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Anas Abdulqader Mohammed Hadi 

 

Abstract 

 

A brain-computer interface (BCI) is a direct communication pathway between a 

human brain and an external device. In other words, a BCI allows users to act on 

their environment by using only brain activity, without using peripheral nerves 

and muscles. In BCI there are many paradigms; one of them is P300 which 

occurs in response to a significant but low-probability event. BCI data is 

considered to be high in their dimensionalities which reduce the system 

performance.    

Feature selection is a dimensionality reduction technique. Feature selection 

techniques study how to select a subset of features that enhance the performance 

of the system. The reason behind using feature selection techniques include 

reducing dimensionality, removing irrelevant and redundant features, reducing 

the amount of data needed for learning, and improving algorithms’ predictive 

accuracy. 

In this thesis, three types of feature selection techniques are compared and 

applied. These types are filter, wrapper, and hybrid. Fisher score, Determination 

Coefficient (r2), Regularized Fisher Linear Discriminant  (RFLD), and Bayesian 

Linear Discriminant  Analysis (BLDA) were used as evaluation functions. 

Differential Evolution (DE) optimization technique was used as searching 

technique. Two datasets were used to evaluate the results.  

Filter types were the preferred to be selected as feature selection method for 

P300 based BCI, in particular r2. This is due to the good reduction in dimension 

64.8% and low computational cost 6.75ms. The time required for training and 

testing the classifier was improved by 83.62%. 
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Abstract 

Chapter 1 Introduction 

1.1 Introduction 

One of the main factors that make the life of any human being enjoyable is the ability to 

communicate with other persons. Individuals suffering from the so-called locked-in syndrome do 

not have the ability of such ability. The locked-in syndrome is a condition in which patients are 

fully conscious and aware of what is happening in their environment but are not able to 

communicate or move.  

Brain-computer interface (BCI) is a productive research program that aims to resolve such a 

problem. It has been an expanding field of research and development in recent years. The last 

two decades innovated BCI’s emerged. The idea underlying BCI systems is to measure electrical 

activity of the brain, and translate them to commands for a computer or other devices. 

Consequently, users will be able to act on their environment by using their brainwaves instead of 

their muscles.  

This thesis focuses on P300 based Brain Computer Interface (BCI) using EEG signals. In 

particular, the algorithms of selecting the most appropriate features. 

1.2 Motivations 

The Motivations for this thesis can be explained by investigating three questions: Why BCI? 

Why P300 based BCI? And why Feature selection? 
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BCI Motivations: All over the world, the healthcare quality is increased. The methods to save the 

life of people who make accidents are optimized. Although the life of those people is saved, they 

might become handicapped and need more help to live as natural as possible.  

The advances in neuroscience, computational technology, component miniaturization, 

biocompatibility of materials, and sensor technology can be integrated to interpret the intentions 

of the paralyzed people to achieve their desires.  A BCI is one of the most promising outcomes 

of this integration especially for severely paralyzed persons. 

P300 based BCI Motivations: P300 is relatively well understood from a neurophysiologic point 

of view and can be evoked robustly across different subjects. Moreover, feedback training is not 

necessary in P300 based BCI systems, as the P300 appears “automatically” whenever subjects 

concentrate onto one out of several stimuli presented in random order [1]. 

 

Figure 1-1  Classifier’s performance and the number of features 



 

3 
 

Feature Selection Motivations: In P300 based BCI we have hundreds to thousands of features 

with many irrelevant or redundant ones. Irrelevant and redundant features can confuse the 

classifier. Moreover, the classifier’s performance is decreased if the number of features is 

increased. Figure1-1 illustrates this problem from time consuming point of view using RFLD.  

Finally, Feature Selection is one of the two methods which can solve the curse of dimensionality 

problem. The other method is feature extraction. 

1.3 Objectives 

1. Design and Implementation of an offline P300 based BCI system using EEG signals 

using machine learning algorithms and signal processing techniques. 

2. Improving P300 based BCI performance by selecting the most appropriate features. 

3. Improving the infrastructure for EEG lab for further BCI research at King Abdul-Aziz 

Hospital (KAUH). 

4. Transfer this technology P300 based BCI to our community. 

1.4 Scope of the Thesis 

The scope of this thesis is a dimensionality reduction problem using feature selection algorithms. 

The application of this problem is P300 based BCI which is considered to be a binary 

classification problem. Two datasets were used. One of them is from our BCI lab at KAUH, and 

the other is from U. Hoffmann et al [1]. 

1.5 Thesis Problem Definition 

Considering our binary classification problem, Let X ∈ Rk be the input EEG vectors. And let Y ∈  

{1,0 } be the corresponding class. Let  𝐹 = {𝑓1, … . , 𝑓𝑖, … . , 𝑓𝑛} be the set of all features under 

examination, and let: 
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Tr = {(X(l), Y (l)) | l = 1, 2, . . . , N} = {[x1(l) x2(l) . . . xk(l)]T, Y (l) | l = 1, . . . , N} 

Denotes the training set containing N training pairs, where xi (l) is the numerical value of feature 

fi for the lth training sample. 

The goal of feature selection is to find a minimal set of features   

𝐹𝑠 = {𝑓𝑠1, … . , 𝑓𝑠𝑖, … . , 𝑓𝑠𝑑} 

To represent the input vector X in a lower dimensional feature space as  

𝑋𝑠 = {𝑋𝑠1, … . , 𝑋𝑠𝑖, … . , 𝑋𝑠𝑑} 

Where d <n and while the classifier obtained in the low dimensional representation still yields 

the acceptable classification accuracy. 

1.6 Outline of the Thesis 

The rest of this thesis is organized into five chapters: 

Chapters 2 and 3 contain background material and literature review, Chapter 2 will be an 

introduction to Brain Computer Interface. This will include BCI definition, brief background 

about BCI, and neurophysiologic signals used in BCI. After that P300 based BCI is described in 

details. Chapter 3 will be dedicated to feature extraction and selection for BCI. The definition 

and the difference between them are introduced. Feature extraction methods are explained then 

the algorithms used for feature selection are described. Although the literature review is covered 

through the whole two chapters, a literature review for feature selection in BCI is given 

separately by the end of chapter 3. 
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Chapters 4 and 5 mainly describe research specific to this thesis. Chapter 4 describes the 

methodology and the materials used for feature selection for P300 based BCI, as well as, the 

implementation details of the proposed model. Chapter 5 will present and discuss the results. 

Conclusion and an outlook on future work will be in Chapter 6.  

 

 



 

 

 

Chapter 2  Introduction to Brain 

Computer Interfaces 

2.1 Brief Background 

In 1875, the existence of electrical currents in the brain was discovered by a Liverpool surgeon 

named Richard Caton. He studied action potentials from the exposed brains of rabbits and 

monkeys [2].  In 1929, Hans Berger used his ordinary radio equipment to amplify the brain’s 

electrical activity measured on the human scalp. This electrical activity is called the 

electroencephalogram, or EEG, which was the first EEG recording of humans. He showed that 

weak electric currents generated in the brain can be recorded without opening the skull, and 

depicted graphically on a strip of paper [3]. Berger’s observations were confirmed by other 

respected physiologists and led to the acceptance of the EEG as a real phenomenon in 1935 [3]. 

In 1964 Grey Walter and his colleagues reported the first cognitive ERP component, which they 

called the contingent negative variation or CNV. This negative voltage—the CNV—was clearly 

not just a sensory response. Instead, it appeared to reflect the subject’s preparation for the 

upcoming target. This exciting new finding led many researchers to begin exploring cognitive 

ERP components [2, 3]. The next major advance was the discovery of the P3 component by 

Sutton et al. (1965). They found that when subjects could not predict whether the next stimulus 

would be auditory or visual, the stimulus elicited a large positive P3 component that peaked 

around 300 ms post-stimulus; this component was much smaller when the modality of the 

stimulus was perfectly predictable [3]. 

Over the past two decades, productive BCI research groups have arisen to explore this new 

potential communication modality. Facilitated and encouraged by new understanding of brain 

function, by the advent of powerful low-cost computer equipment, and by growing recognition 
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of the social needs of people with disabilities, these groups focused their attention on developing 

a new alternative communication and control technology to exploit this medium. Today, BCI 

systems propose to offer humans a new non-muscular modality through which to communicate 

directly with their environment. They rely on the acquisition and interpretation of the user-

controlled commands encoded in the neurophysiologic signals [2]. 

2.2 What is Brain Computer Interface (BCI)? 

In basic terms, a BCI involves monitoring brain activity (via a brain imaging technology) and 

detecting characteristic brain pattern alterations that the user controls in order to communicate 

(via digital signal processing algorithms) with the outside world. In a BCI, messages and 

commands are expressed not by muscle contractions as with conventional communication 

means, but rather by electrophysiological signals generated within the brain [2] Figure 2-1 shows  

the basic design of any BCI system.  

 

Figure 2-1  Basic design and operation of any BCI system 
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BCI systems can be classified into invasive and non-invasive. The invasive BCI involves 

attaching electrodes directly to the brain tissue. Non-invasive BCI involves putting electrodes on 

the scalp of the patient and record the signals. Non-invasive BCI have poorer spatial resolution, 

but it is preferable to their safety and cost issues. The main focus of this research will be on non-

invasive BCI. Mason et al. [4] present a comprehensive survey of BCI technology published 

prior to January 2006. 

2.2.1 Neurophysiologic Signals 

Neurophysiologic signals used in BCI can be classified as: 

1. Event-Related Potentials (ERPs) 

a. P300 

b. Steady-State Visual Evoked Potentials (SSVEPs) 

c. Motor-Related Potentials (MRPs) 

2. Oscillatory Brain Activity 

a. Sensorimotor Rhythms 

b. Other Oscillatory Activity 

3. Slow Cortical Potentials 

4. Neuronal Ensemble Activity 

In this Thesis, only Event-Related Potentials (ERPs) will be considered. 

2.2.1.1 Event – Related Potentials (ERPs) 

ERPs are spatial-temporal patterns of the brain activity, acquiring time-locked to an event – i.e. 

after presentation of a stimulus, before execution of a movement, or after the detection of a novel 

stimulus. Traditionally, ERPs are recorded with EEG. Here is a list of the most ERP signals 

used: 



 

9 
 

P300 

It is an endogenous component of ERPs with a latency of about 300 ms which is elicited by rare 

and/or significant stimuli (visual, or auditory). It was found in 1965 by (Sutton et al., 1965; 

Walter, 1965). The amplitude of the P300 potential is largest at the parietal electrode sites, see 

Figure 2-1. Effectively P300 potentials are ERP components whose presence depends on 

whether or not a user attends a rare, unexpected target stimulus. This is what makes it possible to 

use them in BCI systems to determine user intentions [5]. 

  

Figure 2-2  Spatial and temporal location of P300  

 

The characteristics of the P300 component (mainly its amplitude and its latency) vary depending 

on several factors. Some factors are related to the psychophysical state of the subject, such as 

food intake, fatigue, assumption of drugs. Others factors depend on the physical layout of the 

stimuli, such as number of symbols, their size, their relative spacing. Other important factors are 

related to the sequence of stimuli. For example, several studies have reported that the P300 

amplitude increases as target probability decreases. The P300 amplitude seems also to be 

positively correlated with the inter-stimulus interval (ISI) [1]. ISI is the amount of time between 

two consecutive stimuli.  

In this thesis, P300 will be used to construct the P300-based BCI system. 
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Steady-State Visual Evoked Potentials (SSVEPs) 

SSVEPs are oscillations observable at occipital electrodes, induced by repetitive visual 

stimulation. Stimulation at certain frequencies leads to oscillations at the same frequency and at 

harmonics and sub-harmonics of the stimulation frequency. Figure 2-2 illustrates this 

phenomenon using two targets. 

 

Figure 2-3  SSVEP frequencies for two targets  

Motor-related potentials (MRPs) 

Other than the previously described signals MRPs are independent of the perception or 

processing of stimuli. The event which MRPs are related to is the preparation or imagination of 

movement. They are observable over the sensorimotor cortex before movements’ onset or during 

movement imagination. Figure 2-3 illustrates this phenomenon. 

 

Figure 2-4 MRP frequencies target and non-target 
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2.3 P300 based BCI System 

Figure 2-4 shows the main blocks in the general P300 based BCI System. Here the EEG signals 

are recorded from scalp using brain activity monitoring device. Then, EEG signals are fed to 

Preprocessing and Feature selection extraction blocks were pre-processing, feature selection, and 

extraction are done on the EEG signals, and the output will be fed to the Learning block during 

the training phase or to the Classification block during the testing phase. The Classification 

result command will be translated to feedback using Device Controller. 

 

Figure 2-5 Functional model of a BCI System  

2.3.1 Signal Acquisition 

To enable the communication via BCI, first brain signals have to be recorded; different 

recording methods can be used. The main functions of this module are: 

1. Recording the data from the brain. 

2. Doing some low level filtering. 

3. Pass the data to be interpreted. 
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The recorded data could be EEG, ECog, MEG, fMRI, or NIRS. Among them EEG were one of 

the most widely used non-invasive technique for recording electrical brain activity. It has been 

employed to answer many different questions about the brain activity, and has served as a 

diagnostic tool on clinical practice. EEG is a popular signal acquisition technique because the 

required devices are simple and cheap, and the preparation of the measurement takes only a 

small amount of time. On the other hand it has a very good temporal resolution. The electrodes 

used are placed in the scalp in standardized positions, usually 10-20 scheme, see Figure 2-5. In 

this thesis, the P300 based BCI will be constructed using EEG signals. 

 

Figure 2-6 Electrodes locations in the 10-20scheme  

2.3.2 Feature Extraction and selection 

One major challenge in optimizing the performance of the P300 based BCI is enhancing the real-

time detection of the P300 elicited by the chosen stimuli. The process of real time detection 

consists of extraction and selection of P300 features which best represent the user’s intentions 

and classification of the extracted features into an appropriate output by the selected algorithm 

[6]. In order to select the most appropriate classifier for a given BCI system, it is essential to 



 

13 
 

clearly understand what features are used, what their properties are and how they are used. 

Concerning the design of a BCI system, some critical properties of these features must be 

considered: 

 Noise and outliers: BCI features are noisy or contain outliers because EEG 

signals have a poor signal-to-noise ratio. 

 High dimensionality: In BCI systems, feature vectors are often of high 

dimensionality. Indeed, several features are generally extracted from several 

channels and from several time segments before being concatenated into a single 

feature vector. 

 Time information: BCI features should contain time information as brain 

activity patterns are generally related to specific time variations of EEG. 

 Non-stationarity: BCI features are non-stationary since EEG signals may 

rapidly vary over time and more especially over sessions [7]. 

Chapter 3 will be dedicated to cover Feature Selection and Extraction methods. 

2.3.3 Machine learning and classification 

After feature extraction and selection, supervised machine learning algorithms are 

applied to learn the classifiers. Supervised classifiers can be categorized in general in to 

linear and non-linear methods. Over the last decade several more sophisticated non-

linear classification methods, like support vector machines and random forests, have 

been proposed, but it is wise to try linear ones first (of course using shrinkage 

estimation). For BCI, it was agreed that simplicity is generally best and, therefore, the 

use of linear methods is recommended wherever it possible [8]. Linear methods are 

discriminant algorithms that use linear functions to distinguish classes. They are 

probably the most popular algorithms for BCI applications. Two main kinds of linear 

classifier have been used for BCI design, namely, Linear Discriminant Analysis (LDA) 

and Support Vector Machine (SVM) [7]. In this thesis our concern is going to be 
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dedicated to LDA and in particular Fisher’s Linear Discriminant Analysis (FLDA) and 

the regularized versions of it Regularized Fisher Linear Discriminant (RFLD) and 

Bayesian Linear Discriminant Analysis (BLDA). The regularized version of FLDA may 

give better results for BCI than the non-regularized version. Surprisingly, it is much less 

used than LDA for BCI applications [7].  

2.3.3.1 Fisher’s Linear Discriminant Analysis (FLDA) 

Fisher's linear discriminant is a method used in statistics, pattern recognition and machine 

learning to find a linear combination of features which separate two or more classes of objects or 

events. This linear combination of the measured variables is easy to interpret [9]. The resulting 

combination may be used as a linear classifier or, sometimes, for dimensionality reduction 

before later classification. 

Consider a set of features �⃗� (also called observations, attributes, variables or 

measurements) for each sample of an object or event with known class y. This set of 

samples is called the training set. The classification problem is then to find a good 

predictor for the class y of any sample of the same distribution (not necessarily from the 

training set) given only a features �⃗�.  

Suppose we have two classes of features with means  and covariances 

Σy=0, Σy=1. Then the linear combination of features will have means   

and variances  for i = 0, 1. 

Fisher will choose w, which maximize: 

𝐽(𝑤) =  
𝑊𝑇𝑆𝐵𝑊

𝑊𝑇𝑆𝑤𝑊
 

http://en.wikipedia.org/wiki/Training_set
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Where SB is the between classes scatter matrix and SW is the within classes scatter matrix 

and: 

𝑆𝐵 = (𝜇𝑦=1 − 𝜇𝑦=0)(𝜇𝑦=1 − 𝜇𝑦=0)
𝑇 

𝑆𝑤 = 𝑆1 + 𝑆2  

It can be shown that the maximum separation occurs when [60]: 

 

Generally, the data points to be discriminated are projected onto ; then the 

threshold that best separates the data is chosen. There is no general rule for the threshold 

[61]. However, if projections of points from both classes exhibit approximately the 

same, the good choice would be the middle between projections of the two means, 

 and . In this the threshold c can be found explicitly: 

 

2.3.3.2 Regularized Fisher Linear Discriminant (RFLD)  

In FLDA, The standard estimator for a covariance matrix is the empirical covariance. This 

estimator is unbiased and has under usual conditions good properties. But for extreme cases of 

high-dimensional data with only a few data points given- as our case - the estimation may 

become imprecise. This leads to a systematic error: Large eigen values of the original covariance 

matrix are estimated too large, and small eigen values are estimated too small; see figure 3-1.  

This error in the estimation degrades classification performance.  
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Regularization is a common remedy for the systematic bias of the estimated covariance 

matrices. For the RFLD we use: 

 

Where γ is a tuning parameter γ ∈ [0, 1] and ν defined as average eigenvalue trace �̅�/d of  �̅�  

with d being the dimensionality of the feature space and I being the identity matrix. There are 

many methods to estimate optimum γ [59], we test three of with toy example and we choose γ 

using B. Blankertz et al. [10] method: 

𝛾∗ = 
𝑛

(𝑛 − 1)2
 

∑ 𝑣𝑎𝑟𝑘(𝑧𝑖𝑖(𝑘))𝑑
𝑖,𝑗=1

∑ 𝑠𝑖𝑗
2

𝑖≠𝑗 + ∑ (𝑠𝑖𝑖 − 𝑣)2
𝑖

 

 

Figure 2-7  Eigenvalues of a given covariance matrix using FLDA (blue line) and 

RFLD (red line) 

2.3.3.3 Bayesian Linear Discriminant Analysis (BLDA)  

BLDA can be seen as an extension of Fisher’s Linear Discriminant Analysis (FLDA). In 

contrast to FLDA, in BLDA regularization is used to prevent over-fitting to high 

dimensional and possibly noisy datasets. Through a Bayesian analysis the degree of 

regularization can be estimated automatically and quickly from training data. This 

method is similar to the effect of the regularization term used in regularized FLDA.  
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It has been proven [60, 63] that least squares regression is equivalent to FLDA if 

regression targets are set to N/N1 for instances from class 1 and to−N/N2 for instances 

from class−1 (where N is the total number of training instances, N1 the number of 

instances from class 1, and N2 the number of instances from class −1). According to this, 

BLDA is equivalent to performing Bayesian regression and setting target values to N/N1 

and −N/N2for instances from class 1 and class 2 respectively. 

The assumption in Bayesian regression is that targets y and feature vectors x are linearly 

related with additive white Gaussian noise n. 

𝑦 = 𝑤𝑇𝑥 + 𝑛 

According to Bayesian rule: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

The proper normalized expression for the likelihood function is: 

𝑝(𝐷|𝛽,𝑤) = (
𝛽

2𝜋
)𝑁/2 exp (− 

𝛽

2
||𝑥𝑇𝑤 − 𝑦||2) 

Denoting by 𝛽 the inverse variance of the noise and by D the pair {x, t}.The expression 

for the normalized prior distribution is: 

𝑝(𝑤|𝛼) = (
𝛼

2𝜋
)𝐷/2(

∈

2𝜋
)1/2 exp (− 

1

2
 𝑤𝑇𝐼′(𝛼)𝑤) 

Where D is the number of features and 𝐼′(𝛼) is a square D + 1 dimensional, diagonal 

matrix: 

𝐼′(𝛼) =

[
 
 
 
 
𝛼 0 ⋯ ⋯ 0
0
⋮
⋮

𝛼 ⋯ ⋯
⋮ ⋱ ⋯
⋮ ⋯ ⋱

0
⋮
⋮

0 0 ⋯ ⋯ ∈]
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The prior for the weights is thus a zero-mean Gaussian distribution with variance
1

𝛼
. 

Given likelihood and prior, the posterior distribution of w can be computed using 

Bayesian rule: 

𝑝(𝑤|𝛼, 𝛽, 𝐷) =
𝑝(𝐷|𝛽, 𝑤)𝑝(𝑤|𝛼)

∫ 𝑝(𝐷|𝛽,𝑤)𝑝(𝑤|𝛼) 𝑑𝑤
 

Since both prior and likelihood are Gaussian, the posterior is also Gaussian and its 

parameters can be derived from likelihood and prior by completing the square [63]. The 

mean m and covariance C of the posterior satisfy the following equations: 

𝑚 =  𝛽𝐴−1𝑥𝑦 

𝐶 =  𝐴−1 

Where” 

𝐴 =  𝛽𝑥𝑥𝑇 + 𝐼′(𝛼) 

By multiplying the likelihood function for a new input vector x with the posterior 

distribution and integrating over w we obtain the predictive distribution. The predictive 

distribution is again Gaussian and can be characterized by its mean μ and its variance σ2: 

𝜇 = 𝑚𝑇𝑥 

𝜎2 =
1

𝛽
 + 𝑥𝑇𝐶𝑥 

In the P300-based BCI described in [1], only the mean value of the predictive 

distribution was used for taking decisions. Both the posterior distribution of w and the 

predictive distribution depend on the hyper parameters α and β. Bayesian regression 

framework offers a more elegant and less time-consuming solution for the problem of 

choosing these hyper parameters. The idea is to write down the likelihood function for 
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the hyper parameters and then maximize the likelihood with respect to the hyper 

parameters. The maximum likelihood was described in details in [63].  

Defining the following eigen vector equation: 

𝑥𝑇𝑥 𝜑 =  𝜆 𝜑  

Where 𝜑 is the eigen vector and 𝜆 is the eigen value. According to this, α and β can be 

computed by: 

𝛼 =
𝛾

𝑚𝑇𝑚
 

𝛽 =
𝑁 − 𝛾

𝑒𝑟𝑟𝑜𝑟
 

Where γ is defined as: 

𝛾 = ∑
𝛽𝜆𝑖

𝛼 + 𝛽𝜆𝑖
𝑖

 

And error is the minimum squares error or least squares regression and defined as:    

𝑒𝑟𝑟𝑜𝑟 = ∑(𝑦 − 𝑚𝑇𝑥(𝑖))2

𝑁

𝑖

 

Both α and β depend on the m which itself depends on α and β. This represents an 

implicit solution for the hyper parameters. Thus, to maximize it an iterative scheme is 

used in which first m is computed for an initialization setting of α and β and then they 

are updated according to equations above. After few iterations the values for α and β 

converge to the maximum-likelihood solution. A MATLAB implementation of BLDA 

can be downloaded from the webpage of the EPFL BCI group (http://bci.epfl.ch/p300) 

http://bci.epfl.ch/p300
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2.4 Applications 

In theory any device that can be connected to a computer or to a microcontroller could be 

controlled with a BCI. In practice however, the set of devices and applications that can be 

controlled with a BCI is limited. To understand this, one has to consider that the amount of 

information which can be transmitted with present day BCI systems is limited. Some of the 

applications possible with current BCIs are: 

 Spelling devices 

 Environment Control. 

 Wheelchair Control. 

 Games and Virtual Reality. 
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Chapter 3 Feature Extraction and 

Selection for BCI 

3.1 Introduction 

There are two ways to reduce the dimensionality and avoid the curse of dimensionality in BCI, 

one of them is feature selection and the other is feature extraction [11]. 

Feature Selection and Feature Extraction terms are used interchangeably in the literature of BCI. 

So it’s important here to distinguish between them. The term feature selection refers to 

algorithms that select the (hopefully) best subset of the input feature set. On the other hand, 

Methods that create new features based on transformations or combinations of the original 

feature set are called feature extraction methods [12]. Feature extractor was defined in [4] as the 

component of a Brain-Interface Transducer that translates the (artifact-free) input brain signal 

into a value correlated to the neurological phenomenon.  

3.1.1 Feature Selection – Definition 

Given a set of features: 

𝐹 = {𝑓1, … . , 𝑓𝑖, … . , 𝑓𝑛} 

Feature Selection problem is to find a subset 𝐹′ ⊂ 𝐹  that maximizes the classifiers ability to 

classify patterns, see Figure 3-1. The chosen subset of features 𝐹′  should be neither irrelevant 

nor redundant to the target concept. 

A feature Xi is said to be relevant to a concept C if Xi appears in every Boolean formula that 

represents C and irrelevant otherwise. In [70] the relevance is divided into strong relevance and 

weak relevance. Strong relevance implies that the feature is indispensable in the sense that it 
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cannot be removed without loss of prediction accuracy. Weak relevance implies that the feature 

can sometimes contribute to prediction accuracy. Features are relevant if they are either strongly 

or weakly relevant and are irrelevant otherwise. Irrelevant feature does not affect the target 

concept in any way.   

Redundant feature does not add anything new to the target concept [13]. In feature selection, it is 

important to choose features that are relevant for prediction, but at the same time it is important 

to have a set of features which is not redundant in order to increase robustness [71]. 

3.1.2 Feature Extraction – Definition 

Given a set of features: 

𝐹 = {𝑓1, … . , 𝑓𝑖, … . , 𝑓𝑛} 

Feature Extraction problem is to map 𝐹 to some feature set 𝐹′′ that maximizes the classifier’s 

ability to classify patterns, see Figure 3-1. This general definition subsumes feature selection; i.e. 

a feature selection algorithm also performs a mapping but can only map to subsets of the input 

variables. 

 

Figure 3-1 Feature selection and Feature extraction 

Usually, feature extraction precedes feature selection; first, features are extracted from the data 

and then some of the extracted features are selected according to their discriminative ability. 

Feature selection leads to savings in measurement cost and the selected features retain their 
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original physical interpretation. On the other hand, transformed features generated by feature 

extraction may provide a better discriminative ability than the best subset of given features, but 

these new features may not have a clear physical meaning [12]. 

3.2  Feature Extraction methods 

According to their domain, features can be grouped as Time domain, Frequency Domain, and 

Spatial Domain.   

3.2.1 Time Domain Features 

 Time domain features are related to changes in the amplitude of neurophysiologic signals, 

occurring time-locked to the presentation of stimuli or time-locked to actions of the user of a 

BCI system. P300 are one of the signals that can be characterized with the help of time domain 

features. A strategy that is often used to separate these signals from background activity and 

noise is lowpass or bandpass filtering, optionally followed by downsampling. This allows to 

remove unimportant information from high frequency bands and to reduce the dimensionality of 

the signals. Examples for systems in which filtering and downsampling have been employed are 

the P300 BCI described in [1, 14]. An alternative to filtering is to use the wavelet transform of 

the signals. Systems based on the discrete wavelet transform (DWT), as well as systems based 

on the continuous wavelet transform (CWT) have been described in the literature [15, 16]. 

3.2.2  Frequency Domain Features 

 Frequency domain features are related to changes in oscillatory activity. In systems based on 

motor imagery, the band power in the mu and beta frequency bands at electrodes located over 

the sensorimotor cortex is used as a feature. In the case of SSVEPs, band power in the harmonics 

of the visual stimulation frequency at occipital electrodes can be used as a feature. To estimate 

band power, different methods have been used. These include Fast Fourier Transform (FFT) and 
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Power Spectral Density (PSD) methods [17], adaptive autoregressive (AAR) models [18], and 

Morlet wavelets [19] which are classified as time-frequency features. 

3.2.3 Spatial Domain Features  

In many BCI systems, data from more than one electrode is available. Hence, the features 

extracted from several electrodes have to be combined in an efficient way. Finding efficient 

combinations of features from more than one electrode is the goal of spatial feature extraction 

methods. A spatial feature extraction method consists in applying spatial filtering algorithms 

before further processing takes place. Spatial filtering corresponds to building linear 

combinations of the signals measured at several electrodes. Different spatial filtrations methods 

have been used in the literature [20, 21].  

Another classification of feature selection algorithms in ECoG based MRP were performed in 

[6], five types of MRP feature were discussed, these types are: 

Type1- Statistical features: 

a. Moments between all 64 channels, 

b. Commulant between 2,3 and 4 channels, 

c. Correlation between all 64 channels, 

d. Form Factor for each channel separately, 

e. Statistical Variance for each channel separately. 

Type2- Entropy based features: 

a. Approximated Neural Complexity Measure between all 64 channels , 

b. Lample-Ziv Complexity Measure for each channel separately , 

c. Shannon, Renyi and Tsallis Entropies (for α and q = -5, -2, -1, 0.5, 1.5, 2, 3, 5) 

d. Approximation Entropy for each channel separately , 

Type3- Signal's Energy in different frequency ranges: 
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a. δ(0-3.5Hz), θ(3.5-7.5Hz), α(7.5-13.5Hz), β(13.5-20Hz), 

b. δ(0-3Hz), θ(4-7Hz), α(8-13Hz), β(14-20Hz), 

c. δ(0.5-3.5Hz), θ(3.5-7Hz), α(7.5-13Hz), β1(12-15Hz), β2(15-17.5Hz), β3(18-25Hz), 

β4(25.5-30Hz), 

d. δ(1.5-6Hz), θ(6-8Hz), α1(8.5-10Hz),α2=(10.5-12Hz), β1(12.5-18.5Hz), β2(18.5-

21Hz), β3(21-30Hz), β4(30-40Hz). 

Type4- Parameters estimated for AR (Autoregressive) model: 

a. AR model, order 4, 

b. AR model, order 8, 

c. AR model, order 16, 

d. AR model, order 32. 

Type5-Frequency based features: 

a. Coefficients of the Discrete Cosine and Sinusoid Transform, 

b. Coefficients of the Wavelet Transform (Haar, Daubechies2, Daubechies3, 

Daubechies4 andDaubechies5). 

3.3 Feature Selection algorithms 

3.3.1 Feature selection and BCI domains 

The features extracted to be used in BCI systems will provide a better or worse separability for 

the classes depending on where on the scalp they are coming from and where in its domain they 

are, e.g. P300 peaks do not occur uniformly at all electrodes but are usually stronger at 

electrodes over Cz. On the other hand, features found in the motor cortex are more likely to 

provide better separability for classes of a BCI systems based on motor imagery than the features 

found on the visual cortex, where features found on the visual cortex are more likely to provide 

better separability for classes of a BCI system based on SSVEP than features found on the motor 

cortex. Also, for motor imagery based BCI systems, features found on the alpha and beta band 



 

26 
 

are more likely to provide better separability of classes than features found in other frequency 

bands.  So beside the extraction of features using a specific method is also necessary to select the 

appropriate features to be used for classification.  

3.3.2 Manual and automatic feature selection 

The probably simplest way for performing feature selection is to use only electrodes that carry 

useful information for discrimination of a given set of cognitive tasks. Electrodes can be selected 

manually or by using an algorithm that automatically selects an optimal electrode subset. Due to 

its simplicity the former approach has been used in almost all types of BCIs. The latter, more 

complex approach has been used for classification of data recorded with a sensorimotor rhythm 

paradigm such as [22, 29, 34, 35, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49], and classification of 

P300 data such as [23, 24, 41, 42, 50, 51, 52]. 

3.3.3 Supervised, Unsupervised, and Semi-Supervised Feature Selection 

Feature selection algorithms can be categorized – according to availability of class information – 

to Supervised, Unsupervised, and Semi-Supervised Feature Selection [66]. 

In supervised feature selection algorithms, measures are based on the class information. 

Supervised feature selection algorithms try to find features that help separate data of different 

classes. If a feature has no effect on class-based separation, it can be removed. A good feature 

should, therefore, help enhance class-based separation. A well-known measure is information 

gain, which is widely used in feature selection. ReliefF, r2…etc are other examples of this 

algorithm. 

In order to deal with data without class labels, unsupervised feature selection was needed. It is 

closely related to unsupervised learning [66]. One widely used clustering algorithm is k-means. 

Unsupervised feature selection is more difficult to deal with than supervised feature selection. 

However, it also is a very useful tool if the majority of data are unlabeled. 
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When a small number of instances are labeled but the majorities are not, semi-supervised feature 

selection is designed to take advantage of both the large number of unlabeled instances and the 

labeling information as in semi-supervised learning. Intuitively, the additional labeling 

information should help constrain the search space of unsupervised feature selection. In other 

words, semi-supervised feature selection attempts to align locality-based separation and class-

based separations. Since there are a large number of unlabeled data and a small number of 

labeled instances, it is reasonable to use unlabeled data to form some potential clusters and then 

employ labeled data to find those clusters that can achieve both locality-based and class-based 

separations. 

A comprehensive introduction and review of Supervised, Unsupervised, and Semi-Supervised 

Feature Selection is presented in [66]. For my research, supervised feature selection algorithm is 

selected.  Although unsupervised feature selection can be used to skip the training session, this 

will be at the cost of complexity and accuracy.  

3.3.4 Single-Objective (SO) and Multi-Objective (MO) Optimization 

Many real-world optimization problems need to achieve several objectives. The main goal of 

single- objective optimization is to find the “best” solution, which corresponds to the minimum 

or maximum value of a single objective function that lumps all different objectives into one. 

This type of optimization is useful as a tool but usually cannot provide a set of alternative 

solutions that trade different objectives against each other. On the contrary, in a multi-objective 

optimization with conflicting objectives, there is no single optimal solution. The interaction 

among different objectives gives rise to a set of compromised solutions, largely known as the 

trade-off, non-dominated, non-inferior or Pareto-optimal solutions [67]. 

In our problem we have two objectives: maximize the accuracy and minimize the number of 

features. We will convert this MO problem into a SO problem. This conversion could be done by 
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aggregating all objectives in a weighted objective function [68]. Section 4.4.2.2 describes this 

conversion. 

3.3.5 Typical Feature Selection Method  

Feature selection can be considered as a searching problem. Here we are searching for the best 

subset of feature among the competing 2N candidate subsets. This search is subjective to some 

evaluation function. However this procedure is exhaustive as it tries to find only the best one. 

Finding best subset of features is intractable and many problems related to feature selection have 

been shown to be NP-hard [44]. Other methods try to reduce the computational complexity by 

selecting efficient searching algorithms such as random or heuristic ones. These methods need a 

stopping criterion to prevent an exhaustive search of subsets. Liu and Yu [25] as in Figure 3-2 

suggest four steps in a typical feature selection method. These four steps are: 

 Generation procedure. 

 Evaluation function. 

 Stopping criterion. 

 Validation procedure. 

 

 

Figure 3-2 Typical feature selection method  
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The generation procedure generates subsets of features for evaluation. This procedure can be 

initialized with no features, with all features, or with a random subset of features. According to 

the first two cases, features are added or removed iteratively, whereas in the last case, features 

are either iteratively added or removed or produced randomly thereafter. 

An evaluation function evaluates the subset produced by the generation procedure. According to 

this evaluation, the selected features subset is updated. Without a suitable stopping criterion the 

feature selection process may run exhaustively or forever through the space of subsets. Stopping 

criteria can be:  

1. Predefined number of features is selected. 

2. Predefined number of iterations is reached. 

3. Addition (or deletion) of any feature does not produce a better subset. 

4. Optimal subset according to some evaluation function is obtained.  

The validation procedure is not a part of the feature selection process itself, but a feature 

selection method must be validated. 

3.3.6 Feature selection types: 

In general, feature selection methods are divided into filters, wrapper, and hybrid methods [26, 

27]. Filters select subsets of variables as a pre-processing step, independently of the chosen 

classifier. Wrappers utilize the learning machine of interest as a black box to score subsets of 

variable according to their classification power. Hybrid model attempts to take advantage of the 

two models by exploiting their different evaluation criteria in different search stages. 

3.3.6.1 Filter Methods 

Filter methods select a subset of features from the data based on some filter rule before the 

classification algorithm is trained see Figure 3-3. If available, the filter rule is derived from prior 

knowledge (e.g. from an expert). If no prior knowledge about the classification problem is at 
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hand, the rule is based on data statistics. Most filter methods require strong assumptions about 

the class distributions of the data to work efficiently. If the assumptions are true, filter methods 

are very quick methods, easy to implement and can sometimes even deliver best possible 

solutions. The risk of over-fitting the subset selection to the classification task is rather small 

compared to other approaches. For this reason, a filter method is often consulted for comparison 

with new methods. However, if the assumptions are wrong, filter methods might perform poorly. 

[26]. 

 

Figure 3-3 Filter method as feature selection  

Filter methods usually rank the available features one-by-one according to a relevance criterion 

(score). It is then up to the user to define a final feature subset by e.g. choosing the n best ranked 

features or to determine a threshold of the score above which a feature is chosen.  

In general, relevance criterion can be categorized as: Distance functions (e.g. Euclidean distance 

measure), Information (e.g. Entropy, Information Gain, etc.), Dependency (e.g. Correlation 

Coefficient), Consistency (e.g. min-features bias), and classifier error rate (e.g. RFLD, BLDA, 

etc). In the following, some common relevance criteria are introduced.  

Correlation Coefficient 

 (Pearson’s) correlation coefficient is a very well-known linear criterion. It determines for a 

single feature j how strong it is linearly correlated with the labels Y. 
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𝑅(𝑗) =  
𝐶𝑂𝑉(𝑋𝑗, 𝑌)

√𝑣𝑎𝑟(𝑋𝑗)𝑣𝑎𝑟(𝑌)
 

The numerator is simply the covariance between feature j and the labels, while the denominator 

only serves for normalization so that R is invariant for scaling of the feature and the labels. Its 

values are in the range of [−1, 1]. |R|>0.5 stands for a strong linear dependency, values close to 0 

for linear independence.  

Determination Coefficient (r2) 

A slightly modified Correlation Coefficient is the Determination Coefficient (r2) [28]. 

𝑟2(𝑗) =  
𝐶𝑂𝑉(𝑋𝑗, 𝑌)

𝑣𝑎𝑟(𝑋𝑗)𝑣𝑎𝑟(𝑌)
 

Fisher Criterion (FC) 

The Fisher Criterion determines how strongly a feature can separate the given classes. It 

considers both, the within-class variances to be minimized and the between-classes distance to 

be maximized. The score FC(j) of feature j is given by: 

𝐹𝐶(𝑗) =  
(𝜇1 − 𝜇2)2

𝑣𝑎𝑟(𝑋1) + 𝑣𝑎𝑟(𝑋2)
 

The ranking of all features is easily obtained by sorting the features according to their score. 

Other methods 

Other relevance criteria include Scattering Matrices, Mahalanobis Distance, and Bhattacharyya 

Distance. 

3.3.6.2  Wrapper Methods 

In a wrapper approach, the selected feature subset is dependent on the result of the classification 

error estimation (e.g. by cross-validation). Subsets leading to small classification errors estimates 
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are preferred over subsets resulting in higher error. Thus the feature selection and the classifier 

are not independent of each other anymore see Figure 2-4. The error rate of the classifier has to 

be estimated during all iterations the search, which can be very costly.  

 

Figure 3-4 Wrapper method as feature selection  

3.3.6.3 Hybrid Methods 

To take advantage of the above two models, the hybrid model is recently proposed to handle 

large data sets. A typical hybrid algorithm makes use of both an independent measure and a 

mining algorithm to evaluate feature subsets: it uses the independent measure to decide the best 

subsets for a given cardinality and uses the mining algorithm to select the final best subset 

among the best subsets across different cardinalities [25]. 

3.3.7 Popular Search Strategies 

3.3.7.1 Sequential forward selection (SFS) 

This strategy iteratively adds one feature to the current subset until the classification error 

estimate does not improve any further or until other criteria are met. During iteration, each of the 

remaining features (one at a time) is added to the current feature subset and the error is 

estimated. Then the feature yielding the biggest improvement is permanently added to the 
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feature subset and the next iteration starts. The iteration starts with one feature only, which is 

chosen according to the lowest error. SFS can need a maximum of d*(d−1)/2 error estimations. 

Where d is the number of features. 

3.3.7.2 Sequential backward elimination (SBE) 

This strategy is a reversed SFS. Starting with all features, iteratively one feature of the current 

subset is removed until some stopping criterion is met. As the estimation of training errors is 

dependent on the number of features used, SBE is usually slower than SFS. 

3.3.7.3 Sequential forward floating search (SFFS) 

SFFS is a combination of SFS and SBE. Starting like the SFS strategy, a feature subset is built 

up until no further improvement is possible. Instead of stopping at this (possibly local) optimum, 

SFFS allows for some backward elimination steps before the search is continued by SFS in 

another subspace of the problem. As a worst case SFFS can lead to a full search testing 2d − 1 

subsets. 

3.3.7.4 Genetic Algorithm (GA) 

Genetic algorithms are based on evolutionary principles, where feature subsets are coded in the 

form of simple sequences which are considered the genome of the individuals of a population. 

The population changes by reproduction of its individuals. For reproduction, operators like 

mutation and crossing over are applied. The fitness of individuals is represented by the 

classification performance of the corresponding feature subset and determines the chance of 

reproduction. Over several generations the fitness of the population and its individuals improves. 

When a stopping criterion is met, the feature subset represented by the fittest individual is 

selected. GA’s are optimization strategies that do not assume a continuously differentiable 

search space. In a population usually feature subsets of varying numbers of features are present 
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that initially cover the search space randomly. GA’s usually need more error estimations than 

e.g. the SFS strategy [29]. 

3.3.7.5  Particle Swarm Optimization (PSO) 

The optimization method known as Particle Swarm Optimization (PSO) is originally due to 

Kennedy, Eberhart, and Shi [30, 31]. It works by having a swarm of candidate solutions called 

particles, each having a velocity that is updated recurrently and added to the particle’s current 

position to move it to a new position. 

3.3.7.6  Differential Evolution (DE) 

The parallel multi-agent optimization method known as Differential Evolution (DE) is 

originally due to Storn and Price [32].  DE generates new agents by adding the weighted 

difference between two agents to a third agent. This operation is called mutation. The mutated 

agents are then mixed with another predetermined agent, the target agent, to yield the so-called 

trial agent. Agents' mixing is often referred to as crossover. If the trial agent yields a lower cost 

function value than the target agent, the trial agent replaces the target agent in the following 

generation. This last operation is called selection. More specifically DE’s basic strategy can be 

described as follows: 

Let xi denote the position of a target agent being updated and which has been picked at random 

from the entire population NP.  

 

Mutation 

The mutant agent yi (trial agent) is generated according to: 

 𝑦𝑖 =  𝑎𝑖 + 𝐹(𝑏𝑖 − 𝑐𝑖) 

Where vectors ai, bi, and ci are distinct agents positions randomly picked from the population. 

They are also chosen to be different from the target agent, so that NP must be greater or equal to 

four to allow for this condition. The differential weight F is a real and constant factor which 

controls the amplification of the differential variation. 
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Crossover 

Crossover is introduced as follows: 

𝑦𝑖 = {
  𝑎𝑖 + 𝐹(𝑏𝑖 − 𝑐𝑖)   ,    𝑟𝑖 < 𝐶𝑅 𝑜𝑟 𝑖 = 𝑖𝑟𝑎𝑛𝑑

𝑥𝑖               ,                    𝑒𝑙𝑠𝑒
 

The index 𝑟𝑖~𝑈(0,1) is picked randomly for each evaluation i, and CR is the crossover constant 

∈ [0, 1]. 

Selection 

To decide whether or not the trial agent yi should become a member of the population, yi is 

compared to the target agent xi using the greedy criterion. If yi yields a smaller cost function 

value than xi, then xi is set to yi; otherwise, the old agent xi is retained [32]. 

The user-defined parameters consist of the differential weight F, the crossover probability CR, 

and the population-size NP.  

In a comparison by [32] DE was more efficient than simulated annealing and genetic algorithms. 

In 2004 Ali and Torn [63] found that DE was both more accurate and more efficient than 

controlled random search and another genetic algorithm. In the same year, Lampinen and Storn 

[64] demonstrated that DE was more accurate than several other optimization methods including 

four genetic algorithms, simulated annealing and evolutionary programming 

3.4 Feature selection for P300 based BCI (literature review) 

P300 based BCI can be considered as machine learning application or classification. 

Hence, comprehensive surveys of feature selection for classification can be found in [25, 

12, 27]. A brief survey of machine learning techniques - including feature selection 

methods - that can be applied to BCI data is given in [33]. 

Many feature selection algorithms have already been described in BCI literature. Filter is 

simplest and efficient method. Therefore, it has been commonly used in BCI [34, 35, 36, 

37, and38]. In all of them, features are ranked individually according a specific 

evaluation function. Features containing highest values are selected. The evaluation 
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functions used were Correlation based feature selection CFS [34, 35], Fast Correlation 

based filter FCBS [36], r2 [36, 39], Relief [35, 37], 1R ranking 1RR [35], Principal 

component analysis PCA [36], across group variance AGV [37], Information gain [35, 

38, 40], and Consistency based feature selection [35]. Filter methods are limited to the 

fact that each feature is evaluated individually. Thus we can not avoid including 

redundant features, furthermore, features that are relevant only when combination with 

other features might not be included [27]. 

Wrapper methods were also used in BCI [41, 42, 43]. They are used mainly with SVM 

[41, 43]. Although wrapper methods usually produce higher accuracy results compared 

to filter methods, in high dimensional applications - such as BCI - the utilization of 

wrappers is not practical due to the high computational expense. Hybrid method which 

combines the advantages of filters and wrappers was also used in BCI [44]. 

Classical searching algorithms were used for feature selection in BCI literature. Such 

algorithms include breadth first searching algorithm [42], backward stepwise selection 

[45], greedy search [35], and sequential forward floating search [44]. Although 

exhaustive search is not practical for feature selection, it was also used in BCI [39, 46].  

Genetic algorithms were the most used in BCI [36, 37, 41, 42, 43]. Some recent 

searching algorithms were adopted for BCI such as Particle Swarm Optimization PSO 

[36, 47] and Differential Evolution DE [48]. 

Most of the previous methods were applied in BCI in motor imagery paradigm [29, 34, 

35, 37, 38, 39, 40, 44, 45, 46, 47, 48, 49]. Less intention were devoted for P300 [41, 42, 

50, 51, 52]. 

However, to the best of my knowledge, the DE approach has not been previously used 

for feature selection in a P300 based BCI. On other hand no comparison between filter, 

wrapper, and hybrid was done for feature selection in a P300 based BCI.  
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Chapter 4  Methodology for Feature 

selection for P300 based BCI 

4.1 Introduction 

This chapter describes the implementation of the proposed model. As mentioned in the 

problem definition. Two datasets are used to study the impact of feature selection algorithms on 

BCI performance. One of them is from our BCI lab at KAUH, and the other from U. Hoffmann 

et al. [1]. Table 4-1 illustrates the differences between these datasets. This chapter describes the 

methodology and the materials used for feature selection for P300 based BCI. The offline 

analysis is identical to that presented in [1]. Except that I have inserted feature selection module 

to the system. Figure 4-1 shows the BCI lab at KAUH.  

Table 4-1  Comparison between used datasets 

                                                           
1 In U. Hoffmann et al. dataset 4 electrode configurations were used in offline analysis.4, 8, 16, and 32 

electrodes. In this thesis we are considering 8 electrodes only.  

 U. Hoffmann et al. dataset KAUH dataset 

Paradigm  

Description 

P300,  Screen on which six 

images were displayed,  The 

images were flashed in 

random sequences, one image 

at a time, ISI was 400 ms 

P300,  Screen on which six 

characters were displayed,  The 

letters were flashed in random 

sequences, one raw\column at a 

time, ISI was 300 ms 

Sampling rate 2048Hz 256Hz 

Sampling rate after down 

sampling 
32Hz 32Hz 

Subjects Number 4 normal + 4 abnormal 4 normal 

Electrodes no. 32 8 

Electrodes  

Locations 

Fp1, AF3, F7, F3, FC1, 

FC5, T7, C3, CP1, CP5, P7, 

P3, Pz, PO3, O1, Oz, O2, 

PO4, P4, P8, CP6, CP2, C4, 

T8, FC6, FC2, F4, F8, AF4, 

Fp2, Fz, and Cz 

F3, F4, C3, Cz, C4, P3, Pz 

and P4 

Electrodes no. for offline 

analysis 
8 8 

Electrodes Locations  for 

offline analysis 1 

Fz, Cz, P7, P3, Pz, P4, P8 

and Oz 

F3, F4, C3, Cz, C4, P3, Pz 

and P4 

H/W Filtering NA 0.1Hz-60.0Hz 

S/W Filtering 1.0Hz-12.0Hz 1.0Hz-12.0Hz 
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Figure 4-1 BCI lab at KAUH 

4.2 Experimental Setup 

Users were facing a screen on which 6 Arabic characters were displayed. The characters 

were arranged in a 3 by 2 matrix, see Figure 4-2. The user’s task was to focus attention 

(i.e., count silently) on one character at a time in a word that was prescribed by the 

investigator. Table 4-2 illustrates the prescribed words. All rows and columns of this 

matrix were flashed in random sequences, one row/column at a time. Two out of 5 

flashes of rows or columns contained the desired character (i.e., one particular row and 

one particular column). 
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Figure 4-2 this figure illustrates the user display for our experiment  

For each character, user display was as follows: the matrix was displayed for a 2.5s period, 

and during this time the matrix was blank. Subsequently, each row and column in the matrix was 

randomly intensified for 100ms (i.e., resulting in 5 different stimuli, 3 rows and 2 columns). 

After intensification of a row/column, the matrix was blank for 200ms. Row/column 

intensifications were block randomized in blocks of 5. The sets of 5 intensifications were 

repeated 20 times for each character (i.e., any specific row/column was intensified 20 times and 

thus there were 100 total intensifications for each character). Each character was followed by a 

2.5s period, and during this time the matrix was blank. This period informed the user that this 

character was completed and to focus on the next character in the word that was displayed on the 

top of the screen (the current character was shown in parentheses).  

Table 4-2  Words to spell in each session  

Session 1 2 3 4 

Word to spell حأبتثج  أبتثجح أبتثجح أبتثجح 
 

The experiments were designed and recorded with BCI2000. The offline analyses were 

implemented with MATLAB. The experiments were done at BCI lab in King Abdul-Aziz 

University Hospital (KAUH). 
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4.3 EEG Data Acquisition  

The data for this experiment were collected from four normal males (26± 4.5 years).  

The EEG was recorded at 256 Hz sampling rate, with band pass filter from 0.1-60 Hz, and the 

notch filter was set on at 60Hz. The EEG was recorded using eight electrodes placed at the 

standard positions of the 10-20 international system. The selected electrodes were F3, F4, C3, 

Cz, C4, P3, Pz and P4 with AFz as ground and right ear lobe as reference, see Figure 4-3. 

 

Figure 4-3 Selected electrodes for our experiment  

The recording system consists of the following components: g.tec EEGcap, 8 Ag/AgCl 

electrodes, g.tec GAMMAbox, g.tec USBamp and BCI2000 [53, 53] see Figure 4-4. 

 

Figure 4-4 Simple 8 channels hardware diagram  
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4.4 Offline Analysis 

The impact of feature selection algorithms on P300 based BCI performance was tested in an 

offline procedure. For each subject four-fold cross-validation was used to estimate average 

classification accuracy. More specifically, the data from three recording sessions were used to 

train a classifier and the data from the left-out session was used for validation. This procedure 

was repeated four times so each session served once for validation. 

4.4.1 Pre-processing 

Before learning a classification function and before validation, several pre-processing 

operations were applied to the data. The main objective of this phase is to enhance the signal to 

noise ratio SNR. The pre-processing operations were applied in the order stated below. 

4.4.1.1 Referencing 

During this phase twelve different re-reference techniques were applied. Their results were 

compared with each other. The results showed that Common Average Reference (CAR) is best 

suited to be the reference technique. The twelve different re-reference techniques are listed 

below: 

1. Common Reference: No re-montaging is done 

2. Common average reference: The mean of all the electrodes is removed for all the 

electrodes . 

3. Laplacian (4 adjacent): The weighted mean (depends on the distance) of the 4 adjacent 

electrodes is removed from the central electrode. 

4. Surface Laplacian (8 adjacent): The weighted mean (depends on the distance) of the 8 

surrounding electrodes is removed from the central electrode. 

5. Bipolar (front to back): The difference of an electrode with the one behind it . 

6. Bipolar (front to back skip 1): The difference of 2 electrodes that lies in front and also 

behind that electrode. 

7. Bipolar (Symmetrical): The difference of 2 electrodes that is symmetrical to one another. 
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8. Bipolar (left to right): The difference of an electrode with the one right to it. 

9. Bipolar (right  to left): The difference of an electrode with the one left to it. 

10. Using T7,T8 channels : The mean of  T7,T8 channels  is removed for all the electrodes . 

11. Common average reference without mastoid channels: The mean of all the electrodes 

without mastoid channels is removed for all the electrodes . 

12. Reference estimation: Here we apply the work of R. Ranta et al. [55] by the estimation 

of the reference ˆr. 

The findings of this phase were published as a journal article2. 

4.4.1.2 Filtering 

A 6th order forward-backward Butterworth bandpass filter was used to filter the data. Cutoff 

frequencies were set to 1.0 Hz and 12.0 Hz. The MATLAB function butter was used to compute 

the filter coefficients and the function filtfilt was used for filtering. 

4.4.1.3 Downsampling 

The EEG was downsampled from 256 Hz to 32 Hz by selecting each 8th sample from the 

bandpass-filtered data. 

4.4.1.4 Single Trial Extraction 

Single trials of duration 1000 ms were extracted from the data. Single trials started at 

stimulus onset, i.e. at the beginning of the flash of raw\column, and ended 1000 ms after 

stimulus onset.  

4.4.1.5 Winsorising 

Winsorising or Winsorization is the transformation of statistics by limiting extreme values in 

the statistical data to reduce the effect of possibly spurious outliers. It is named after Charles P. 

Winsor (1895–1951). The effect is the same as clipping in signal processing. 

                                                           
2  Mohammed J. Alhaddad, Mahmoud Kamel, Hussein Malibary, Khalid Thabit, Foud Dahlwi, and Anas 

Hadi "P300 Speller Efficiency with Common Average Reference", AIS 2012, LNCS 7326, pp. 234–241, 
2012 
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Eye blinks, eye movement, muscle activity, or subject movement can cause large amplitude 

outliers in the EEG. To reduce the effects of such outliers, the data from each electrode were 

clipped. For the samples from each electrode the 10th percentile and the 90th percentile were 

computed. Amplitude values lying below the 10th percentile or above the 90th percentile were 

then replaced by the 10th percentile or the 90th percentile, respectively. 

4.4.1.6  Normalization 

The samples from all electrodes were scaled to the interval [−1, 1]. The normalization was 

done using z-score method [1]. 

4.4.1.7 Feature Vector Construction 

The samples from the electrodes were concatenated into feature vectors. The dimensionality 

of the feature vectors was Ne × Ns × Nt, where Ne denotes the number of electrodes, Ns denotes 

the number of temporal samples in one trial, and Nt denotes the number of trials.  Due to the trial 

duration of 1000 ms and the downsampling to 32 Hz, Ns always equaled 32. Depending on the 

electrode configuration, Ne equaled 8. Nt is varying according the number of trials in each 

session. 

After that the feature vectors is converted form three dimensions to two dimensions by 

concatenating the electrodes to each other. The dimensionality of the new feature vectors was 

Nes × Nt, where Nes equaled (8 × 32 = 256) and Nt is as is with no change. 

4.4.2 Feature Selection 

Analysis of EEG signals is challenging due to the curse-of dimensionality, which states 

that an enormous number of samples are required to perform accurate predictions for 

present model with a high dimensionality. Dimensionality reduction, which extracts a 

small number of features by removing irrelevant, redundant, and noisy information, can 

be an effective solution. As stated previously, there are two ways to reduce the 
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dimensionality and avoid the curse of dimensionality, one of them is feature selection 

and the other is feature extraction [11]. Feature extraction as a dimensionality reduction 

method is out the scope of this thesis. 

The main objective of feature selection phase is to improve the performance of the 

system. This is done by selecting the most appropriate feature among the other features. 

Before applying any feature selection algorithm, I have manually reduced the length of 

trials from 1000ms to 800ms and this is due the fact that P300 appears in this interval 

and the rest 200ms are not significant. 

Here I will explain the three types of feature selection algorithms. These three types are 

filter, wrapper, and hybrid. 

4.4.2.1 Filter 

In filter the evaluation functions were Fisher score, Determination Coefficient (r2), 

BLDA, and RFLD. Each feature was evaluated individually, after that all features were 

sorted according to their evaluation from higher to lower. Finally, the optimum number 

of features α was selected. Figure 4-5 illustrates the applied algorithm. The optimum α is 

discussed in Section 5.2.1.  

 

Figure 4-5 Applied Filter Algorithm 
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4.4.2.2 Wrapper 

In wrapper the classifiers themselves (BLDA, RFLD) were used as evaluation functions. 

And the differential evolution was used as a searching algorithm. In order to apply 

differential evolution algorithm, the function was modified to deal with boolean instead 

of real numbers. This modification has been introduced before in [48, 41, 64]. The 

modification was done by setting the upper and lower pounds to 1 and 0 respectively, 

where 1 means that the feature is selected while 0 means not selected.  Another 

modification was to round the result of the differential function result to be boolean 

rather than real. The last modification was to keep the searching agents with no 

repetition. This was done during the generating procedure. The modified algorithm was 

tested first with toy examples to insure the performance of the algorithm. After that it 

was applied to our data.  Figure 4-6 illustrates the applied wrapper algorithm. First, S is 

initialized randomly with 50 boolean agents one of them is the full set. The length of 

each agent is N where N is number of features 256. Each agent is evaluated by the 

selected classifier and we keep the best one.  After that new agent yi is generated 

according to: 

𝑦𝑖 = {
  𝑎𝑖 + 𝐹(𝑏𝑖 − 𝑐𝑖)   ,    𝑟𝑖 < 𝐶𝑅 𝑜𝑟 𝑖 = 𝑖𝑟𝑎𝑛𝑑

𝑆𝑖               ,                    𝑒𝑙𝑠𝑒
 

Where ai, bi, and ci are three distinct agents picked randomly from S, F is the differential 

weight, and CR is the crossover probability. According to [32] CR was set to 0.9 and F 

was set to 0.5.  The new generated agent yi is rounded to be boolean and was checked to 

see if yi is already in S. If so another agent is generated. After that yi is evaluated using 

the selected classifier and compared with the best one. If it was better we keep it as the 

best one and update S to include yi. Else, we move on to generate another agent yi. The 

stopping criteria were set to be one of two, the first is to reach the fitness of 0.9% and 

according to our experiments and due to the evaluation of single trials this criterion is 

unreachable. The other stopping criterion is to reach a predefined number of iterations. 

Maximum number of iterations was set to 10,000 [32, 65]. That’s mean that we are 

going to do 10,000 evaluations. Each evaluation function were done through cross 

validation with k-fold=5. 
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Figure 4-6 Applied wrapper algorithm 

Formulation of Evaluation Function 

In the literature, evaluation function or fitness function were formulated in different 

ways. The evaluation function was based on the accuracy only as in [48]. In [69] they 

calculate sensitivity of the classifier, specificity of the classifier and combine both 

measurements to get an overall estimate of fitness. In [41, 64] fitness function was based 

on both accuracy and features in a weighted formula. The fitness function in [41] was:  

fitness =wa * accuracy + wf/ features 

Where wa and wf refer to accuracy weight and features weight respectively. In [64] the 

fitness function in was: 

fitness = accuracy – wf* (nr_features/ nr_all_features) 
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We note that the fitness function used in [41] missed the normalization factor which 

applied in [64]. On the other hand the lower limit for the fitness function used in [64] is 

wf.  In our work we add both normalization factor and the range of the fitness function is 

[1,0] as: 

fitness =wa * accuracy + wf* (1-nr_features/ nr_all_features) 

The values of wa and wf were fix to 0.8 and 0.2 respectively as in [41]. 

4.4.2.3 Hybrid  

To take advantage of the above two models the filter is applied first to reduce the 

features. And then we apply the wrapper. Figure 4-7 illustrates the applied hybrid 

algorithm.  

 

Figure 4-7 Applied hybrid algorithm  
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The output of feature selection phase is a reduced feature list which is going to be used 

in farther processing. Table 4-3 summarized the used algorithms with each feature 

selection type.  

Table 4-3  Used algorithms with each feature selection type 

Feature Selection Method 

Filter 

Fisher score 

Determination Coefficient(r2) 

BLDA 

RFLD 

Wrapper 
BLDA 

RFLD 

Hybrid 

Fisher score + BLDA 

Fisher score + RFLD 

BLDA + BLDA 

RFLD + RFLD 

r2 + BLDA 

r2 + RFLD 

4.4.3 Machine Learning and Classification  

Used classifiers were trained on the data from three sessions and validated on the left-out 

session. BLDA and RFLD were used as classifiers. Both algorithms were fully automatic, i.e. no 

user intervention was required to adjust hyper parameters. After the classifiers had been trained, 

they were applied to validation data in the following way. For each character in the validation 

session, the single trials corresponding to the first twenty blocks of flashes were extracted using 

the preprocessing operations. Then the single trials were classified. This resulted in twenty 

blocks of classifier outputs. Each block consisted of twelve classifier outputs, one output for 

each raw\column on the display. To decide which character the user was concentrating on, the 

classifier outputs were summed over blocks for each raw\column and then the raw\column with 

the maximum summed classifier output was selected. And the intersection between the selected 

raw and column identify the desired character. This method of summing the scores of single 

trials is called fixed number of blocks. That means that the output of the classifier is given by the 
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end of 20 blocks. Another method is called dynamic number of blocks. In this method the system 

stops as soon as enough data has been acquired. Enough data here means that the system can 

take a reliable decision. More about the later method could be found in [62].     

4.4.3.1 Performance Measures 

In order to test the effect of adding feature selection module to P300 based BCI. The results 

are compared using four criteria: Accuracy rates, feature reduction rate, feature selection running 

time, and training/testing running time. 

Accuracy rates:  Accuracy rates were obtained using Classification Accuracy Graphs 

(CAG) and Per Block Accuracy (PBA) for both BLDA and RFLD. The results were averaged 

over all subjects and sessions. CAG and PBA were used and declared in [1] as the following: 

Classification accuracy graphs illustrate the dependence of classification accuracy on the amount 

of aggregated data. Hence the graph is supposed to be better towered the time. The PBA is 

computed from all blocks of EEG trials seen during cross-validation and hence no aggregating is 

used. More discussion about CAG and PBA can be found in [1].  

Feature reduction rate: was the ratio between the resulted feature size and the origin 

feature size. The origin feature size is always 256.  

Feature selection running time: was the time in seconds needed for the algorithm to be 

preformed.  

Training/testing running time: was the summation of the time needed for the classifier to 

be trained – without feature selection time- and the time needed for the classifier to classify the 

given data. The improvement in running time was the ratio of the training/testing running time 

before and after applying feature selection algorithms.  
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Chapter 5 Results and Discussion 

 

5.1 Introduction 

This chapter addresses the impact of feature selection module in P300 based BCI. As 

mentioned before, two datasets are used. One of them is from our BCI lab at KAUH, and the 

other from U. Hoffmann et al. [1]. The results are compared using four criteria: Accuracy rates, 

feature reduction rate, feature selection running time, and training/testing running time. 

All results were calculated using desktop computer with Intel core i7 processor at 2.93GHz 

and 4GB RAM, running Microsoft Windows 7 professional, 32-bit operating system. 

5.2 Experimental Results with U. Hoffmann et al. Dataset 

5.2.1 Results using filter 

As previously discussed in section 4.4.2.1 in applying filter that we have to determine 

the optimum number of selected features (α). The optimum number of selected features 

was adjusted for each type of filter algorithm. This was done by plotting the accuracy 

curve against the selected features and determined the threshold were the accuracy were 

not affected by the increasing of features. This method was described in [29]. In Figure 

5-1 we can see the accuracy curves using fisher score plotted against the selected 

features. These curves were obtained using U. Hoffmann et al. [1] dataset for both 

BLDA (blue curve) and RFLD (red curve). And it was averaged over all subjects and 

sessions. The red dashed line determine the optimum number of selected features = 90. 

It’s clear that the rest of features are redundant and can be removed without significant 

effect in the accuracy. 
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Figure 5-1 Selecting the optimum number of features using fisher score for U. Hoffmann et al. dataset 

averaged over all subjects and sessions 

This method was repeated for each filter types: r2as in Figure 5-2, BLDA as in figure 5-

3, and RFLD as in figure 5-4. The optimum numbers of selected features were 90, 100, 

and 100 for r2, BLDA, and RFLD respectively. Although higher accuracies can be 

obtained, the previous ones were selected due to the significant decrease in feature size 

without significant increase in the accuracy.   

 

Figure 5-2 Selecting the optimum number of features using r2 for U. Hoffmann et al. dataset averaged 

over all subjects and sessions 
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Figure 5-3 Selecting the optimum number of features using BLDA for U. Hoffmann et al. dataset 

averaged over all subjects and sessions 

 

Figure 5-4 Selecting the optimum number of features using RFLD for U. Hoffmann et al dataset 

averaged over all subjects and sessions 

In Figure 5-5 we can see an accuracy based comparison between filter algorithms when 

applied for both BLDA and RFLD. These curves were the average over all subjects and 

sessions, plotted against number of repetitions. The curve obtained by U. Hoffmann et 

al. [1] was also plotted for comparison purpose and was denoted by T7, T8.  
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Figure 5-5 Filter results for U. Hoffmann et al dataset  

5.2.1.1 Classification Accuracy Graphs CAG 

Table 5-1 illustrates CAG comparison for filter types. The comparison is based on four 

criteria: classification correct rates, feature reduction rate, feature selection running time, 

and training/testing running time. The classification correct rates were averaged cross 

the number of repetitions.  We can see that the average correct rate was not significantly 

affected. On the other hand, features sizes were reduced by 64.8% for both fisher score 

and r2. Features sizes for BLDA and RFLD were 60.9%. This reduction in features 

improves the running time of the classifiers during training and testing. For BLDA the 

reduction was 77.4%, 82.7%, and 84.9% for fisher score, BLDA, and r2 respectively. For 

RFLD the reduction was 79.7%, 85.3%, and 85.8% for fisher score, RFLD, and r2 

respectively. The algorithm running time was varying, where r2was the fastest one with 

7.8ms for BLDA and 7.59ms for RFLD. Fisher score was slower with 38.2ms for BLDA 

and 37.9ms for RFLD. BLDA and RFLD were the slowest with 1460ms for BLDA and 

8350ms for RFLD. In general, RFLD is slower than BLDA, and this is due to 
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computations needed for the regularization. Finally we can see the improvement of using 

CAR as a re-reference technique instead of T7, T8 electrodes3 in the first four rows. 

Table 5-1  Filter results using CAG for U. Hoffmann et al dataset 

5.2.1.2 Per Block Accuracy PBA 

Tables 5-2 illustrate PBA comparison for filter types. We can see that the average 

correct rate was not significantly affected –max 3%-. On the other hand, features sizes 

were reduced by 64.8% for both fisher score and r2. Features sizes for BLDA and RFLD 

were 60.9%. This reduction in features improves the running time of the classifiers 

during training and testing. For BLDA the reduction was 76.1%, 75.0%, and 72.9% for 

fisher score, BLDA, and r2 respectively. For RFLD the reduction was 85.7%, 87.2%, and 

85.7% for fisher score, RFLD, and r2 respectively. The algorithm running time was 

varying, where r2was the fastest one with 7.74ms for BLDA and 8.07ms for RFLD. 

Fisher score was slower with 30.0ms for BLDA and 29.6ms for RFLD. BLDA and 

RFLD were the slowest with 1370ms for BLDA and 8070ms for RFLD. Finally we can 

see the improvement of using CAR as a re-reference technique instead of T7, T8 

electrodes in the first four rows. 

                                                           
3 Mohammed J. Alhaddad, Mahmoud Kamel, Hussein Malibary, Khalid Thabit, Foud Dahlwi, and Anas 

Hadi "P300 Speller Efficiency with Common Average Reference", AIS 2012, LNCS 7326, pp. 234–241, 
2012. 

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature  

Reduction  

percentage  

% 

Running Time (s) 

Feature  

selection  

Training  

+ Testing  

Improvement 

% 

None BLDA T7_T8 93.49 ± 10.3 0.0% 0 7.16E-02 -1.0% 

None RFLD T7_T8 93.54 ± 10.4 0.0% 0 1.19E+00 -0.8% 

None BLDA 94.71 ± 10.1 0.0% 0 7.09E-02 0.0% 

None RFLD 94.53 ± 10.2 0.0% 0 1.18E+00 0.0% 

Fisher score BLDA 94.17 ± 9.8 64.8% 3.82E-02 1.60E-02 77.4% 

Fisher score RFLD 94.43 ± 9.6 64.8% 3.79E-02 2.40E-01 79.7% 

BLDA BLDA 93.1 ± 10.85 60.9% 1.46E+00 1.23E-02 82.7% 

RFLD RFLD 94.35 ± 10.3 60.9% 8.35E+00 1.73E-01 85.3% 

Determination 

Coefficient(r2) 
BLDA 94.17 ± 9.8 64.8% 7.85E-03 1.07E-02 84.9% 

Determination 

Coefficient(r2) 
RFLD 94.43 ± 9.6 64.8% 7.59E-03 1.67E-01 85.8% 
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Table 5-2  Filter results using PBA for U. Hoffmann et al dataset 

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature  

Reduction  

percentage  

% 

Running Time (s) 

Feature  

selection  

Training  

+ Testing  

Improvement 

% 

None BLDA T7_T8 60.36 ± 10.96 0.0% 4.67E-04 8.90E-02 0.0% 

None RFLD T7_T8 60.03 ± 11.5 0.0% 1.59E-04 1.22E+00 0.0% 

None BLDA 61.07 ± 11.27 0.0% 1.52E-04 8.91E-02 -0.2% 

None RFLD 61.02 ± 11.53 0.0% 1.58E-04 1.18E+00 3.6% 

Fisher score BLDA 58.23 ± 11.63 64.8% 3.00E-02 2.13E-02 76.1% 

Fisher score RFLD 58.39 ± 11.31 64.8% 2.96E-02 1.75E-01 85.7% 

BLDA BLDA 57.42 ± 11.49 60.9% 1.37E+00 2.23E-02 75.0% 

RFLD RFLD 58.65 ± 11.1 60.9% 8.10E+00 1.56E-01 87.2% 

Determination 

Coefficient(r2) 
BLDA 58.23 ± 11.63 64.8% 8.07E-03 2.41E-02 72.9% 

Determination 

Coefficient(r2) 
RFLD 58.39 ± 11.31 64.8% 7.74E-03 1.75E-01 85.7% 

5.2.2 Results with wrapper  

In Figure 5-6 we can see an accuracy based comparison between Wrapper algorithms 

when applied for both BLDA and RFLD. These curves were the average over all 

subjects and sessions, plotted against number of repetitions. 

 

Figure 5-6 Wrapper results for U. Hoffmann dataset 
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5.2.2.1 Classification Accuracy Graphs CAG 

Tables 5-3 illustrate CAG comparison for wrapper types. For BLDA, we can see that 

features sizes were reduced by 66.4%, 63.9% for BLDA and RFLD respectively. The 

reduction in features improves the running time of the classifiers during training and 

testing. For BLDA the reduction was 60.5% while for RFLD the reduction was 78.5%. 

The algorithm running time was the highest when compare with filter or hybrid 

methods. BLDA feature selection running time was 1,890s. On the other hand, RFLD 

feature selection running time was 13,000s which is about 3.6 hours. No significant 

change in accuracy was happened. 

Table 5-3  Wrapper results using CAG for U. Hoffmann dataset 

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage   

% 

Running Time (s) 

Feature 

Selection 

Training  

+ Testing 

Improvement 

% 

BLDA BLDA 93.96 ± 10.48 66.4% 1.89E+03 4.08E-02 60.5% 

RFLD RFLD 94.06 ± 9.81 63.9% 1.30E+04 2.49E-01 78.5% 

 

5.2.2.2 Per Block Accuracy PBA 

Tables 5-4 illustrate PBA comparison for wrapper types. For BLDA, we can see that 

features sizes were reduced by 66.0%, 64.0% for BLDA and RFLD respectively. The 

reduction in features improves the running time of the classifiers during training and 

testing. For BLDA the reduction was 75.8% while for RFLD the reduction was 87.9%. 

BLDA feature selection running time was 846s. On the other hand, RFLD feature 

selection running time was 7,630s which is about 2.12 hours. No significant change in 

accuracy was happened –max 3%-. 

Table 5-4  Wrapper results using PBA for U. Hoffmann dataset 

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage   

% 

Running Time (s) 

Feature 

Selection 

Training  

+ Testing 

Improvement 

% 

BLDA BLDA 57.6 ± 11.74 66.0% 8.46E+02 2.15E-02 75.8% 

RFLD RFLD 58.1 ± 10.79 64.0% 7.63E+03 1.48E-01 87.9% 
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5.2.3 Results with hybrid 

In Figure 5-7 we can see an accuracy based comparison between Hybrid algorithms 

when applied for both BLDA and RFLD. These curves were the average over all 

subjects and sessions, plotted against number of repetitions. 

 

Figure 5-7 Hybrid results for U. Hoffmann et al dataset 

5.2.3.1 Classification Accuracy Graphs CAG 

Tables 5-5 illustrate CAG comparison for hybrid types For BLDA; we can see that 

features sizes were reduced by 88.5%, 88.8%, and 86.7% for fisher score, r2and BLDA 

respectively. For RFLD, features sizes were reduced by 87.7%, 87.9% and 85.7% for 

fisher score, r2and RFLD respectively. The reduction in features improves the running 

time of the classifiers during training and testing. For BLDA the reduction was 86.6%, 

86.8%, and 87.0% for fisher score, r2, and BLDA respectively. For RFLD the reduction 

was 96.6%, 95.7%, and 96.2% for fisher score, r2, and RFLD respectively.  
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Table 5-5  Hybrid results using CAG for U. Hoffmann et al dataset 

Feature 

Selection 

Method 

Classifier 

Correct 

rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage  

% 

Running Time (s) 

Feature 

Selection 

Training + 

Testing 

Improvement 

% 

Fisher score 

+ BLDA 
BLDA 80.08 ± 14.03 88.5% 2.53E+02 1.39E-02 86.6% 

Fisher score 

+ RFLD 
RFLD 79.56 ± 12.95 87.7% 1.82E+03 3.93E-02 96.6% 

BLDA 

+ BLDA 
BLDA 84.45 ± 12.73 86.7% 2.69E+02 1.34E-02 87.0% 

RFLD 

+ RFLD 
RFLD 83.93 ± 12.42 85.7% 2.11E+03 4.37E-02 96.2% 

r2 + BLDA BLDA 78.28 ± 12.59 88.8% 2.33E+02 1.36E-02 86.8% 

r2 + RFLD RFLD 79.84 ± 14.14 87.9% 2.16E+03 4.93E-02 95.7% 

 

5.2.3.2 Per Block Accuracy PBA 

Tables 5-6 illustrate PBA comparison for hybrid types For BLDA; we can see that 

features sizes were reduced by 88.5%, 86.7%, and 88.8% for fisher score, r2and BLDA 

respectively. For RFLD, features sizes were reduced by 87.7%, 87.5% and 85.7% for 

fisher score, r2and RFLD respectively. The reduction in features improves the running 

time of the classifiers during training and testing. For BLDA the reduction was 84.8%, 

84.7%, and 84.5% for fisher score, r2, and BLDA respectively. For RFLD the reduction 

was 96.8%, 96.3% and 96.6% for fisher score, r2, and RFLD respectively.  

Table 5-6  Hybrid results using PBA for U. Hoffmann et al dataset 

Feature 

Selection 

Method 

Classifier 

Correct 

rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage  

% 

Running Time (s) 

Feature 

Selection 

Training + 

Testing 

Improvement 

% 

Fisher score 

+ BLDA 
BLDA 41.74 ± 8.13 88.5% 2.60E+02 1.36E-02 84.8% 

Fisher score 

+ RFLD 
RFLD 41.93 ± 8.75 87.7% 1.77E+03 3.97E-02 96.8% 

BLDA 

+ BLDA 
BLDA 46.04 ± 10.06 86.7% 2.88E+02 1.38E-02 84.5% 

RFLD 

+ RFLD 
RFLD 44.53 ± 9.65 85.7% 2.14E+03 4.50E-02 96.3% 

r2 + BLDA BLDA 40.55 ± 9.37 88.8% 2.51E+02 1.37E-02 84.7% 

r2 + RFLD RFLD 40.91 ± 9.98 87.5% 1.71E+03 4.21E-02 96.6% 
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The algorithm running time was high in general. For BLDA the feature selection 

running time was 233s with r2 using CAG and 251s using PBA. Fisher score was slower 

with 253s for CAG and 260 for PBA. BLDA was the slowest with 269s for CAG and 

288s for PBA. Put this considered to be fast when comparing with RFLD associated 

algorithms. The fastest one for RFLD was r2 with 2160s and 1710 for CAG and PBA 

respectively. Fisher score was 1820s for CAG and 1770 for PBA. And finally, RFLD 

was the lowest with 2110s for CAG and 2140s for PBA which is about 35.67 minutes. 

We recall that this time is the average of sessions. Beyond this, the correct rate was 

significantly affected negatively. The accuracies were reduced by 15%. This can be 

explained by the concept of over-fitting. More discussion about this point will be in 

section 5.4.3. 

5.3 Experimental Results with KAUH Dataset 

5.3.1 Results with Filter 

There were some differences between our dataset (KAUH) and U. Hoffmann et al. [1] 

dataset. See Table 5-1. According to this we have to check again for the optimum 

number of selected features (α) during applying filter method. The same methodology 

was used. In Figures 5-6, 5-7, 5-8, and 5-9 we can see that there was no change in the 

optimum numbers of the selected features. They were the same for both datasets. 90, 90, 

100, and 100 for fisher score, r2, BLDA, and RFLD respectively. 

 

Figure 5-8 Selecting the optimum number of features using fisher score for KAUH dataset averaged over 

all subjects and sessions 
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Figure 5-9 Selecting the optimum number of features using r2 for KAUH dataset averaged over all 

subjects and sessions 

 

Figure 5-10 Selecting the optimum number of features using BLDA for KAUH dataset averaged over all 

subjects and sessions 

 

Figure 5-11 Selecting the optimum number of features using RFLD for KAUH dataset averaged over all 

subjects and sessions 



 

61 
 

In Figure 5-12 we can see an accuracy based comparison between filter algorithms when 

applied for both BLDA and RFLD. These curves were the average over all subjects and 

sessions, plotted against number of repetitions. 

 

Figure 5-12 Filter results for KAUH dataset 

5.3.1.1 Classification Accuracy Graphs CAG 

Table 5-7 illustrates CAG comparison using four criteria: classification correct rates, 

feature reduction rate, feature selection running time, and training/testing running time. 

The classification correct rates were averaged cross the number of repetitions. We can 

see that the average correct rate was not significantly affected. On the other hand, 

features sizes were reduced by 64.8% for both fisher score and r2. Features sizes for 

BLDA and RFLD were 60.9%. This reduction in features improves the running time of 

the classifiers during training and testing. For BLDA the reduction was 85.1%, 83.0%, 

and 84.7% for fisher score, BLDA, and r2 respectively. For RFLD the reduction was 

85.7%, 87.5%, and 84.7% for fisher score, RFLD, and r2 respectively. The algorithm 

running time was varying, where r2was the fastest one with 5.93ms for BLDA and 

5.83ms for RFLD. Fisher score was slower with 26.4ms for BLDA and 25.9ms for 

RFLD. BLDA and RFLD were the slowest with 1210ms for BLDA and 6180ms for 

RFLD. The overall accuracy for KAUH dataset is lower than U. Hoffmann et al. [1] 

dataset. More discussion about this point will be in section 5.4.2. 
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Table 5-7  Filter results using CAG for KAUH dataset 

Feature Selection 

Method 
Classifier 

Correct rate%  

(mean ± S.D) 

Feature  

Reduction  

percentage  % 

Running Time (s) 

Feature  

selection  

Training  

+ Testing  

Improvement 

% 

None BLDA 81.82 ± 14.82 0.0% 4.77E-05 6.83E-02 0.0% 

None RFLD 82.08 ± 14.47 0.0% 4.20E-05 8.51E-01 0.0% 

Fisher score BLDA 82.76 ± 15.51 64.8% 2.64E-02 1.02E-02 85.1% 

Fisher score RFLD 82.03 ± 15.93 64.8% 2.59E-02 1.22E-01 85.7% 

BLDA BLDA 83.39 ± 14.91 60.9% 1.21E+00 1.16E-02 83.0% 

RFLD RFLD 82.08 ± 16.6 60.9% 6.18E+00 1.07E-01 87.5% 

r2 BLDA 82.76 ± 15.51 64.8% 5.93E-03 1.05E-02 84.7% 

r2 RFLD 82.03 ± 15.93 64.8% 5.83E-03 1.19E-01 86.0% 

5.3.1.2 Per Block Accuracy PBA 

Table 5-8 illustrates PBA comparison. We can see that the average correct rate was not 

significantly affected. On the other hand, features sizes were reduced by 64.8% for both 

fisher score and r2. Features sizes for BLDA and RFLD were 60.9%. This reduction in 

features improves the running time of the classifiers during training and testing. For 

BLDA the reduction was 89.6%, 90.0%, and 89.3% for fisher score, BLDA, and r2 

respectively. For RFLD the reduction was 87.8%, 88.4%, and 88.7% for fisher score, 

RFLD, and r2 respectively. The algorithm running time was varying, where r2was the 

fastest one with 9.37ms for BLDA and 9.86ms for RFLD. Fisher score was slower with 

38.8ms for BLDA and 35.7ms for RFLD. BLDA and RFLD were the slowest with 

1630ms for BLDA and 8230ms for RFLD.  

Table 5-8  Filter results using PBA for KAUH dataset 

Feature Selection 

Method 
Classifier 

Correct rate%  

(mean ± S.D) 

Feature  

Reduction  

percentage  % 

Running Time (s) 

Feature  

selection  

Training  

+ Testing  

Improvement 

% 

None BLDA 41.67 ± 7.1 0.0% 2.12E-04 1.96E-01 0.0% 

None RFLD 43.54 ± 5.03 0.0% 2.17E-04 1.40E+00 0.0% 

Fisher score BLDA 40 ± 3.94 64.8% 3.88E-02 2.04E-02 89.6% 

Fisher score RFLD 39.22 ± 4.14 64.8% 3.57E-02 1.71E-01 87.8% 

BLDA BLDA 40.21 ± 5.03 60.9% 1.63E+00 1.97E-02 90.0% 

RFLD RFLD 40.83 ± 3.47 60.9% 8.23E+00 1.62E-01 88.4% 

r2 BLDA 40 ± 3.94 64.8% 9.37E-03 2.11E-02 89.3% 

r2 RFLD 39.22 ± 4.14 64.8% 9.86E-03 1.58E-01 88.7% 
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5.3.2 Results with Wrapper 

In Figure 5-13 we can see an accuracy based comparison between Wrapper algorithms 

when applied for both BLDA and RFLD. These curves were the average over all 

subjects and sessions, plotted against number of repetitions. 

 

Figure 5-13 Wrapper results for KAUH dataset 

5.3.2.1 Classification Accuracy Graphs CAG 

Table 5-9 illustrates CAG comparison. We can see that features sizes were reduced by 

63.9%, 62.5% for BLDA and RFLD respectively. The reduction in features improves the 

running time of the classifiers during training and testing. For BLDA the reduction was 

83.4% while for RFLD the reduction was 86.9%. The algorithm running time was the 

highest when compare with filter or hybrid methods. BLDA feature selection running 

time was 778s. On the other hand, RFLD feature selection running time was 6030s 

which is about 60 minutes. The change in accuracy was not significant. 

Table 5-9  Wrapper results using CAG for KAUH dataset  

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage   

% 

Running Time (s) 

Feature 

Selection 

Training  

+ Testing 

Improvement 

% 

BLDA BLDA 82.14 ± 15.55 63.9% 7.78E+02 1.13E-02 83.4% 

RFLD RFLD 82.03 ± 16.82 62.5% 6.03E+03 1.12E-01 86.9% 
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5.3.2.2 Per Block Accuracy PBA 

Table 5-10 illustrates PBA comparison. We can see that features sizes were reduced by 

64.1%, 62.3% for BLDA and RFLD respectively. The reduction in features improves the 

running time of the classifiers during training and testing. For BLDA the reduction was 

90.1% while for RFLD the reduction was 88.7%. The algorithm running time was the 

highest when compare with filter or hybrid methods. BLDA feature selection running 

time was 1120s. On the other hand, RFLD feature selection running time was 8270s 

which is about 60 minutes. The change in accuracy was not significant. 

Table 5-10  Wrapper results using PBA for KAUH dataset  

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage   

% 

Running Time (s) 

Feature 

Selection 

Training  

+ Testing 

Improvement 

% 

BLDA BLDA 40.36 ± 3.88 64.1% 1.12E+03 1.94E-02 90.1% 

RFLD RFLD 40.52 ± 5.69 62.3% 8.27E+03 1.59E-01 88.7% 

5.3.3 Results with Hybrid 

In Figure 5-14 we can see an accuracy based comparison between Hybrid algorithms 

when applied for both BLDA and RFLD. These curves were the average over all 

subjects and sessions, plotted against number of repetitions. 

 

Figure 5-14 Hybrid results for KAUH dataset 
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5.3.3.1 Classification Accuracy Graphs CAG 

Table 5-11 illustrates CAG comparison. For BLDA, we can see that features sizes were 

reduced by 88.0%, 88.2% and 86.0% for fisher score, r2and BLDA respectively. For 

RFLD, features sizes were reduced by 88.3%, 87.4% and 85.5% for fisher score, r2and 

RFLD respectively. The reduction in features improves the running time of the 

classifiers during training and testing. For BLDA the reduction was 95.3%, 95.7, and 

95.3 for fisher score, r2, and BLDA respectively. For RFLD the reduction was 97.6%, 

97.3%, and 96.9% for fisher score, r2, RFLD and respectively.  

Table 5-11  Hybrid results using CAG for KAUH dataset  

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage  

% 

Running Time (s) 

Feature 

Selection 

Training + 

Testing 

Improvement 

% 

Fisher score 

+ BLDA 
BLDA 61.3 ± 15.84 88.0% 1.98E+02 3.23E-03 95.3% 

Fisher score 

+ RFLD 
RFLD 62.08 ± 14.75 88.3% 1.25E+03 2.01E-02 97.6% 

BLDA 

+ BLDA 
BLDA 65.68 ± 14.57 86.0% 2.31E+02 3.23E-03 95.3% 

RFLD 

+ RFLD 
RFLD 61.77 ± 13.14 85.5% 1.63E+03 2.63E-02 96.9% 

r2 + BLDA BLDA 66.82 ± 14.87 88.2% 1.90E+02 2.95E-03 95.7% 

r2 + RFLD RFLD 65.36 ± 13.37 87.4% 1.30E+03 2.27E-02 97.3% 

5.3.3.2 Per Block Accuracy PBA 

Table 5-12 illustrates the comparison. For BLDA, we can see that features sizes were 

reduced by 88.1%, 88.4% and 85.7% for fisher score, r2and BLDA respectively. For 

RFLD, features sizes were reduced by 85.6%, 87.8% and 84.8% for fisher score, r2and 

RFLD respectively. The reduction in features improves the running time of the 

classifiers during training and testing. For BLDA the reduction was 96.4%, 96.6%, and 

95.8% for fisher score, r2, and BLDA respectively. For RFLD the reduction was 97.7%, 

98.1%, and 97.5% for fisher score, r2, RFLD and respectively.  
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Table 5-12  Hybrid results using PBA for KAUH dataset  

Feature 

Selection 

Method 

Classifier 
Correct rate%  

(mean ± S.D) 

Feature 

Reduction 

percentage  

% 

Running Time (s) 

Feature 

Selection 

Training + 

Testing 

Improvement 

% 

Fisher score 

+ BLDA 
BLDA 28.49 ± 0.95 88.1% 3.08E+02 7.01E-03 96.4% 

Fisher score 

+ RFLD 
RFLD 28.96 ± 2.21 85.6% 1.95E+03 3.26E-02 97.7% 

BLDA 

+ BLDA 
BLDA 27.71 ± 1.46 85.7% 3.74E+02 8.24E-03 95.8% 

RFLD 

+ RFLD 
RFLD 28.13 ± 2.77 84.8% 2.06E+03 3.47E-02 97.5% 

r2 + BLDA BLDA 30.83 ± 2.4 88.4% 3.09E+02 6.62E-03 96.6% 

r2 + RFLD RFLD 31.25 ± 3.63 87.8% 1.53E+03 2.64E-02 98.1% 

 

The algorithm running time was high in general. RFLD associated algorithms tend to 

take much time than BLDA associated algorithms. For BLDA the feature selection 

running time was 190s with r2. Fisher score was slower with 198s. BLDA was the 

slowest with 231s. Put this considered to be fast when comparing with RFLD associated 

algorithms. The fastest one for RFLD was Fisher score with 1250s. r2 was 1300s. And 

finally, RFLD was the lowest with 1630s which is about 27.17 minutes. Beyond this, 

again the correct rate was significantly affected negatively. The accuracies were reduced 

in average by 28%. More discussion about this point will be in section 5.4.3. 
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5.4 General Discussion 

5.4.1 Comparing the three feature selection types 

Table 5-13 summarizes the result for used feature selection algorithms averaged from 

both datasets using CAG.  

Table 5-13  Results for both datasets 

 
Feature 

Selection 

Method 

Classifier 

Correct 

rate%  

(mean ± S.D) 

Feature  

Reduction  

Percentage % 

Running Time (s) 

 Feature  

selection  

Training 

 + Testing  

Improvement 

% 

F
ilte

r
 

None BLDA 88.27% 0.0% 0.00 7.64E-02 0.00% 

None RFLD 88.31% 0.0% 0.00 1.02E+00 0.00% 

Fisher score BLDA 88.47% 64.8% 2.89E-02 1.63E-02 81.69% 

Fisher score RFLD 88.23% 64.8% 2.84E-02 1.52E-01 84.93% 

BLDA BLDA 88.25% 60.9% 1.32E+00 1.76E-02 80.05% 

RFLD RFLD 88.22% 60.9% 7.18E+00 1.34E-01 86.75% 

Determination 

Coefficient(r2) 
BLDA 88.47% 64.8% 6.80E-03 1.59E-02 82.00% 

Determination 

Coefficient(r2) 
RFLD 88.23% 64.8% 6.70E-03 1.49E-01 85.24% 

Average 88.3% 63.5% 1.43E+00 8.10E-02 83.44% 

W
ra

p
p

er
 

BLDA BLDA 
88.05% 65.1% 1.34E+03 2.60E-02 71.97% 

RFLD RFLD 
88.05% 63.2% 9.51E+03 1.80E-01 82.68% 

 Average 88.05% 64.18% 5.42E+03 1.03E-01 77.33% 
H

y
b

rid
 

Fisher score + 

BLDA 
BLDA 70.69% 88.2% 2.22E+02 8.55E-03 90.92% 

Fisher score + 

RFLD 
RFLD 70.82% 88.0% 1.53E+03 2.97E-02 97.12% 

BLDA + BLDA BLDA 75.07% 86.4% 2.50E+02 8.33E-03 91.13% 

RFLD + RFLD RFLD 72.85% 85.6% 1.87E+03 3.50E-02 96.56% 

r2 + BLDA BLDA 72.55% 88.5% 2.15E+02 8.29E-03 91.24% 

r2 + RFLD RFLD 72.60% 87.7% 1.73E+03 3.60E-02 96.54% 

 Average 72.43% 87.39% 9.69E+02 2.10E-02 93.92% 
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Correct rate: According to the result we can see that there was no significant difference 

in accuracy for both Filter and Wrapper, on the other hand Hybrid accuracy was 

decreased which is going to be illustrated in Section 5.4.3.  

Feature reduction: Hybrid was the best in feature reduction percentage with average 

87.39% and the highest feature reduction percentage was 88.5% for r2 with BLDA as 

hybrid feature selection. The average of feature reduction for filter and wrapper were 

63.5% and 64.18 respectively. 

Feature selection running time: In general filter running time was very fast during 

feature selection. While hybrid was slow and wrapper was the very slow. According to 

this filter types are preferred if the training time is critical. 

Classifier training and testing running time: The running time during training and 

testing the classifier was improved by average 83.44% for filter types. For hybrid the 

improvement was 93.92%. While in wrapper the improvement was 77.33%. It’s clear 

that RFLD associated algorithms tend to take much time than BLDA associated 

algorithms, and this is due the extra computation during the regularization. FLD without 

regularization is much faster. Although hybrid improvement in time was the highest, the 

correct rate was decreased.   

As a conclusion we can see that filter methods reduce the features by average 63.5%. 

The reduction for both fisher score and r2 was 64.8%. While the reduction for both 

BLDA and RFLD was 60.9%.  Figure 5-15 shows a comparison between filter methods. 

In this figure we can see that all of them tend to be the same after 100 features put 

BLDA filter feature selection was not good as the other methods in less number of 

features. 
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 Figure 5-15 Comparing filter methods 

   The reduction improves the training and testing running time by average 83.44%. The 

highest improvement among filter methods was when using RFLD with 86.75%.The 

accuracy was not significantly affected for all of them. Feature selection running time 

for filter methods was fast. We can see that the fastest one were r2 with 6.75ms. Fisher 

score running time was 28.6ms. BLDA and RFLDA were slower. BLDA running time 

was 1,320ms, while RFLD was 7,180ms. According to the previous comparison we can 

conclude that r2 is the best one to be selected as filter feature selection method. 

Wrapper methods save the accuracy. The reduction in features was as good as filter 

methods. On the other hand the computation time was the highest. For BLDA the 

needed time was 1,340s which is about 22.33minutes. For RFLD the needed time was 

9,510s which is about 2.64hours. 

Hybrid methods were the best in feature reduction 87.39% and so it was the best in the 

improvement of training and testing running time 93.92%. But this was at the expense of 

the correct rate. On the other hand, feature selection running time was high. 
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5.4.2 Why U. Hoffmann et al dataset accuracy was overcome KAUH dataset? 

All through the offline analysis U. Hoffmann et al dataset accuracy was overcome 

KAUH dataset. This could be explained by the difference in the paradigm and in 

particular the stimulation method. In U. Hoffmann et al. [1] dataset the stimulation was 

done for each image, one stimulus per image. Thus the images are recognized directly. 

On the other hand, the stimulation in KAUH dataset were done for each raw\column, 

one stimuli per raw\column at a time. This means that the character is identified by two 

stimuli’s, one for the raw and one for the column. The desired character is the 

intersection of them. In other words, the error in KAUH dataset is doubled. Once the 

raw or the column is wrong, the character is wrong. Figure 5-11 illustrates the curves 

obtained considering raw\column error. Table 5-14 illustrates the comparison using the 

other criteria. 

 

Figure 5-16 Filter results for KAUH dataset considering raw\column error 
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Table 5-14  Filter results for KAUH dataset considering raw\column error 

Feature Selection 

Method 
Classifier 

Correct 

rate%  

(mean ± S.D) 

Feature  

Reduction  

percentage  % 

Running Time (s) 

Feature  

selection  

Training +  

Testing  

None BLDA 89.97 ± 8.84 0.0% 5.84E-05 1.09E-01 

None RFLD 89.87 ± 8.67 0.0% 4.49E-05 1.32E+00 

Fisher score BLDA 90.26 ± 9.24 64.8% 3.56E-02 1.78E-02 

Fisher score RFLD 89.95 ± 9.5 64.8% 3.36E-02 1.96E-01 

BLDA BLDA 90.73 ± 8.84 60.9% 1.88E+00 1.88E-02 

RFLD RFLD 89.92 ± 9.78 60.9% 7.96E+00 1.85E-01 

Determination 

Coefficient(r2) 
BLDA 90.26 ± 9.24 64.8% 7.64E-03 1.47E-02 

Determination 

Coefficient(r2) 
RFLD 89.95 ± 9.5 64.8% 7.32E-03 1.93E-01 

5.4.3 Hybrid and Over-fitting 

Although, Hybrid methods reduce the feature size and therefore increase the experiment 

speed, the accuracy was decreased. For U. Hoffmann et al dataset the reduction in 

accuracy was 15% while in KAUH data set the reduction was 28%. This reduction in 

accuracy can be explained with over-fitting.    

A classifier over-fits the dataset if it models the training data too well and its predictions 

are poor [56]. Jensen and Cohen [57] argue that over-searching the training data for 

optimal feature subsets is a problem. In this case the feature selection process can come 

up with a subset of noisy features that is not truly relevant for the classification of 

mental tasks but is only correlated to the labels by coincidence [29]. Table 5-15 

illustrates this problem using BLDA classifier, and r2 with BLDA as feature selection. 

We can see that without involving the optimization average feature size was 90 features, 

average training accuracy was 64.81%, and average testing accuracy was 62.86%. After 

optimization feature size was improved with average 35.44 features, accuracies during 

training were optimized with average 66.03%; put accuracies during testing were 

decreased. The average was 56.93%. We should recall, as mentioned in section 4.4.2.2, 

that the optimization were done through cross validation using k-fold=5. The 

performance was tested again using k-fold=10 put no improvement was acquired.  
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Table 5-15  Hybrid and over-fitting illustration 

Subjects Sessions 

Without Optimization With Optimization 

Feature 

size 

Accuracy Feature 

size 

Accuracy 

Training Testing Training Testing 

S
u

b
je

ct #
 1

 

Session#1 90 67.11% 65.83% 35 68.06% 56.83% 

Session#2 90 67.44% 66.00% 36 67.67% 64.67% 

Session#3 90 69.39% 59.33% 38 72.22% 51.33% 

Session#4 90 67.50% 67.33% 32 67.50% 59.83% 

S
u

b
je

ct #
 2

 

Session#1 90 60.06% 58.67% 36 62.17% 57.83% 

Session#2 90 61.44% 59.50% 32 61.72% 54.33% 

Session#3 90 62.89% 56.00% 37 63.44% 55.00% 

Session#4 90 59.28% 60.17% 34 61.78% 57.83% 

S
u

b
je

ct #
 3

 

Session#1 90 65.94% 66.33% 35 66.83% 58.67% 

Session#2 90 65.83% 66.17% 32 66.56% 59.83% 

Session#3 90 66.11% 59.83% 31 66.72% 52.67% 

Session#4 90 65.83% 67.83% 37 67.11% 60.83% 

S
u

b
je

ct #
 4

 

Session#1 90 65.11% 63.33% 41 66.89% 54.67% 

Session#2 90 63.50% 65.33% 39 66.22% 59.00% 

Session#3 90 65.06% 65.17% 38 66.28% 55.00% 

Session#4 90 64.50% 59.00% 34 65.39% 52.50% 

Average 90 64.81% 62.86% 35.44 66.03% 56.93% 

 

5.4.4 Comparing our results with previous studies 

As previously mentioned, most of feature selection methods were applied in BCI in 

motor imagery paradigm. Less intention was devoted for P300. In 2008 Hoffmann et al. 

[52] apply SBDA, which is an algorithm that uses ARD for feature selection. SBLDA 

was tested for subjects 6, 7, 8, and 9 for 32 electrodes. To compare the results obtained 

using r2 filter, the same data set with the same electrodes number was used. The 

comparison was based on PBA measure. 

The first row of the table is the PBA as appeared in [1]. The second row is the PBA as 

obtained using PBA code. These values – if rounded - are the same of in row first row 

except for S7 the difference was 1%. The third row is the PBA as obtained using 

SBLDA as appeared in [52].  The fourth row is the PBA as obtained using r2 filter. 

Although r2 filter did not outperformed SBLDA the results are comparable. The 

deference in PBA was less than 1.69% while the deference in reduction was 2.6%. 
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Table 5-16  Comparing r2 results with SBLDA 

n 
Feature 

selection 
classifier S6 S7 S8 S9 

(Mean ± STD) Features  

reduction 

% PBA Features 

1 None BLDA 70 72 87 58 72±12 1024±0 0 

2 None BLDA 70.21 70.63 86.88 58.13 71.46±10.22 1024±0 0 

3 SBLDA SBLDA 68 72 87 59 72±12 229±20 77.6 

4 Filter2 r BLDA 70.42 71.67 86.04 53.13 70.31±11.67 256±0 75 
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Chapter 6 Conclusion and Future 

Work 

6.1 Conclusion 

This thesis discusses the impact of adding feature selection module to P300 based Brain 

Computer Interface BCI. Three types of feature selection algorithms were applied. These 

types are Filter, Wrapper, and Hybrid. Deferential evolution was used as searching 

algorithm. As a conclusion, Filter types were the preferred to be selected as feature 

selection method, in particular r2. This is due to the good reduction in dimension and 

low computational cost. The time required for training and testing the classifier was 

improved by 83.62%. When comparing with filter, high computational cost was required 

for both wrapper and hybrid with no significant improvement in performance. 

6.2 Contribution of the Thesis 

The main contribution in this thesis was: 

 The utilization of DE as feature selection algorithm for P300 based BCI.  

 The given comparison between the three types of feature selection is another 

contribution.  

 The improvement of U. Hoffmann et al work by CAR and by adding feature 

selection module. 

 Transfer BCI technology, and improving the infrastructure at KAUH for further 

research.    

This thesis work resulted in 1 conference paper, 2 journal papers and 1 other paper under 

publishing. 
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6.3 Future work 

As a future work we can study the remedy of over-fitting problem with hybrid methods. 

Other possible extension is feature selection for unsupervised BCI. Alternatives of 

searching algorithms may be valuable for this context. Fixed number of blocks only was 

used in this thesis. One may improve the system by modifying it to the dynamic number 

of blocks. Another improvement may include the study of multi-objective optimization. 

Last but not least, the impact of dimensionality reduction using feature extraction rather 

than feature selection may be a good extension. 
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