in the

policies defined by the administrators. Each rule in this framework consists of six

attributes which include: protocol, IP addresses and port of both sender and receiver

and the action upon the acceptance or rejection of packets from the firewall.

Inconsistency problems have been classified as the shadowing problem, correlation

problem, generalization problem and redundancy problem based on the relations

between different rules.

37

A GUI based tool has been developed using Java which implements different

inter and intra firewall inconsistency detection algorithms.

Stepien et al. in [12] have discussed different strategies which are helpful to

avoid the risks of inconsistencies. This is a general discussion and does not provide

any algorithm or specific technique to eliminate the inconsistencies from the access

control policies. It shows that how can we use the modern languages, tools and

techniques while writing these policies to avoid inconsistencies. It also discusses about

the auditing techniques to detect inconsistencies at compile time and run time. The

ways to improve the efficiency of the systems when a large number of rules is used to

ensure restricted access to resources have also been discussed.

First of all, current methods for conflict detection in rule based policies,

especially in the context of XACML have been reviewed. Then the need for a user

friendly non-technical notation and interface to define and verify the policies has been

discussed. According to the authors, such a notation makes it possible to easily use

complex expressions in the condition part of the rules and without such complex

conditions the equivalent 'simple' rule sets get large and difficult to build and explain.

These complex conditions in XACML lead to more compact rule sets which can be

built and understood by policymakers themselves without relying on specialized IT

personnel. At the end they have demonstrated how the use of complex conditions leads

to a very efficient implementation which encodes the rules in Prolog and combined

with the backtracking mechanisms of Prolog. This results in a very efficient method

of checking the rule sets for inconsistencies.

Authors have emphasized in this work that the use of complex conditions in

rules leads to compact rule sets and instead of writing many simple rules to satisfy one

condition, rules can be derived with the complex expressions to replace those multiple

38

simple rules. This can be achieved by using the new ACP languages like XACML and

use of GUIs is also helpful to achieve this goal.

There are some steps need to be taken to reduce the risks of inconsistencies.

Use of non-technical notations and related tools like GUI is one of those steps. Then

instead of using simple rules containing only one condition, rules with complex

conditions may be used which in result combines several rules in on single rule. Now

static modal conflict detection strategies can be used which can detect the

inconsistencies on both compile time and run time. Modal conflict detection

techniques will also be helpful at this stage to detect the inconsistencies by auditing.

For auditing different queries will be written to get the policies and by examining those

resulting policies, inconsistencies can easily be detected. At the end the scalability and

performance issues can also be solved using complex conditions and compact rule sets.

In [21], Tekbacak et al. have proposed a framework to ensure the security of

the multi agent systems (MAS) using the XACML based access control policies. In

this framework the semantic structure of MAS has been used with the XACML

characteristics. XACML and OWL have been used in the data layer and have modified

to description logic (DL) concepts. Furthermore the combination of agent domain

ontology and agent security ontology has been used with the XACML policy set.

Agents, reference monitor, agent domain ontology, agent main security

ontology and policy ontology are the main components of the proposed MAS

architecture. XACML ontology translation to the DL is also a main component of the

system which includes a policy warehouse where policies are stored. Furthermore

XACML framework used in this system also consists of three components: Policy

enforcement point (PEP), policy decision point (PDP) and policy administration point

39

(PAP). All these components play an important role to define and enforce the

consistent security policies.

This paper does not directly deal with the problem of inconsistency or

incompleteness but it implements the XACML framework for MAS which itself tries

to make them consistent and complete by using its own components.

2.8. Trend Analysis

In this section we have analyzed the existing techniques according to the

approach used and the areas covered by researchers for validation of inconsistencies

in access control policies.

Figure 2.2. Graph showing the ratio of validation methods adopted by

researchers from 2005-2013

We analyzed the proposed techniques according to their effectiveness in

handling different kind of above mentioned problems and attributes, we have used for

41

their comparison. Figure 2.2 shows a trend graph for different proposed techniques

during 2005-2013, which we are classified in different categories. It is clear from the

graph that most of the researchers have used formal methods and modal checking

approaches to validate the access control policies.

Figure 2.3. The percentage distribution of different types of proposed

validation techniques

Chart given above (Figure 2.3.) shows the percentage distribution of the

techniques used for the comparison purpose. It gives us a clear picture by showing the

percentage of each individual technique used by the researchers. Formal Methods and

Modal Checking techniques have the highest percentage of 21% each whereas the

Matrix based and Mutation testing approaches both have a contribution of 8% each.

Furthermore, 17% of them have used their own techniques for this purpose.

41

In the following figure (Figure 2.4.) we have given a percentage distribution of

the properties to show that how the researchers have addressed these issues in their

proposed techniques.

Figure 2.4. Percentages of issues addressed in compared techniques

42

Chapter 3

Proposed Solution

3.1. Inconsistency and Related Concepts

As discussed above, inconsistency in the policy set exists when any two rules

in that policy set lead to the contradictory outcomes. For example, if a rule defined in

the policy set allows a user to access some resources during a specific time span but

there exists some other rule in the same policy set which deny the user to access the

same resource during some other time slots. However, if these time slots are same or

they overlap, then we say that these two rules lead towards the contradictory statements

and therefore they are not consistent. Hence, the policy set is said to be inconsistent.

The rules defined by the administrators consist of different attribute values and the

values of these attributes lead them to some decision based upon these attribute values.

In the following section, we will discuss in detail about these attributes.

43

3.2. What Is Inconsistency?

To define a rule in a policy set, various attributes are used to define different

entities like user, resources, action, context, category or decision etc. Among all these

attributes, the decision attribute define the class to which the specific rule belongs.

There may be different classes like permit, deny and undefined. These classes define

the kind of permission granted to the user, e.g. access granted to a specific user to

access specific resources under certain conditions or revoked or it is undefined etc.

Let 𝑆 = {𝑠1,𝑠2 𝑠3, … . , 𝑠𝑛} 𝑛 ∈ 𝑁, 𝑂 = {𝑜1, 𝑜2, 𝑜3, … , 𝑜𝑚} 𝑚 ∈ 𝑁, 𝐶 =

 {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑙} 𝑙 ∈ 𝑁 and 𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑘} 𝑘 ∈ 𝑁 are the sets of subjects,

objects, contexts and actions containing n subjects, m objects, l context values and k

actions respectively and let 𝐷 = {𝑝𝑒𝑟𝑚𝑖𝑡, 𝑑𝑒𝑛𝑦, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑} be the set of

category/decision attributes. An access control policy is considered to be a four tuple

rule (𝑠, 𝑜, 𝑎, 𝑐) → 𝑑 where 𝑠 ∈ 𝑆, 𝑜 ∈ 𝑂, 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶 𝑎𝑛𝑑 𝑑 ∈ 𝐷. If 𝑅 is the set of

rules, then for any two rules 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑗 ∈ 𝑅 such that 𝑖 ≠ 𝑗, if 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑗 lead to the

contradictory decisions i.e. 𝑟𝑖 → 𝑑𝑥 and 𝑟𝑗 → 𝑑𝑦, 𝑥 ≠ 𝑦 then the policy set is said to

be inconsistent.

3.3. Example of Inconsistency

Let us consider the example of two employees (Manager and Cashier) working

in a bank and they need to access some records to perform different tasks. Only the

Manager has the right to perform any kind of operation on the customer’s records

where the Cashier can only view the customer details to perform some transactions.

The bank administration has reserved two days (Monday and Tuesday) to open new

44

accounts. In case of any change in customer information, they can visit the bank on

Wednesday and Thursday. Friday is the last working day of the week, the management

will review the records of the customers and that day they can delete/block the account

of inactive customer accounts.

Table 3.1. Access rights defined for different roles to perform different

operations on resources

Rule Subject Object Action Decision Day

1 Manager Record File View customer info Permitted Mon-Fri

2 Manager Record File Add new customer Permitted Mon, Tue

3 Manager Record File Update customer info Permitted Wed-Thu

4 Manager Record File Delete customer record Permitted Fri

5 Cashier Record File View customer info Permitted Mon-Fri

6 Cashier Record File Add new customer Denied Mon-Fri

7 Cashier Record File Update customer info Denied Mon-Fri

8 Cashier Record File Delete customer record Denied Mon-Fri

Table 3.1, shows the various rules defined to perform different operations on

the record file by different users. It is clear that both Manager and Cashier can view

the records in that file throughout the week, but only Manager can add new customers

in record file. In addition, he can update the customer information and can also perform

the delete operation on inactive accounts. It is clear from the above-mentioned rules

that there is no inconsistency. But due to some reasons, suppose the Manager delegates

his delete record rights to the cashier. Then the rule 9 is needed to add in the rule set.

45

Table 3.2. New rights assigned to cashier if manage delegates the delete right to

him

Rule Subject Object Action Decision Day

5 Cashier Record File View customer info Permitted Mon-Fri

6 Cashier Record File Add new customer Denied Mon-Fri

7 Cashier Record File Update customer info Denied Mon-Fri

8 Cashier Record File Delete customer record Denied Mon-Fri

9 Cashier Record File Delete customer record Permitted Fri

Now according to the new rules defined in Table 3.2, Cashier is allowed to

delete customer records on Friday, which contradicts with the rule 8, which states that

Cashier cannot perform delete operation on customer records. This shows that the rules

defined in this policy are inconsistent.

3.4. Inconsistency Detection Algorithm

In this section, we will discuss the proposed algorithm for the detection of

inconsistencies in access control policies. This algorithm takes the access control

policies in the form of a decision tree. As discussed above, the rule is defined in the

form of four tuple, which includes subject, object, action and context i.e. (𝑠, 𝑜, 𝑎, 𝑐) →

𝑑. The validation process in this algorithm is completed in two phases. In the first part,

algorithm takes a decision tree as an input and divides it into sub-trees based upon the

number of decision attribute values. In the second phase, algorithm takes sub-trees as

an input and compares them recursively to detect inconsistencies.

46

3.4.1. Decision Tree Hierarchy

In the tree, the Decision attributes (d) are on the top of the hierarchy that are

the children of the root node as shown in Figure 3.1. These nodes include the action

attributes in their child attribute list so the action attributes are on the second level in

the tree hierarchy. Object attributes are the direct children of the action attributes and

exist in the children attribute list of the action attributes. So they are on the third level

in this hierarchy. In this tree hierarchy, the subject nodes are on the fourth level and

they exist in the children attribute list of the objects which are the parents of subject

attribute nodes. Subject attribute nodes in turn contain the contextual attributes in their

children attribute lists and exists on the fifth level of this hierarchy and they are also

the leaf nodes of the policy tree. It then starts the validation process and to detect the

inconsistencies and returns the inconsistent rules in case inconsistencies found in the

policies.

Figure 3.1. Sample hierarchy of the decision tree

3.4.2. Inconsistency Detection Process

As discussed above, the proposed algorithm consists of two parts that are

clearly shown in Figure 3.2. In the following paragraphs, we will briefly describe the

working of this algorithm.

47

Figure 3.2. Proposed algorithm to detect inconsistencies in access control

policies

Step 1:

In this step, the main tree will be divided into the sub-trees equal to the number

of decision attributes. For this purpose it will count the number of decision attribute

nodes that are the children of the root node (Part A, Line: 3). If there is only one

decision attribute node in the children node list of the root node (Part A, Line: 4), then

the algorithm will stop and it will display no inconsistency found message (Part A,

Lines: 18, 19). In another case, the main tree is divided into the sub-trees equal to the

number of category attributes in the children attributes list of the root node (Part A,

Lines: 5-15). Suppose there are two category attributes, permit and deny as shown in

a sample hierarchy tree in Figure 3.1, then in that case the main tree will be divided

into the two sub-trees where all the policies with category attribute value “permit” will

be present in the first tree having same category attribute value as the root node of the

tree. Similarly, all the other rules will be present in the other tree with category attribute

48

value “deny” as the root node. Resulting sub-trees with decision attribute as root nodes

are shown in the Figure 3.3.

Figure 3.3. Sub-trees generated with decision attribute as the root node.

Step 2:

After having separate trees for each decision node as shown in the Figure 3.3,

our algorithm will start comparing two sub-trees using the CompareNodes function

(Part A, Line: 16). It will compare only if both of the trees are not null (Part B, Line:

1). After that it will get the child nodes of the first tree and will start comparing it with

the child nodes of the second tree (Part B, Lines: 2, 3). If the child node type in both

trees is action and the node values are also same, it will pick those nodes and will call

the CompareNodes function again (Part B, Lines: 12-14). In Figure 3.3, the child node

of decision attribute node is action node and its value “Read” is same in both sub-trees.

Now the action node will become the root node of both the trees passed to the

CompareNodes function as shown in Figure 3.4.

Figure 3.4. Sub-trees generated with action attribute as the root node.

49

Again as both the trees shown in Figure 3.4 are not null (Part B, Line: 1), it

will get the child nodes of the root node (action node is root node here) and the object

attribute nodes are the child nodes at this step (Part B, Lines: 2, 3). Now it will compare

the values of object attributes and will call the CompareNodes function again if they

have the same values in both trees (Part B, Lines: 12-14). As shown in the Figure 3.4,

object nodes having “File1” are same in both the trees so now sub-trees will be having

them as root nodes. The Figure 3.5 shows the resulting trees passed to the

CompareNodes function in result of this comparison.

Figure 3.5. Sub-trees generates with object node as the root node.

The CompareNodes function will compare the trees shown in Figure 3.5 where

object attribute node is the root node. It is clear that the child node type is subject node

and “Joe” is the same attribute value in both the trees. So CompareNodes function will

be called again and this time the subject attribute node will be the root node in both

the sub-trees passed as parameters. The Figure 3.6 shows the resulting sub-trees with

subject attribute nodes as the root nodes.

Figure 3.6. Sub-trees generated with subject node as the root node.

51

These trees will be passed to the CompareNodes function and they have

contextual attributes as their child nodes. So this time the CompareNodes function will

not be called again and contextual attributes will be compared in step 3 of the

algorithm.

Step 3:

As mentioned above, if the child node type in both the trees is context node,

the CompareNodes function will not be called because these are the leaf nodes of the

decision tree. It also indicates that all the other attributes are same. Now, it will start

comparing the contextual attribute values (Part B, Lines: 4, 5). If the contextual

attributes have the same values, it means both these rules are same. In Figure 3.6, we

can see that there is a contradiction in time attribute. The user is permitted to access

the resource on Monday from 0800 to 1600 but on the same day, he cannot access the

resource from 1400 to 1600. So it will get all the parent nodes of those contextual

attributes to get those rules (Part B, Lines: 6-8) as shown in Figure 3.7. Here all

attribute-values of both the rules are same, it means they are inconsistent and hence

they will be stored in the list of inconsistent rules (Part B, Line: 9). The Same process

will be repeated until all the sub-trees generated during step 1 are compared with each

other.

51

Figure 3.7. Rules with contradictory decisions identified.

52

Chapter 4

Proposed Method

Implementation

4.1. ACPs Validation Suite

We have implemented our proposed algorithm and have developed a tool

named “APCs Validation Suite”, which takes the access control policies, defined in

XML. This simple program takes an XML file as input and displays the rules defined

in XML file. By implementing the proposed algorithm, it performs the validation

process and displays the inconsistent rules along with their Ids. In Figure 4.1, we have

shown an XML file that contains twenty-three rules to access different resources by

different users. As we already have mentioned that we have considered the four-tuple

rules for these policies. Each rule is defined as an element in the XML file and the

attributes of this element represent the attributes of policy rules. The id attribute

defines the rule’s identity, the subject attribute represents the users who want to access

53

the resources, object attribute represents the resources accessed by different user and

the action they have to perform on those objects is represented by the action attribute

value. In this example, we have seven subject values, user1 till user7. Object attribute

also have described eight resources like File1, File2 etc. Three operations, Read, Write

and Delete have defined in the action attribute value. The rest of the attributes are the

contextual attributes, which define time period, months and the age group of the users.

Figure 4.2 shows the APCs Validation Suite, where the upper half of the screen shows

the contents of the selected file and the lower half shows the rules with contradictory

decisions.

Figure 4.1. Sample XML file to detect inconsistencies in access control policies

54

Figure 4.2. ACPs Validation Suite

4.2. System Architecture

ACPs Validation Suite has developed to implement the proposed algorithm. Its

main screen has three portions. Upper half of its screen is reserved for the input and

shows the contents of the XML file containing the rules for the validation purpose.

Currently this system takes only the XML files as the input files. Here the rules defined

in the XML file are displayed as a tree. The lower half of main screen is reserved for

the output generated by the system in response to the given input. This part has been

divided into two parts. The left part shows the number of rules defined in the input file

and the number of rules found to be inconsistent. In addition, it also shows the

inconsistent rules so that the user could easily find the inconsistencies in the defined

rules. The right portion of this output section shows the percentage of inconsistent

rules as compared to the total number of rules defined in the input file. So this helps

the user to estimate the ratio of errors in the defined rules. This may held the

55

administrators to find out the suitability of the technique used to define the rules.

Percentage of the inconsistencies is displayed in graphical form.

4.3. Modules of the ACPs Validation Suite

Validation process in the ACPs Validation Suite has been divided into five

main steps. So in development of Validation Suite this five different modules have

been developed to accomplish the tasks performed in those five steps. Following are

the main steps involved in the validation process. Figure 4.3 shows the modules of the

developed system.

Figure 4.3. Modules of ACPs Validation Suite

Display Inconsistent Rules

Fetch Results

Run Inconsistency Detection Algorithm

Build Decision Tree

Load Data From Input File

56

4.3.1. Load / Read data from the input file

In this module, the user is supposed to select the file containing the rules

defined by the administrator to check the inconsistencies. After selection of the

appropriate file, this module reads the data in that file and save this data so that it could

be used by the other modules for different purposes. Currently user is allowed to use

only XML files for this purpose.

4.3.2. Build decision tree

Data saved in module 1 is then used to build a decision tree because the

proposed algorithm takes the input in the form of decision tree. So this tree is built

using the rules defined in the selected input file. This tree has its own data structure to

hold the tree nodes. Each node mainly has two attributes, type and value. A child nodes

list is also associated with each node that contains all child nodes of that specific node.

4.3.3. Application of proposed algorithm

The proposed algorithm takes the rules for validation in the form of decision

tree. So after the conversion of rules in this form, the decision tree is passed to the

module implementing the proposed algorithm. This module not only implements the

proposed algorithm but also contains the methods defined to compare the attribute

values especially in case of comparison of contextual attributes. The values of

contextual attributes are passed to these methods which then compare those values and

the results are returned for further processing.

57

4.3.4. Collection of results / inconsistent rules

After completion of validation process using proposed algorithm, the system

has to check whether inconsistencies have been detected in the rules or not. If there are

some inconsistencies, then this module collects the inconsistent rules exist in the policy

set so that the administrators could remove those inconsistencies.

4.3.5. Display output

This module generates an output for the user which includes the rules defined

in the input file and the inconsistent rules collected in the previous module in case

there are inconsistencies in the input file. If no inconsistency is detected, then it simply

displays a message declaring that no inconsistencies exist in the policy set. But in both

these cases, it displays the actual data defined in the input file. It also displays a graph

that shows the percentage of inconsistent rules in the input file.

4.4. Development Tools

The following tools and technologies have been used in development of ACPs

Validation Suite.

 C# 4.0 with .Net Framework 4

 Microsoft Visual Studio 2010

 Windows 7 Professional (Operating System)

 Intel Core i5 Processor,

 Hewlett Packard System with 6 GB RAM

58

Chapter 5

Analysis and Evaluation

5.1. Complexity Analysis of Proposed Algorithm

Complexity of the proposed algorithm depends upon the number of distinct

attribute values for different attributes. In the proposed algorithm the main tree is

divided into sub-trees according to the number of decision attribute values like permit,

deny and undefined. Each sub-tree contains action, object, subject and contextual

attribute nodes. Nodes in the tree represent the distinct attribute values for these

attributes and hence number of iterations at each level is also dependent to the number

of distinct attribute values at that level. So total computational complexity is the sum

of complexities on all the levels of the tree. There are two different cases to calculate

the complexity at those levels depending upon the number of decision attributes. Let

𝑛 be the total number of rules defined in the policy set. Let us also consider that 𝑎 is

the number of distinct attribute values for action attribute, 𝑜 is the number of distinct

attribute values for object attribute, 𝑠 is the number of distinct attribute values for

subject attribute and 𝑐 is the number of distinct attribute values for contextual attribute

59

values. Formulas to calculate complexity at all these levels have defined below for

both cases.

Case 1:

 In this case only two decision attribute values are considered, permit and deny.

As a result the main tree is divided into two sub-trees, say for example, permit and

deny trees.

For Action Attribute: 𝑂(𝑎2)

For Object Attribute: 𝑂(𝑜2 × 𝑎)

For Subject Attribute: 𝑂(𝑠2 × 𝑜 × 𝑎)

For Context Attribute: 𝑂 (
𝑎 × 𝑜 × 𝑠 𝑖𝑓 𝑐 = 1
𝑎 × 𝑜 × 𝑠 × 3(𝑐 − 1) 𝑖𝑓 𝑐 > 1

)

𝑛 = 2 × 𝑎 × 𝑜 × 𝑠

Case 2:

In this case three decision attribute values are considered, permit, deny and

undefined. As a result the main tree is divided into three sub-trees, say for example,

permit, deny and undefined trees.

For Action Attribute: 𝑂(3 × 𝑎2)

For Object Attribute: 𝑂(3 × 𝑜2 × 𝑎)

For Subject Attribute: 𝑂(3 × 𝑠2 × 𝑜 × 𝑎)

For Context Attribute: 𝑂 (
𝑎 × 𝑜 × 𝑠 × 3 𝑖𝑓 𝑐 = 1
𝑎 × 𝑜 × 𝑠 × 9(𝑐 − 1) 𝑖𝑓 𝑐 > 1

)

𝑛 = 3 × 𝑎 × 𝑜 × 𝑠

61

In the Figure 5.1 and 5.2, we have shown the complexity of the proposed

algorithm based upon the number of distinct action, object and subject attribute values

and the number of contextual attributes in each rule. Table 5.1 and 5.2 shows the

complexity for case 1 and case 2 respectively. It shows the number of contextual

attributes which range from 1 to 10 and also the number of distinct subject, action and

object attribute values which also range from 1 to 10. It is worth mentioning that we

have considered the same number of distinct subject, object and action attribute values

for comparison purpose. It mean that if a policy set has 2 different subject attribute

values then it also contains two distinct object and action attribute values as well. In

Figure 5.1, two decision attribute values have considered (case 1) and Figure 5.2

considers the existence of three decision attributes (case 2). From both the graphs, we

can conclude that complexity of case 2 is three times higher than the case 1. Also, both

graphs show that the complexity increases linearly with the increase in number of

contextual attributes whereas it increases more sharply with the increase in number of

distinct actions, objects and subjects.

Table 5.1. Complexity analysis with two decision attribute values

1 2 3 4 5 6 7 8 9 10

1 4 6 9 12 15 18 21 24 27 30

2 36 52 76 100 124 148 172 196 220 244

3 144 198 279 360 441 522 603 684 765 846

4 400 528 720 912 1104 1296 1488 1680 1872 2064

5 900 1150 1525 1900 2275 2650 3025 3400 3775 4150

6 1764 2196 2844 3492 4140 4788 5436 6084 6732 7380

7 3136 3822 4851 5880 6909 7938 8967 9996 11025 12054

8 5184 6208 7744 9280 10816 12352 13888 15424 16960 18496

9 8100 9558 11745 13932 16119 18306 20493 22680 24867 27054

10 12100 14100 17100 20100 23100 26100 29100 32100 35100 38100

Number of Contextual Attributes

N
u

m
b

e
r

o
f

S
u

b
je

ct
,

O
b

je
ct

a
n

d
 A

ct
io

n
 a

tt
ri

b
u

te
 v

a
lu

e
s

61

Figure 5.1. Complexity analysis of proposed algorithm for Case 1.

Table 5.2. Complexity analysis with three decision attribute values

1 2 3 4 5 6 7 8 9 10

1 12 18 27 36 45 54 63 72 81 90

2 108 156 228 300 372 444 516 588 660 732

3 432 594 837 1080 1323 1566 1809 2052 2295 2538

4 1200 1584 2160 2736 3312 3888 4464 5040 5616 6192

5 2700 3450 4575 5700 6825 7950 9075 10200 11325 12450

6 5292 6588 8532 10476 12420 14364 16308 18252 20196 22140

7 9408 11466 14553 17640 20727 23814 26901 29988 33075 36162

8 15552 18624 23232 27840 32448 37056 41664 46272 50880 55488

9 24300 28674 35235 41796 48357 54918 61479 68040 74601 81162

10 36300 42300 51300 60300 69300 78300 87300 96300 105300 114300

N
u

m
b

e
r

o
f

S
u

b
je

ct
,

O
b

je
ct

a
n

d
 A

ct
io

n
 a

tt
ri

b
u

te
 v

a
lu

e
s

Number of Contextual Attributes

62

Figure 5.2. Complexity analysis of proposed algorithm for Case 2.

5.2. Qualitative Comparison

We have compared the proposed solutions on the basis of their effectiveness

and the method adopted for the verification and validation of ACPs. Following are the

main attributes considered for the comparison of the proposed solutions.

 Inconsistency

This attribute defines whether the method proposed by the authors for the

validation of ACPs detect the inconsistency problems in them or not. We also consider

that whether it only provides a mechanism for detection of inconsistencies or provides

the solution to remove these inconsistencies.

 Approach

Under this heading we have defined the approach used by the authors to

validate the policies. We have classified the solutions proposed by different authors on

the basis of the approaches adopted by them for validation purpose.

63

 Boolean Expression

This attribute deals with the rules defined in the policies. It is used to check

whether the proposed solution is applicable to simple rules or it involves some

conditional attributes as well.

 Discrete/Continuous Attribute Values

It is clear from the attribute name that whether the proposed solution deal with

the discrete data or it considers the continuous case as well. In some cases, the data of

both these kinds are considered for validation.

 Handling of Static/Dynamic Data

In some cases, the rules defined in policies do not change at run time but in

some cases these may change. So it is very important to check whether the proposed

solution is applicable to both the scenarios or it may deal with any one of them.

 Contextual Attributes

Some attributes defined in the rules state that those rules are applicable in

specific contexts. For example time, date etc., which states that an access may be

granted on some resources for a specific time period.

In Table 5.3, we have summarized the work done by different researchers for

the validation of access control policies. We have compared their work with respect to

its efficiency and effectiveness in validation of access control policies. We can see that

most of the researchers have worked on the inconsistency problem whether it is related

to the detection or resolution or both. Only few of them have addressed the

64

incompleteness problem and it is also limited to the detection of incompleteness

problem. Ma et al. [10], R. Abbasi and S.G.E Fatmi [15] have proposed the methods

which are capable of detection of both, inconsistency and incompleteness, whereas

Shaikh et al. in [3], [61] have proposed a method to detect inconsistencies which is

capable of handling Boolean expressions and contextual attributes. Furthermore it is

applicable to the dynamic data as well. Similarly in [4] they have proposed a method

for detection of incompleteness. Stepien et al. [12] and Sun et al. [13] also have

proposed methods to deal with the inconsistency and both of these are capable of

handling Boolean expressions and contextual attributes.

Table 5.3. Comparison of different approaches to validate the ACPs

Author(s) Inconsistency Boolean

Expression

Approach Continuous

/ Discrete

Static /

Dynamic

Contextual

Attributes

Our

Proposed

Method

Detection +

Resolution
Yes

Decision Tree

based

Algorithm

Both Dynamic Yes

Wang et al.

[2] Prevention No
Formal

method
Discrete Static No

Shaikh et

al. [3] Detection Yes
Data

classification
Both Both Yes

Shaikh et

al. [4] No Yes
Data

classification
Both Static Yes

Hwang et

al. [5]
No Yes

Symbolic

model

checker

NuSMV

Both Both Yes

E. Martin

[6] General

Fault testing
No

Fault model

mutation

testing using

Alloy

Discrete Static No

M. Mankai

and L.

Logrippo

[7]

Detection No

Model

checking

Alloy

Discrete Static No

Bei et al.

[8] Detection Yes
Matrix based

algorithm
Both Static Yes

V.R. Karimi

and D.D.

Cowan [9]

Detection +

Resolution
No

Model

checking

Alloy

Discrete Static No

65

Ma et al.

[10] Detection No

Model

Checking

SPIN

Discrete Static No

Mohan et

al. [11]
Detection +

Resolution
No

Foramal

method
Discrete Both

No

Stepien et

al. [12] Resolution Yes Prolog Both Static Yes

Sun et al.

[13]
Detection +

Resolution
Yes

Purpose

based access

control model

Discrete Static Yes

Huang et al.

[14] Detection No
Tool SAVIS,

algorithm
Discrete Static No

R.Abbasi

and S.G.E

Fatmi [15]

Detection No

Promela

specification

language, RG

Discrete Static No

Bravo et al.

[16]
Detection +

Resolution
No

DTD graph,

algorithms
Discrete Static No

Jin-hua et

al. [17] Detection Yes
IETF policy

framework
Discrete Static No

Xu et al.

[18]
No Yes

Model based,

Predicate /

Transition

(PrT) net

Discrete Static Yes

E. Martin

and T. Xie

[19]

General

Fault Testing
No

Fault Model

Mutation

testing

NA Static No

Shafiq et al.

[20]
Detection +

Resolution
No

Integer

Programming

technique,

graphs,

algorithm

Yes Static No

Tekbacak et

al. [21]
General

Fault Testing
No

XACML

framework

for ACPs

NA Static No

Fisler et al.

[30]
Detection +

Resolution
Yes

Decision

diagrams

MTBDD

Discrete Static No

Mukamala

et al. [51] Detection No
Role-mining

approach
Discrete Static No

Bauer et al.

[53]
Detection +

resolution
Yes

Association

rule mining

approach

Discrete Both No

Evan

Martin and

Tao Xie

[55]

Detection No
Data Mining

Approach
Discrete Static No

Rémi

Delmas and

Thomas

Polacsek

[58]

Detection No

Logical

Modelling

Framework

Discrete Static No

66

All the details about the validation methods have shown in the Table 5.3, which

help us to compare them on the basis of the attributes used for comparison purpose.

Results obtained from this comparison are helpful for the readers to decide what kind

of techniques could be used to solve different type of problems. Furthermore it also

helps us to choose the most appropriate technique for this purpose. It also gives us an

idea about the issues in access control policies addressed by different researchers. For

example most of the researchers have focused on detection and/or resolution of

inconsistency problems in access control policies but each of them have some

limitations. Only few of them have addressed all the issues. It is also clear from the

results that the less focus is given on the issue of handling of contextual attributes.

67

Chapter 6

Conclusion and Future Work

6.1. Discussion

We have discussed different access control policy verification and validation

frameworks proposed by different researchers by using different approaches. We also

classified the work done by others according to the approaches used for validation

purpose. We have categorized these methods based on the proposed taxonomy. We

also have compared existing methods on the basis of different attributes that gives a

clear view about those approaches and their ability to deal with different kind of issues

in the access control policies. The comparison of different techniques shows that most

of these policy validation schemes have focused on inconsistency detection. Some

tools have also been developed to implement the techniques proposed by researchers

to provide the mechanisms to resolve the issues related to the policy validation.

Although some techniques are very efficient and helpful to resolve these issues but

still a lot of work is required because most of them do not handle the policies that

68

contains Boolean expressions and contextual discrete or continuous attributes.

Keeping in mind all these facts we have proposed a method to detect inconsistencies

in access control policies that not only deals with the continuous attribute values but

also provides a mechanism to deal with the issues related to the rules involving

Boolean expression. In addition, it also provides a mechanism to deal with the

contextual attribute values used by the administrators in the defined rules. By using

graphs, we have tried to elaborate those issues which are required to be given more

attention. Different trend graphs also show the work done by researchers in this area

using various approaches. A lot of work has done in this area but still there are many

issues left that need researcher’s attention.

6.2. Conclusion

We have proposed an algorithm to detect and resolve the inconsistencies in the

access control policies and have used the decision tree approach for validation purpose.

We also have developed a software to validate the access control policies by

implementing the proposed algorithm. It provides a solution to validate the access

control policies especially those which involve contextual attributes and expressions

that involve the comparison operators. By supporting Boolean expressions, continuous

attribute values and contextual attribute values, our proposed algorithm also reduces

the number of rules. But this approach also has some limitations. For example, this

algorithm supports bounded continuous attribute values and does not provide any

solution for detection and resolution of incompleteness problem. We also have given

the complexity analysis of our proposed method which shows the exponential growth

of the complexity curve. Increase in complexity is dependent on the number of distinct

69

decision attribute values. So we need to address these issues and also to improve the

performance in terms of computational complexity.

6.3. Future Work

In this work we have proposed an algorithm to detect and resolve

inconsistencies in the access control policies. Our proposed algorithm takes the rules

defined by the administrators as an input in the form of a decision tree. In our

developed system currently, it only takes the rules defined in the XML. So in future,

first we will provide the support to accept the rules as input defined in other formats

like text file as well. Our current algorithm can only detect and resolve the

inconsistencies in the access control policies but in future we plan to propose another

algorithm to detect and resolve the incompleteness issue. This may done as part of this

algorithm or may be in the form of a new algorithm. In this algorithm we have provided

support to handle continuous values to some degree (bounded continuity), but in future

we would like to handle more complex forms. In addition, we would like to reduce the

complexity of the proposed algorithm to improve its efficiency.

71

LIST OF REFERENCES

1. Pierangela Samarati, Sabrina De Capitani di Vimercati, "Access Control: Policies,

Models and Mechanisms", R. Focardi and R. Gorrieri (Eds.): FOSAD 2000, LNCS

2171, pp. 137–196, 2001.

2. Yigong Wang, Hongqi Zhang, Xiangdong Dai, Jiang Liu, "Conflicts Analysis and

Resolution for Access Control Policies", IEEE Int. Conf. on Information Theory

and Information Security (ICITIS), 2010, pp. 264-267.

3. Riaz Ahmed Shaikh, Kamel Adi, Luigi Logrippo, Serge Mankovski,

"Inconsistency Detection Method for Access Control Policies", in Proc. of Sixth

International Conference on Information Assurance and Security, 2010, pp. 204-

209.

4. Riaz Ahmed Shaikh, Kamel Adi, Luigi Logrippo, Serge Mankovski, "Detecting

Incompleteness in Access Control Policies using Data Classification Schemes",

Fifth Int. Conf. on Digital Information Management (ICDIM), 2010, pp. 417-422.

5. YeeHyun Hwang, Tao Xie, Vincent Hu, Mine Altunay, "ACPT: A Tool for

Modeling and Verifying Access Control Policies", IEEE International Symposium

on Policies for Distributed Systems and Networks, 2010, pp. 40-43.

6. Evan Martin, "Testing and Analysis of Access Control Policies", in Proc. of 29th

International Conference on Software Engineering, 2007, pp. 75-76.

7. Mahdi Mankai, Luigi Logrippo, "Access Control Policies: Modeling and

Validation", in Proc. of the 5th NOTERE Conference, Canada, August 2005, pp.

85-91.

71

8. WU Bei, CHEN Xing-yuan, ZHANG Yong-fui, DAI Xiang-dong, "An Extensible

Intra Access Control Policy Conflict Detection Algorithm", International

Conference on Computational Intelligence and Security, 2009, pp. 483-488.

9. Vahid R. Karimi, Donald D. Cowan, "Verification of Access Control Policies for

REA Business Processes", 33rd Annual IEEE International Computer Software

and Application Conference, 2009, pp. 422-427.

10. Jianli Ma, Dongfang Zhang, Guoai Xu, Yixian Yang, "Model Checking Based

Security Policy Verification and Validation", 2nd International Workshop on

Intelligent Systems and Applications (ISA) , 2010, pp. 1-4.

11. Apurva Mohan, Douglas M. Blough, Tahsin Kurc, Andrew Post, Joel Saltz,

"Detection of Conflicts and Inconsistencies in Taxonomy-based Authorization

Policies", IEEE International Conference on Bioinformatics and Biomedicine,

2011, pp. 590-594.

12. Bernard Stepien, Stan Matwin, Amy Felty, "Strategies for Reducing Risks of

Inconsistencies in Access Control Policies", International Conference on

Availability, Reliability and Security, IEEE, 2010, pp. 140-147.

13. Lili Sun, Hua Wang, Xiaohui Tao, Yanchun Zhang, Jing Yang, "Privacy

Preserving Access Control Policy and Algorithms for Conflicting Problems",

International Joint Conference of IEEE TrustCom, 2011, pp. 250-257.

14. Chao Huang, Jianling Sun, Xinyu Wang, Yuanjie Si, "Inconsistency Management

of Role Base Access Control Policy", International Conference on E-Business and

Information System Security, 2009, pp. 1-5.

15. Ryma Abassi, Sihem Guemara El Fatmi, "An Automated Validation Method for

Security Policies: the firewall case", The Fourth International Conference on

Information Assurance and Security, 2008, pp. 291-294.

72

16. Loreto Bravo, James Cheney, Irini Fundulaki, "ACCOn: Checking Consistency of

XML Write-Access Control Policies", In proceedings of the 11th International

Conference on Extending Database Technology: Advances in Database

Technology, EDBT, 2008, pp. 715-719.

17. WU Jin-hua, CHEN Xiao-su, ZHAO Yi-zhu, NI Jun, "A Flexible Policy-Based

Firewall Management Framework", International Conference on Cyberworlds,

2008, pp. 192-194.

18. Dianxiang Xu, Lijo Thomas, Michael Kent, Tejeddine Mouelhi, Yves Le Traon,

"A Model-Based Approach to Automated Testing of Access Control Policies"

SACMAT, 2012, pp. 209-218.

19. Evan Martin, Tao Xie, "A Fault Model and Mutation Testing of Access Control

Policies", International world Wide Web Conference Committee, 2007, pp. 667-

676.

20. Basit Shafiq, Jaideep Vaidya, Arif Ghafoor, Elisa Bertino, "A Framework for

Verification and Optimal Reconfiguration of Event-driven Role Based Access

Control Policies", SACMAT, 2012, pp. 197-208.

21. Fatih Tekbacak, Tugkan Tuglular, Oguz Kikenelli, "An Architecture for

Verification of Access Control Policies with Multi Agent System Ontologies",

33rd Annual IEEE International Computer Software and Application Conference,

2009, pp. 52-55.

22. S. Murphy, G. Weber, M. Mendis, H. Chueh, S. Churchill, J. Glaser and I. Kohane,

“Serving the enterprise and beyond with informatics for integrating biology and

the bedside (i2b2),” Journal of the American Medical Informatics Association,

17(2), 2010, pp. 124-130.

73

23. Genrich, H.J. “Predicate/transition nets. In Petri Nets: Central Models and Their

Properties”, Springer Berlin Heidelberg, 1987, pp. 207–247.

24. Xu, D. and Nygard, K.E. “Threat-driven modeling and verification of secure

software using aspect-oriented Petri nets”, IEEE Trans. On Software Engineering,

2006, vol. 32, no. 4, pp 265-278.

25. Xu, D. “A tool for automated test code generation from high-level Petri nets”, In

Proc. of Petri Nets’11, LNCS 6709, Newcastle upon Tyne, UK, June 2011, pp.

308-317.

26. Xu, D., Tu, M., Sanford, M., Thomas, L., Woodraska, D., and Xu, W. “Automated

security test generation with formal threat models” IEEE Trans. on Dependable

and Secure Computing. In press, 9(4), pp. 526-540, 2012.

27. J. R. Quinlan, “Induction of decision trees,” Mach. Learn, vol. 1, no. 1, pp. 81–

106, March 1986.

28. ——, “C4.5: Programs for Machine Learning”. USA: Morgan Kaufmann

Publishers, 1993.

29. B. Cestnik, I. Kononenko, and I. Bratko, “Assistant 86: A knowledge elicitation

tool for sophistical users,” in Proc. of the 2nd European Working Session on

Learning, 1987, pp. 31–45.

30. K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz, “Verification

and change-impact analysis of access-control policies,” in Proc. of the 27th Int.

conference on Software engineering, NY, USA, 2005, pp. 196–205.

31. M. G. Gouda and A. X. Liu, “Structured firewall design,” Computer Networks, vol.

51, no. 4, pp. 1106–1120, 2007.

74

32. J. Catlett, “Megainduction: Machine learning on very large databases,” PhD

Thesis, School of Computer Science, University of Technology, Sydney,

Australia, 1991.

33. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.

Sebastiani, and A. Tacchella. “NuSMV Version 2: An OpenSource Tool for

Symbolic Model Checking”. In Proc. of 14th International Conference on

Computer Aided Verification (CAV), 2002, pp. 359-364.

34. D. Jackson, “ALLOY Home Page.” [Online]. Available: http://alloy.mit.edu/

35. ——, Micromodels of Software: Lightweight Modelling and Analysis with

ALLOY, Feb. 2002.

36. ——, ALLOY 3.0 Reference Manual, May 2004.

37. D. Jackson, I. Schechter, and H. Shlyahter, “Alcoa: the alloy constraint analyzer”,

In proceedings of the 22nd international conference on Software engineering.

ACM Press, 2000, pp. 730–733.

38. Robert Tarjan, “Depth-first search and linear graph algorithms”, In SIAM Journal

on Computing, Vol. 1 (1972), No. 2, pp. 146-160.

39. B.W. Lampson. “Protection”, In 5th Princeton Symposium on Information Science

and Systems, 1971, pp. 437–443.

40. G.S. Graham and P.J. Denning, “Protection principles and practice”, In AFIPS

Press, editor, Proc. Spring Jt. Computer Conference, volume 40, Montvale, N.J.,

1972, pp. 417–429.

41. M.H. Harrison, W.L. Ruzzo, and J.D. Ullman, “Protection in operating systems”,

Communications of the ACM, 1976, pp. 461–471.

42. D.E. Denning. “A lattice model of secure information flow”, Communications of

the ACM, Vol. 19, No. 5, May 1976, pp. 236–243.

75

43. D.E. Bell and L.J. LaPadula, “Secure computer systems: Mathematical

foundations”, Technical Report ESD-TR-278, vol. 1, The Mitre Corp., Bedford,

MA, 1973.

44. G. Ahn and R. Sandhu, “The RSL99 language for role-based separation of duty

constraints”, In Proc. of the fourth ACM Workshop on Role-based Access Control,

Fairfax, VA, USA, October 1999, pp. 43–54.

45. T. Jaeger and A. Prakash, “Requirements of role-based access control for

collaborative systems”, In Proc. of the first ACM Workshop on Role-Based Access

Control, Gaithersburg, MD, USA, November 1995.

46. G. Lawrence, “The role of roles”, Computers and Security, Vol. 12, No. 1, 1993,

pp. 15-21.

47. C. Powers and M. Schunter, “Enterprise privacy authorization language (EPAL

1.2)”, W3C Member Submission, November 2003.

48. F. Somenzi, “CUDD: The CU decision diagram package”,

http://vlsi.colorado.edu/~fabio/CUDD/.

49. K.J. Biba, “Integrity considerations for secure computer systems”, Technical

Report TR-3153, The Mitre Corporation, Bedford, MA, April 1977.

50. T. Moses, “eXtensible Access Control Markup Language (XACML) version 1.0”,

Technical report, OASIS, Feb. 2003.

51. Ravi Mukkamala, Vishnu Kamisetty, Pawankumar Yedugani, “Detecting and

Resolving Misconfigurations in Role-Based Access Control”, ICISS 2009, pp.

318-325.

52. Vaidya, J., Atluri, V., Guo, Q., “The Role-Mining Problem: Finding a Minimal

Descriptive Set of Roles”, In proc. of 12 ACM Symposium on Access Control

Models and Technologies, ACM Press, New York, 2007, pp. 175–184.

http://vlsi.colorado.edu/~fabio/CUDD/

76

53. Lujo Bauer, Scott Garriss, Michael K. Reiter, “Detecting and Resolving Policy

Misconfigurations in Access-Control Systems”, ACM Transactions on

Information and System Security (TISSEC) 14.1 (2011): 2.

54. R. Agrawal and R. Srikant. “Fast algorithms for mining association rules”, In

Proceedings 20th International Conference on Very Large Data Bases, VLDB,

1994, pp. 487-49.

55. Evan Martin and Tao Xie, “Inferring Access-Control Policy Properties via

Machine Learning”, proceedings of the Seventh IEEE International Workshop on

Policies for Distributed Systems and Networks, 2006.

56. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques. Morgan Kaufmann, 2005.

57. Sun Microsystems. Sun’s XACML Implementation. Source-forge, 2005.

58. Remi Delmas and Thomas Polacsek, “Formal Methods for Exchange Policy

Specification”, CAiSE, 2013, pp. 288-303.

59. Gallier, J.H.,”Logic for Computer Science: Foundations of Automatic Theorem

Proving”, ch. 10, pp. 448–476, Wiley, 1987.

60. E. Rissanen, “eXtensible Access Control Markup Language (XACML) Version

3.0 OASIS Standard.” http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-

os-en.pdf, Jan 2013. Accessed: 2014-02-03.

61. Riaz Ahmed Shaikh, Kamel Adi, Luigi Logrippo, Serguei Mankovski, "Validation

of Consistency and Completeness of Access Control Policy Sets" Us

2012/0124639 A1, May 17, 2012.

62. Eric Yuan, Jin Tong, “Attributed Based Access Control (ABAC) for Web

Services”, In proceedings of the IEEE International Conference on Web Services,

ICWS, 2005.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

77

63. Giovanni Russello, Changyu Dong, Naranker Dulay, “A Workflow-based Access

Control Framework for e-Health Application”, 22nd International Conference on

Advanced Information Networking and Applications, IEEE, 2008.

64. David F.C. Brewer, Michael J. Nash “The Chinese Wall Security Policy”, IEEE,

1989, pp. 206-214.

